

Микромир и Вселенная 2019

ЯДЕРНЫЕ ПРЕВРАЩЕНИЯ

РАДИОАКТИВНОСТЬ

Основной закон радиоактивного распада

Активность A (радиоактивность) – число ядер, распадающихся в единицу времени.

Ядра распадаются независимо друг от друга, каждое ядро может распасться любой В момент активность => пропорциональна числу радиообразце. Ν активных ядер В Закономерности распада атомных ядер наблюдаются только в среднем, большого распаде достаточно при числа ядер.

$a_t = a_0 \exp(-\lambda t) = a_0 e^{-\lambda t}$

λ (постоянная распада) характеризует неустойчивость ядер.Период полураспадаT½=In2/λСредняя продолжительность жизни ядерτ_{cp}=1/λ

Активность

Единица измерения активности – число распадов в секунду

•1 Беккерель = 1 распад/сек

•1 Кюри = 3,7·10¹⁰ Бк

•Активность может измеряться в числе распадов на единицу объема или массы

Картофель	= 170 Бк/кг
Зерна кофе	= 490 Бк/кг
Бананы	= 130 Бк/кг
Гранит	= 1000 Бк/кг
Угольная зола	= 2000 Бк/кг
Радиоактивност	⁻ ь человека по ⁴⁰ К — 5500 Бк, по ¹⁴ С - 3000Бк

Радиоактивный источник для терапии ~10¹⁴ Бк ²³⁹Pu = 2,3 ·10¹² Бк/кг = 63 Ки/кг

Специальных условий (например, защиты) требует применение радионуклидов, имеющих А > 10⁸ Бк (очень приблизительная оценка)

N-Z диаграмма атомных ядер

Ν

e - capture

ν

Бета - распад

 $n \to p + e + \overline{v}, \quad Q_{\beta} = m_n c^2 - m_p c^2 - m_e c^2 = 0,74 \text{ M} \Rightarrow B$ $\beta^-: (A,Z) \to (A,Z+1) + e^- + \overline{v}_e$ $\beta^+: (A,Z) \to (A,Z-1) + e^+ + v_e$ EC: $(A,Z) + e^- \to (A,Z-1) + v_e$

Энергии β-распада изменяются от 0.02 МэВ до ~20 МэВ.

$${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{\nu}_{e} + 0,02 \text{ M} \Rightarrow B$$

 ${}^{11}\text{Li} \rightarrow {}^{11}\text{Be} + e^{-} + \overline{\nu}_{e} + 20,4 \text{ M} \Rightarrow B$

Долина стабильности

Микромир и Вселенная. Атомные ядра

Бета - распад 4.2 s 5/2+ 4.81 ι4²⁷ β⁺ <u>-4.50</u> 4.58 (5/2) -4.40 **A=27** 1/2 4.05 3.95 1/2 3.67 Q_{EC} 4.810 МэВ (9/<u>2+) (3/2+) 3.00 2.98</u> 0.005 ps 9.5 m **1/2**+ 12 Mg 27 <u>2.21</u> 0.016 ps 7/2+ (5/2+) 1.83 β^{-} (5/2+) 1.65 $\Lambda_{\beta} \sim Q_{\beta}^{5}$ 31% 1.013 | ps 3/2+ 69% 1/2+ 0.02 ns へ 日 10% Q_в 2.614 МэВ 100% 5/2+ 13AI27

ү-переходы в ядрах

$$\gamma: (A,Z)^* \to (A,Z) + \gamma$$

Времена жизни γ -радиоактивных ядер обычно изменяются от 10^{-8} до 10^{-17} с, т.е. в среднем они гораздо меньше времени жизни по отношению к α - и β -распадам.

γ-переходы происходят в результате электромагнитного взаимодействия. Законы сохранения энергии *E*, момента количества движения *J* и четности *P* в электромагнитных переходах:

$$\vec{J}_f = \vec{J}_i + \vec{J}_\gamma$$
, $P_f = P_i \cdot P_\gamma$, $E_f = E_i + E_\gamma + T_R$.

T_R - энергия ядра отдачи.

В зависимости от чётности при определенном значении *J* фотоны различают на *магнитные и электрические*:

 $P = (-1)^{J+1}$ – магнитные фотоны *MJ*; $P = (-1)^{J}$ – электрические фотоны *EJ*. Каскады ү-переходов $t_{1/2} < 10^{-7}$ сек

Альфа - распад

а-распад — распад атомных ядер, сопровождающийся испусканием а-частицы (ядра ⁴ H) $(A,Z) \rightarrow (A-4,Z-2) + {}^{4}$ He $M(A,Z) > M(A-4,Z-2) + M_{\alpha}$

