

Микромир и Вселенная 2019

Атомные ядра

$$Z = 82$$
 $N = 126$
 $A = 208$

Z – заряд ядра, число протонов в ядре

N – число нейтронов в ядре

A = N + Z -массовое число

		Заряд, $q_{\it e}$	Масса, МэВ/ <i>с</i> ²
Электрон	e	-1	0,511
Протон	p	+1	938,3
Нейтрон	n	0	939,6
"Нейтрино"	ν	0	0

Элементарный заряд $q_e = -1,6 \cdot 10^{-19} \; \mathrm{Kp}$

1 эВ (электрон-Вольт) – энергия, которую приобретает электрон, проходя разность потенциалов 1 Вольт

$$1 \text{ кэВ (кило)} = 10^3 \text{ эВ}$$

1 МэВ (мега) =
$$10^3$$
 кэВ = 10^6 эВ

$$1 \, \Gamma$$
эВ (гига) = $10^3 \, \text{МэВ} = 10^9 \, \text{эВ}$

1 ТэВ (тера) =
$$10^3$$
 ГэВ = 10^{12} эВ

Периодическая система элементов Менделеева ГРУППА Категории He Actinoids 2006 г. Properties unknown 3 10 Be Ne Происхождение Состояние (Na) Изначальный Твердое 16 18 Радиоактивный Жидкое Si S распад Na Mg D Ar Искусственный Газообразное 19 20 21 27 32 33 34 35 36 Sc Mn Fe Co Ni Cu Zn As Se Br Kr Cr Ge Ca Ga copper 63.546(3) 43 37 38 39 40 52 54 Rb Sr γ Zr Nb Mo Ru Rh Pd Sn Sb Te Xe Ag Cd palladium 106.42(1) niobium 92.90638(2) technetium [98.9063] cadmium 112.411(8) 55 56 72 73 74 75 77 78 81 83 84 85 86 Ba Hf Ta W Ir Pt Hg Pb Bi Po At Rn Re Cs Os Au hafnium 178.49(2) tantalum 180.9479(1) caesium 32.9054519(2 gold 196.966569(87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Sg Mt 89-103 flerovium dubnium [268.13] bohrium [270] hassium [277.15] utherfordiu [265,12] meitnerium [276.15] darmstadtium coperniciun [285.17] ununtrium [284.18] livermorium 70 Nd Dy Yb Tb Ho Er La Sm Eu Ce Gd Tm Lu * Lanthanoids gadoliniun 157.25(3) 90 91 92 94 95 100 101 102 103

ПЕРИОД

89

actinium [227.03]

** Actinoids

Th

thorium 232.03806(2

protactinium 231.03588(2)

Микромир и Вселенная. Атомные ядра

Pu

97

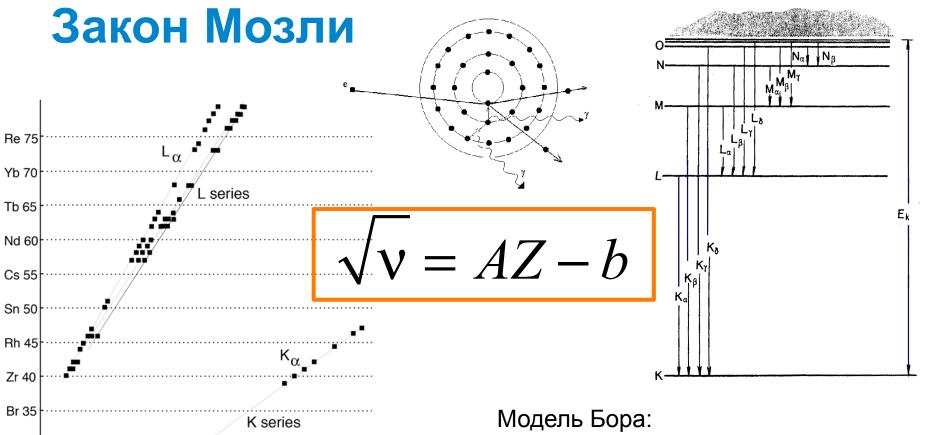
berkelium [247.0703]

98

californium [251.0796]

99

einsteinium [252.0829]


Fm

Md

No

nobelium [259.1009]

lawrencium

$$E_{n} \approx -\frac{mc^{2}\alpha^{2}}{2} \frac{(Z - s_{n})^{2}}{n^{2}}$$

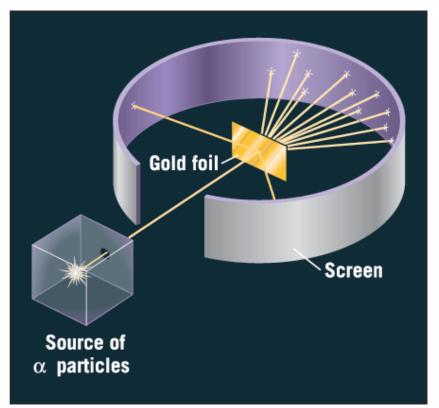
$$E_{\gamma} = h\nu = E_{n}^{(i)} - E_{n}^{(f)}$$

$$\nu = -\frac{mc^{2}\alpha^{2}}{2h} (Z - s_{n})^{2} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}}\right)$$

Adapted from Moseley's original data (H. G. J. Moseley, Philos. Mag. (6) 27:703, 1914)

Frequency (Hz)

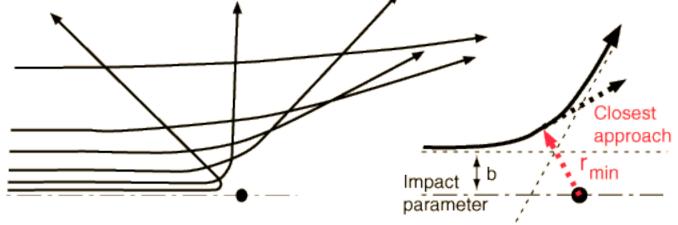
10

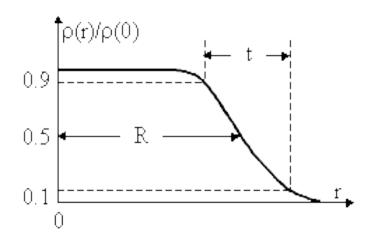

22

20

Mn 25

Ca 20


1911 г. Опыты по рассеянию lpha-частиц

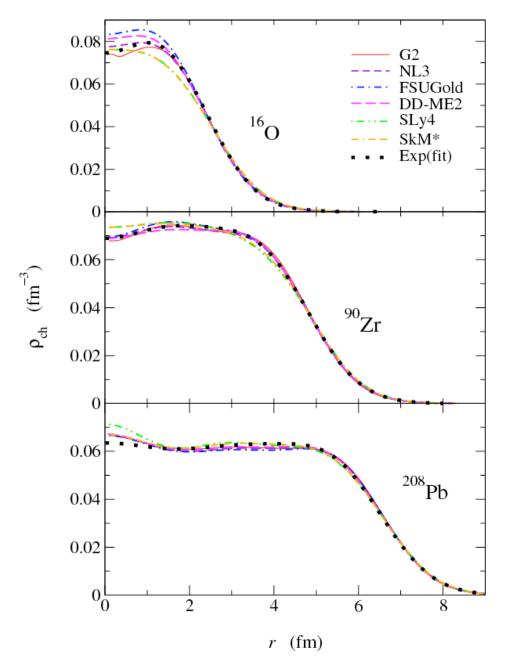

Упругое рассеяние альфачастиц

$$\alpha$$
 + $^{197}_{79}$ Au $\rightarrow \alpha$ + $^{197}_{79}$ Au

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4T}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$$

Размер ядра

$$R = 1,2A^{1/3}$$


$$t = 2,5 фм$$

$$\rho(r) = \frac{\rho_0}{1 + \exp[(r - R)/a]}$$

 ρ_0 — плотность ядерной материи в центре ядра,

R — радиус ядра — расстояние, на котором плотность ядерной материи спадает в два раза, t — параметр диффузности (спад плотности от 0.9 ρ_0 до 0.1 ρ_0).

$$t = 4,4a.$$

Размер ядра

Основные методы определения радиуса ядра:

- Определение радиуса αрадиоактивных ядер по энергии испускания α-частиц (теория Гамова)
- Энергии связи зеркальных ядер
- Рассеяние быстрых нейтронов (изменение потока нейтронов с толщиной мишени)
- Рентгеновское излучение мезоатомов
- Рассеяние быстрых электронов

Атомная единица массы. Дефект массы

Атомная единица массы (а.е.м.) равна 1/12 массы атома углерода ¹²C.