Энергия а-распада $Q_{\alpha} = [M(A,Z) - M(A-4,Z-2) - M_{\alpha}]c^{2}$

Кинетическая энергия а-частицы

$$T_{\alpha} = Q_{\alpha} \frac{M(A - 4, Z - 2)}{M(A - 4, Z - 2) + M_{\alpha}} \approx Q_{\alpha} \frac{A - 4}{A}$$

Периоды полураспада:

0,3 мкс (²¹²Po)<T_{1/2}<(2-5)10¹⁵ лет (¹⁸⁶Os, ¹⁴⁴Nd)

Энергия а-частиц изменяется в пределах от 2 до 9 МэВ

Альфа - распад

Зависимость периода полураспада чётно-чётных изотопов 74 [] Z [] 106 от энергии α-распада. Данные хорошо аппроксимируются зависимостью

$$\lg T_{1/2} = \frac{9,54Z^{0,6}}{Q_{\alpha}^{1/2} - 51,37}$$

Альфа - распад

1911 г. Теория Гамова

Вероятность α -распада λ равна произведению вероятности обнаружить α -частицу на границе ядра *f* на вероятность её прохождения через потенциальный барьер *D*.

Энергия альфа-распада в зависимости от А.

Пунктир – предсказание для периода полу-распада в теории Гамова

Радиоактивные семейства

Типы радиоактивного распада ядер

Тип радиоактивности ядер	Тип испускаемых частиц	Год открытия	Авторы открытия
Радиоактивность атомных ядер	Излучение, вызвавшее потемнение фотопластинок	1896	A. Becquerel
Альфа-распад	⁴ He	1898	E. Rutherford
β^- -распад	$e^-\tilde{V}$	1898	E. Rutherford
eta^+ -распад	e ⁺ v	1934	I. et F. Joliot-Curie
е-захват	V	1938	L. Alvarez
Гамма-распад	γ-квант	1900	P. Villard
Ядерная изомерия	γ , е-захват, β^+ , β^- , деление	1921	O. Hahn
Спонтанное деление	Два осколка сравнимой массы	1940	Г.Н. Флеров, К.А. Петржак
Двойной <i>в</i> -распад	$e^-e^-2\tilde{v}_e$	1950	M.G. Ingram, J.H. Reynolds
Протонная радиоактивность	р	1981	S. Hofmann
Кластерная радиоактивность	¹⁴ C	1984	H. Rose, G. Jones, Д.В. Александров
Двухпротонная радиоактивность	2p	2002	J. Giovinazzo, B. Blank et al. M.Pfutzner, E.Badura et al.

ЯДЕРНЫЕ РЕАКЦИИ

1919 год

Э. Резерфорд осуществил первую искусственную ядерную реакцию и доказал наличие в атомном ядре протонов.

 $^{14}_{7}N + ^{4}_{2}He \rightarrow ^{1}_{1}H + ^{17}_{8}O$ $^{14}_{7}N + \alpha \rightarrow p + ^{17}_{8}O$

 $^{14}_{7}N(\alpha,p)^{17}_{8}O$

Target (Projectile, Detected Particle) Residual Nucleus

Сечение реакции о

Сечение реакции – величина, определяющая вероятность перехода системы взаимодействующих частиц в определенное конечное состояние.

Сечение реакции под определенным углом называется дифференциальным эффективным сечением $\frac{d\sigma(\theta,\varphi)}{d\Omega}$

(Интегральное) эффективное сечение σ – дифференциальное сечение, проинтегрированное по всем углам $\int d\sigma(\theta, \varphi)$

$$\sigma = \int \frac{d\sigma(\theta, \varphi)}{d\Omega} \sin \theta \, d\theta d\varphi$$

Сечение реакции и число событий N

$$\frac{dN(\theta,\varphi)}{d\Omega} = j \cdot n \cdot l \cdot s \cdot \frac{d\sigma(\theta,\varphi)}{d\Omega}$$
$$N = j \cdot n \cdot l \cdot s \cdot \sigma$$

• *N* – число событий в секунду,

- *j* поток частиц *а* через 1 см² поверхности мишени,
- *n* число частиц в 1 см³ мишени,
- s площадь мишени в см²,
- *l* толщина мишени в см,
- σ сечение реакции.

$$\frac{N}{\text{события}} = \frac{| \text{число частиц } a || \text{число частиц } b || \text{см} || \text{см}^2 || \text{сm}^2 || \text{см}^2 || \text{сm}^2 || \text{см}^2 || \text{см}^2 || \text{сm}^2 || \text{cm}^2 || \text{сm}^2 || \text{сm}^2 || \text{сm}^2 || \text{сm}^2 |$$

Каналы ядерной реакции

упругий канал

$$p + {}^7_3 \text{Li}$$
 Упругое рассеяние $p + {}^7_3 \text{Li}^*$ Неупругое рассеяние $p + {}^7_3 \text{Li}^*$ Неупругое рассеяние ${}^4_2 \text{He} + {}^4_2 \text{He}$
 ${}^4_2 \text{He} + {}^4_2 \text{He}$
 ${}^4_2 \text{He} + {}^4_2 \text{He} + \gamma$
 $p + {}^4_2 \text{He} + {}^3_1 \text{H}$ и другие...