1 a.e.m. =
$$1,6582 \cdot 10^{-24}$$
 r

ИЛИ

$$E = mc^2 = 931,44 \text{ M} \cdot \text{B}.$$

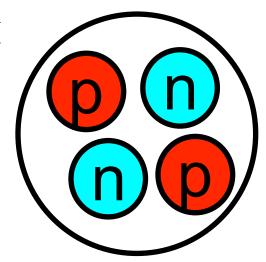
Разность Δ между массой атома в атомных единицах массы и его массовым числом называется дефектом массы

$$M_{_{\mathit{A}\mathit{\partial}\mathit{p}\mathit{a}}} = A \cdot u + \Delta - Z \cdot m_{_{\mathit{e}}} c^{2}$$

Энергия связи атомного ядра

Энергия связи ядра B(A,Z) — минимальная энергия, которую необходимо затратить для того, чтобы разделить атомное ядро на отдельные составляющие его нейтроны и протоны.

$$M(A,Z)c^{2} + B(A,Z) = Z \cdot m_{p}c^{2} + (A-Z)m_{n}c^{2}$$
$$M(A,Z)c^{2} == Z \cdot m_{p}c^{2} + N \cdot m_{n}c^{2} - B(A,Z)$$

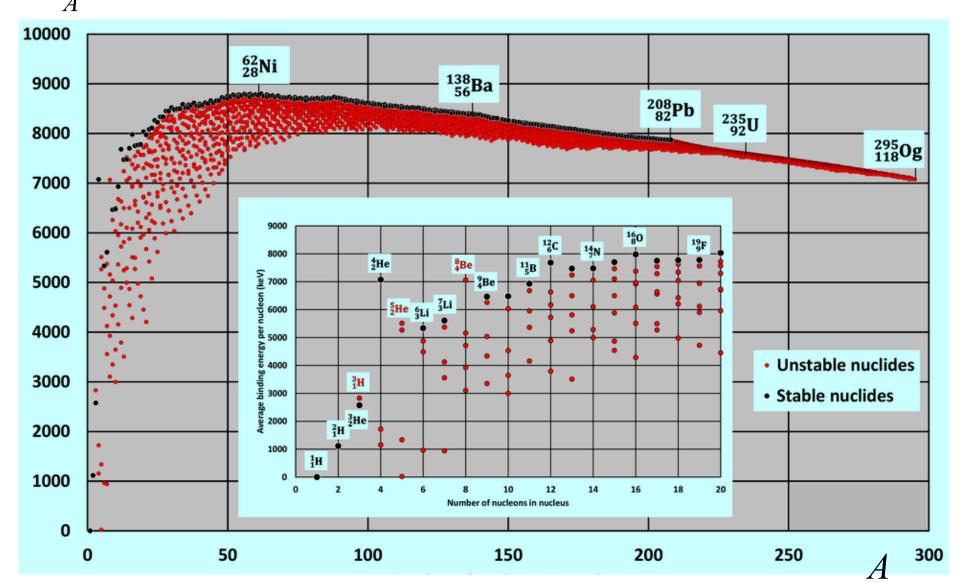

Удельная энергия связи ядра — энергия связи, приходящаяся на один нуклон

$$\varepsilon = B(A,Z)/A \sim 8 \text{ M} \ni B$$

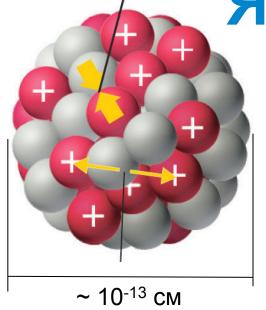
Энергия связи атомного ядра

 α -частица — ядро атома гелия

$$Z=2$$
 4 He $N=2$
 $A=4$



Источником энергии, выделяющейся на Солнце, является образование ядра ⁴Не при слиянии 4 протонов.


$$4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2v_{e}$$

Масса ядра 4 Не на 0,6% меньше суммы масс четырёх протонов и двух позитронов. В результате синтеза 4 Не выделяется энергия $E \approx 25$ МэВ.

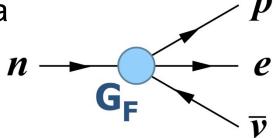
$\frac{B(A,Z)}{A}$, кэВ Удельная энергия связи

Ядерные силы

Какие силы связывают протоны и нейтроны в атомные ядра?

1.Сильное взаимодействие между нуклонами

$$\frac{F_{NN}}{F_{Coul}} \sim 40$$


2. Конечность радиуса действия ядерных сил

$$r_{NN} \sim 1 \ \Phi \text{M} \ (10^{-13} \ \text{CM})$$

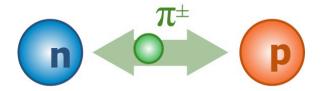
Теория Ферми

1934 – Э. Ферми. Теория β-распада

$$au_n pprox rac{1}{{G^2}_F} rac{1}{(m_n - m_p)^5} \sim 885,7 \; {
m ce} \kappa$$

$$G_F \sim rac{10^{-5}}{m_p^2}$$
 — константа **слабого** взаимодействия

Для E_{ν} ~ 1 МэВ σ_{ν} ~ 10⁻⁴³ см², L_{ν} ~ 10²⁰ см





Для ядерных сил радиус взаимодействия

$$r_{NN} \sim \frac{hc}{m_e} \sim 10^3 \ \Phi \mathrm{M}$$

Теория Юкавы

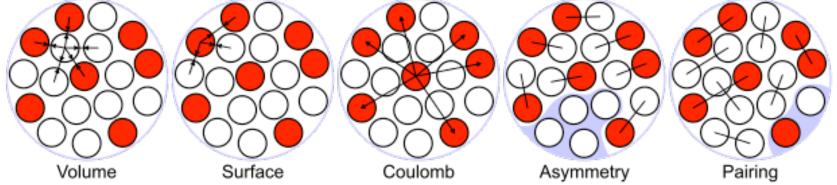
1935 г. Х. Юкава разработал теорию ядерного взаимодействия и предсказал мезоны – кванты ядерного поля.

$$r_{NN} \sim 1 \,\Phi$$
м (10⁻¹³ см)

$$m_{\pi} \sim 200 m_{e}$$

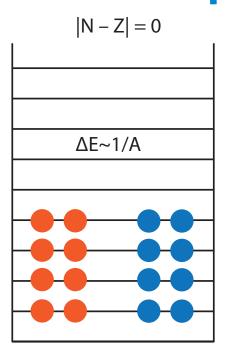
1937 г. К. Андерсон, С.Неддермейер. Открытие мюона.

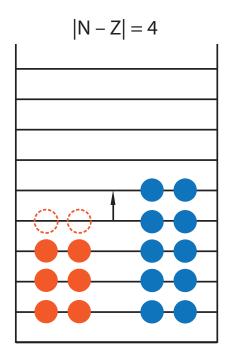
$$Q_{\mu} = q_e; \quad m_{\mu} = 200 \ m_e \ J = 1/2$$

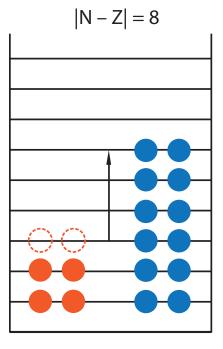

1947 г. С.Пауэлл. Открытие заряженных пионов.

$$Q_{\pi} = \pm q_e$$
; $m_{\pi} = 140 \text{ M} \cdot \text{B} \ J = 0$

Модель жидкой капли

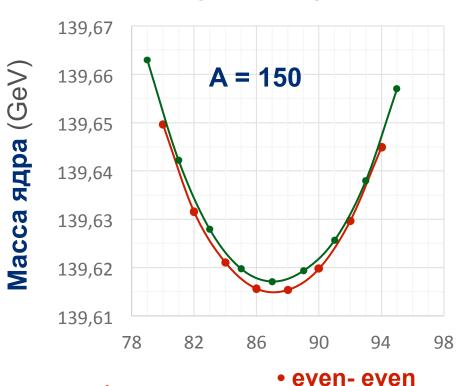

1935 г Формула Бете-Вайцзеккера

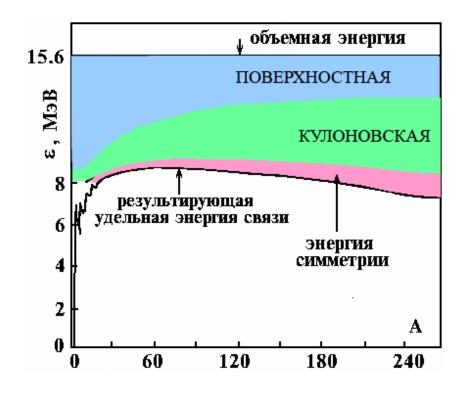

$$B(A,Z) = \alpha A - \beta A^{2/3} - \gamma \frac{Z(Z-1)}{A^{1/3}} - \delta \frac{(A-2Z)^2}{A} + \zeta A^{-3/4}$$