Полное сечение: сумма сечений по всем неупругим каналам и сечения упругого рассеяния

$$\sigma_{\text{полн}} = \sigma_{\text{упр}} + \sigma_{\text{неупр}}$$

чеупругие каналь

Законы сохранения в ядерных реакциях

$$a + A \rightarrow b + B$$

- 1. Закон сохранения энергии
- 2. Закон сохранения импульса

Энергия реакции Q

$$Q = \sum m_i c^2 - \sum m_f c^2$$

 $Q = (m_a + m_A - m_b - m_B)c^2$

Q > 0 – экзотермические реакции Q < 0 – эндотермические реакции Упругое рассеяние: Q = 0Распад: Q > 0

Законы сохранения в ядерных реакциях

$$a + A \rightarrow b + B$$

Число нуклонов (барионный заряд В)

$$A(a) + A(A) = A(b) + A(B)$$

Электрический заряд **О**

$$Z(a) + Z(A) = Z(b) + Z(B)$$

Момент количества движения Ј

$$\vec{J}_a + \vec{J}_A + \vec{l}_{aA} = \vec{J}_b + \vec{J}_B + \vec{l}_{bB}$$

Четность Р

$$P_a P_A (-1)^{l_{aA}} = P_b P_B (-1)^{l_{bB}}$$

Механизмы ядерных реакций

Реакции под действием нейтронов

Классификация ядерных реакций

Ядерное время – время пролёта частицы через ядро:

 $\mathcal{T}_{\mathcal{R}} =$

1. Если время реакции $t_p \approx \tau_{s}$, то это Налетающая частица передаёт энерг остальных, и они сразу покидают ядк нуклонами. К прямым процессам от подхвата (p,d), (n,d), реакции фрагм сталкиваясь с ядром, выбивает из нег 2. Если $t_p >> \tau_{\mathfrak{R}}$, то реакция идёт нуклон, которому она передала распределяется среди многих нуклон для вылета из ядра. Через сравнит перераспределений она концентрир связанных нуклонах, и они покидаю Нильсом Бором в 1936 г.

Прямые ядерные реакции срыва и подхвата

Возбужденные состояния

Микромир и Вселенная. Атомные ядра

Реакции под действием нейтронов

Рассеяние в конденсированных средах

Реакции с образованием составного ядра

 $E_n < 10$ MeV

Прямые ядерные реакции

 $\tau \sim 10^{-22}$ $E_n > 10 \text{ MeV}$

Составное ядро ⁶⁴Zn

32

Составное ядро

Какие причины делают составное ядро долгоживущим?

Во-первых, из-за короткодействия ядерных сил движение нуклонов в ядре может быть сильно запутанным. Вследствие этого энергия влетевшей в ядро частицы быстро перераспределяется между всеми частицами ядра. В результате часто оказывается, что ни одна частица уже не обладает энергией, достаточной для вылета из ядра. В этом случае ядро живет до флуктуации, при которой одна из частиц приобретает достаточную для вылета энергию.

Во-вторых, малая проницаемость потенциального барьера для заряженных частиц на несколько порядков уменьшает вероятность вылета протонов из средних и тяжелых ядер.

В-третьих, вылет частиц из составного ядра может затрудняться различными правилами отбора.

В-четвертых, в реакциях с испусканием γ-квантов, на средних и тяжелых ядрах в ядре происходит сильная перестройка структуры при испускании γ-кванта. Время перестройки значительно превышает характерное ядерное время 10⁻²²с.

Реакции на тяжелых ионах

- 1) Фрагментация, расщепление и деление
- → релятивисткие энергии: $v_{beam} \approx 0.9$ с, E ≈ (300 1000) MeV/n

Реакции на тяжелых ионах

2) Слияние

→ энергии у кулоновского барьера: $v_{beam} \approx 0.1$ с, E ≈ 5 MeV / nucleon

Столкновения релятивистских ядер

Ультрарелятивистское столкновение тяжелых ионов. Слева направо: два ядра сближаются, сталкиваются, формируется кварк-глюонная плазма, адронизация КГП, перерассеяние и охлаждение адронов

Столкновения ионов золота

Au + Au, sqrt(s) = 200 A GeV

NICA (Nuclotron based Ion Colider fAcility)

Объединенный институт ядерных исследований (ОИЯИ), Дубна, Россия

Au + Au, sqrt(s) = 11 A GeV

Открытый видеоурок «NICA — Вселенная в лаборатории» http://nica.jinr.ru/ru/open-lesson.php