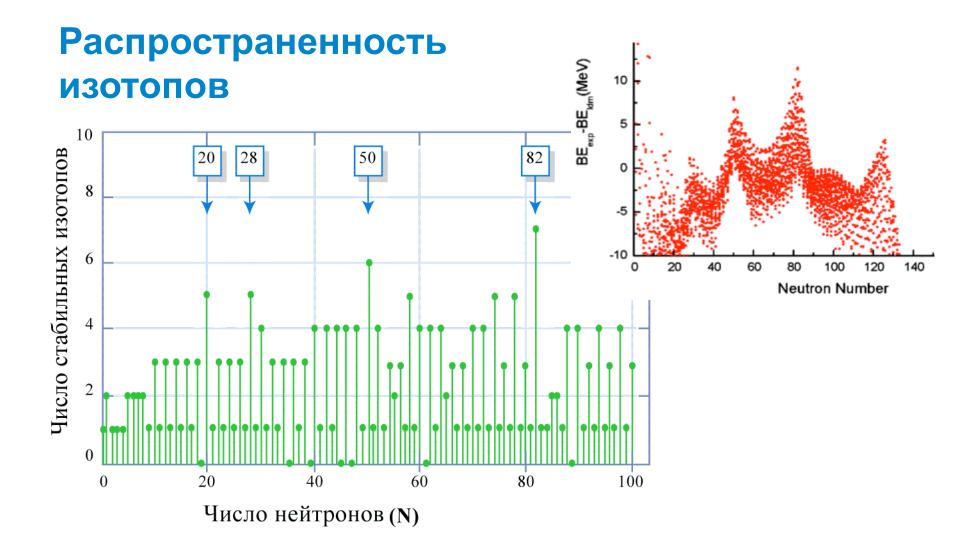
$$\alpha = 15.56 \, MeV$$
 $\beta = 17.23 \, MeV$ $\gamma = 0.7 \, MeV$ $\delta = 23.285 \, MeV$

Модель жидкой капли. Энергия симметрии.


$$E = 2\Delta E + 2 \cdot 3\Delta E + e^x = 2\Delta E(1 + 3 + 5 + \dots + 2n - 1),$$


$$n=rac{N-Z}{4}$$
 - число пар

$$E = 2\Delta E n^2 \sim \frac{(N-Z)^2}{A}$$


Модель жидкой капли

Парная энергия

$$\zeta = \begin{cases} 34 \text{ MeV} \\ 0 \\ -34 \text{ MeV} \end{cases}$$

Магические числа 2, 8, 20, 28, 50, 82, 126

Спин ядра Ј

Атомное ядро в каждом состоянии характеризуется полным моментом количества движения J. Этот момент в системе покоя ядра называется спином ядра.

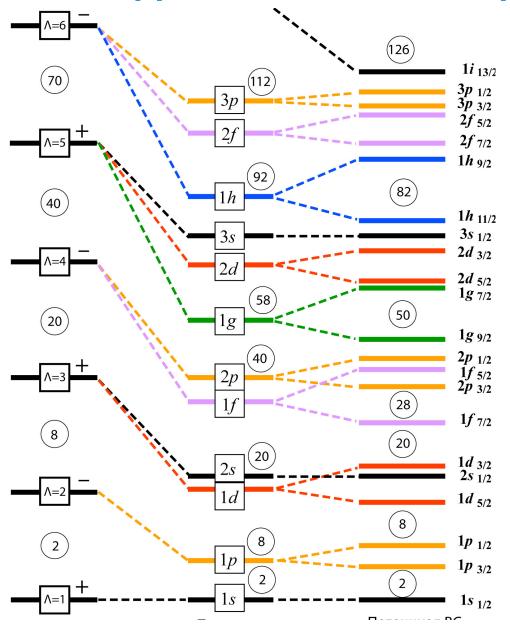
$$\vec{J} = \sum_{A} \vec{s}_{i} + \sum_{A} \vec{l}_{i} = \sum_{A} \vec{j}_{i}$$

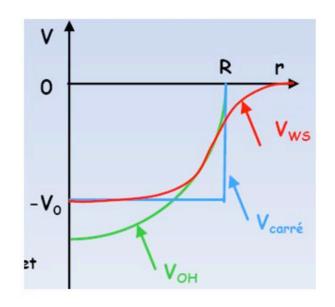
Чётно-чётные ядра в основном состоянии имеют J=0. Это указывает на взаимную компенсацию моментов нуклонов в основном состоянии ядра — особое свойство межнуклонного взаимодействия — спаривание тождественных нуклонов.

Четность ядра *Р*

Четность ядра \boldsymbol{P} как системы нуклонов определяется произведением четностей отдельных нуклонов p_i

$$P = p_1 \cdot p_2 \cdots p_A$$


$$p_i = \pi_i p_i = \pi_i \cdot (-1)^{l_i}$$


Внутренняя четность нуклона $\pi_i = +1$.

Четность сферически симметричного ядра определяется произведением орбитальных четностей нуклонов

$$P = (-1)^{l_1} (-1)^{l_2} \dots (-1)^{l_A} = (-1)^{\sum_{i=1}^{L} l_i}$$

Одночастичная модель оболочек

Прямоугольная яма

$$V = \begin{cases} -V_0, & r < R \\ 0, & r > R \end{cases}$$

Осцилляторный потенциал
$$V = -V_0 + \frac{1}{2} m \omega^2 r^2$$

Потенциал Вудса-Саксона

$$V = -\frac{V_0}{1 + e^{\frac{r - R}{a}}}$$

Магнитный момент ядра

Величина магнитного дипольного момента ядра μ определяет его энергию E взаимодействия с магнитным полем H.

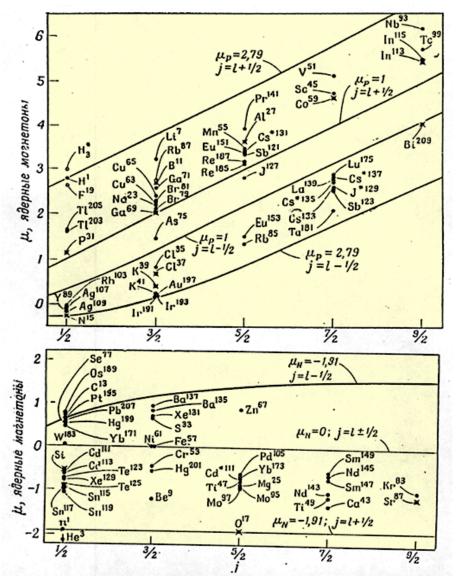
Магнитный дипольный момент ядра имеет орбитальную и спиновую компоненты

$$\vec{\mu}_{\scriptscriptstyle R} = \mu_0 \sum_{i=1}^{A} \left(g_l^i \vec{l}_i + g_s^i \vec{s}_i \right)$$

Магнитный момент протона

$$\mu_p = +2,79\mu_0$$

Магнитный момент нейтрона


$$\mu_n = -1,91\mu_0$$

$$\mu_{\theta} = \frac{e\hbar}{2m_{p}c} = 3.15 \cdot 10^{-18} \frac{M \ni B}{\Gamma aycc}$$

Магнитный момент ядра

$$\vec{\mu} = \left(\sum_{A} g_{l} \vec{l}_{i} + \sum_{A} g_{s} \vec{s}_{i}\right) \mu_{0} \qquad g_{l} = \begin{cases} 1 & p \\ 0 & n \end{cases} \qquad g_{s} = \begin{cases} 2 \cdot (2,79) & p \\ 2 \cdot (-1,91) & n \end{cases}$$

Магнитные моменты ядер

Магнитный момент ядра

$$\mu = gJ\mu_{\scriptscriptstyle \rm H}$$

J – спин ядра

Гиромагнитный множитель нуклона

$$g_j = g_l \pm \frac{g_s - g_l}{2l + 1}$$
$$j = l \pm 1/2$$

В одночастичной модели ядра магнитный момент нечётных ядер обусловлен магнитным моментом неспаренной нечётной частицы.

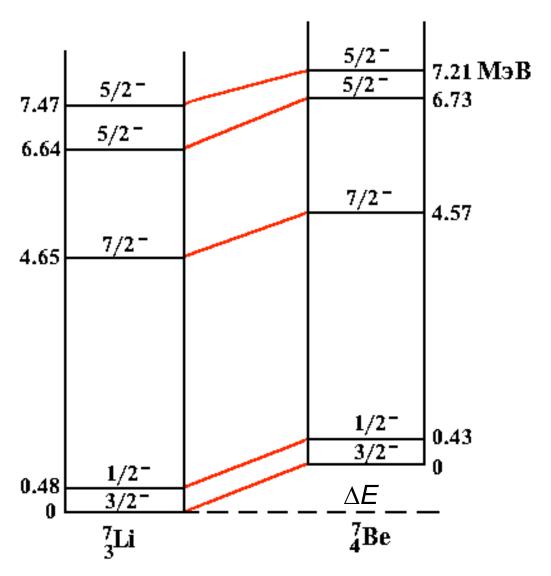
Изоспин атомных ядер

Изоспин системы А нуклонов

$$\vec{I} = \sum_{\alpha=1}^{A} \vec{I}_{\alpha}$$

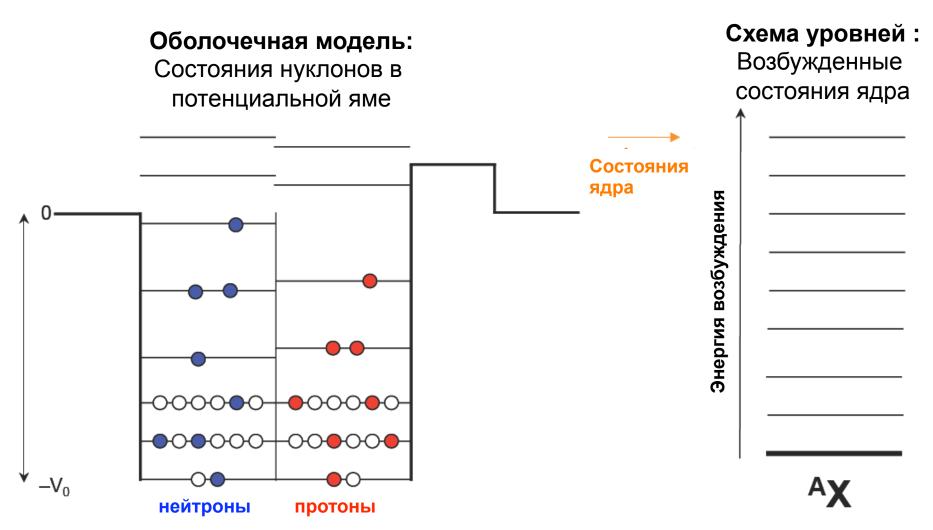
В ядре A нуклонов, каждый из которых имеет изоспин $I = \frac{1}{2}$.

Поэтому возможные значения изоспина

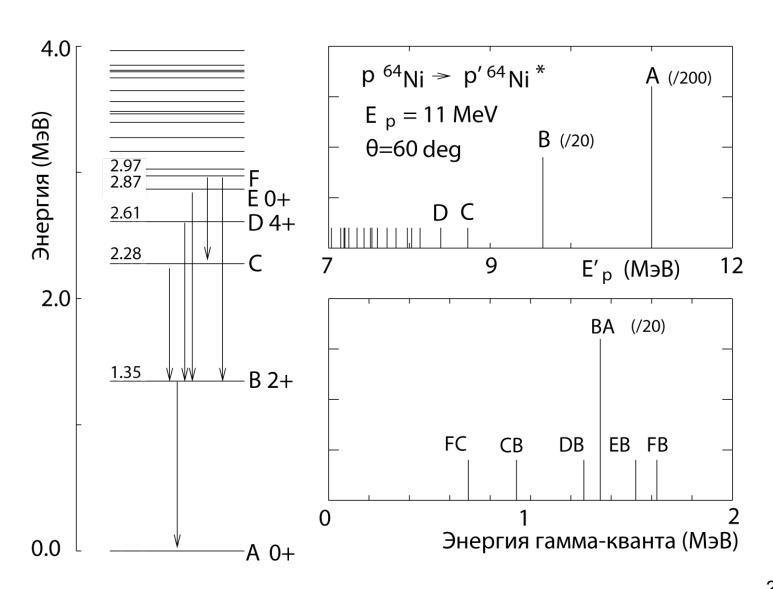

$$\left|\frac{Z-N}{2}\right| \le I \le \frac{A}{2}$$

Все состояния ядра имеют проекцию изоспина $I_3 = \frac{Z - N}{2}$.

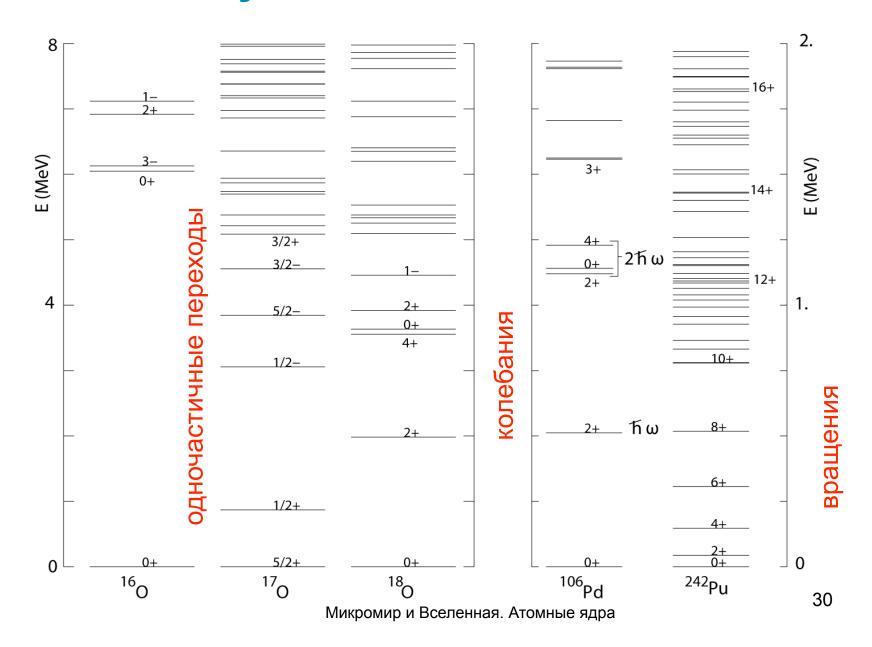
Изоспин ядра в основном состоянии I_{gs} имеет минимальное возможное значение

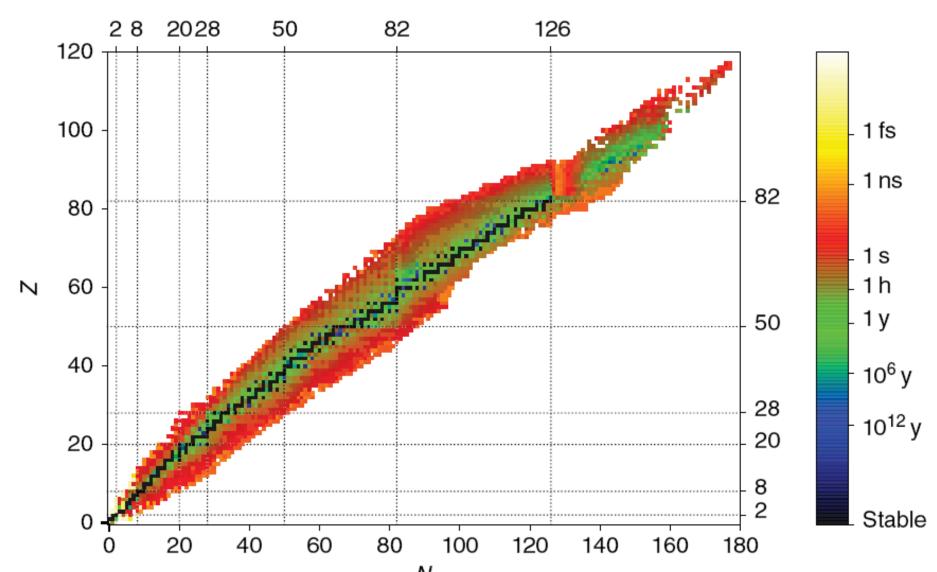

$$I_{gs} = |I_3| = \left| \frac{Z - N}{2} \right|.$$

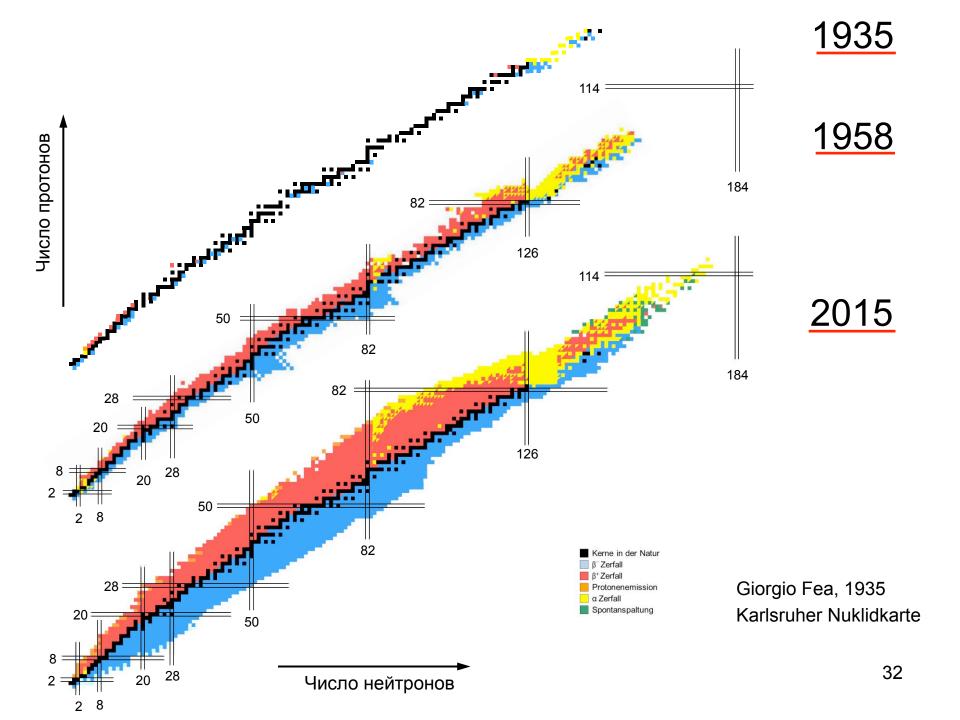
Аналоговые состояния ядер ⁷Li, ⁷Be



Изодублеты (I = 1/2) уровней ядер ${}^{7}_{3}Li$ и ${}^{7}_{4}Be$


Возбужденные состояния


Возбужденные состояния


Возбужденные состояния

Период полураспада

Известно \sim 300 стабильных ядер и \sim 3500 радиоактивных ядер. Это только часть радиоактивных ядер. Всего их может быть \sim 7000.

