Через Через миллиард 300 000 -Через З лет . Первые минуты лет секунды \boldsymbol{q} gБольшой взрыв Возникновение космического Через 14 миллиардов лет 🚽 реликтового излученя

Микромир и Вселенная 2019

Границы ядерного континента

Сверхтяжелые элементы

Модель жидкой капли (формула Бете-Вайцзеккера)

Капельная модель Для Z ≥ 104 время жизни ~10⁻¹⁹ с

Оболочечные поправки и спаривание нуклонов

Микроскопические поправки:

 $B(N, Z) = B(N, Z)_{macro} + E_{corr}^{shell} + E_{corr}^{pair}$

Барьер деления сверхтяжелых элементов определяется поправками на оболочечную структуру и на эффект спаривания:

 $B_f = B(N,Z)_{micro} = E^{shell} + E^{pair}$

Поиск новых элементов

 1940 - 1952: Синтез элементов Z = 93 - 100 путем облучения урана нейтронами (Г.Т. Сиборг, А. Гиорсо и др. (Беркли, США)

→ идентификация химическими методами

Нобелевская премия по химии

1951 г. – Э. М. Макмиллан, Г.Т. Сиборг. За открытия в области химии трансурановых элементов

1952 г. А. Гиорсо и др. (Беркли, США) ₉₉Es Эйнштейний, ₁₀₀Fm Фермий ²³⁸U+15 $n \rightarrow {}^{253}U \xrightarrow{\beta} {}^{253}Np \dots \xrightarrow{\beta} {}^{253}Es$ ²³⁸U+17 $n \rightarrow {}^{255}U \xrightarrow{\beta} {}^{255}Np \dots \xrightarrow{\beta} {}^{255}Fm$

> 1 ноября 1952 года. Атолл Эниветок. Айви Майк

Поиск новых элементов

1958 - 1974: Синтез элементов Z = 101 – 106
 в реакциях слияния (Беркли, США) (ОИЯИ, Дубна)

Объединенный институт ядерных исследований, Дубна, СССР

Лаборатория ядерных реакций

Твердотельные детекторы

Георгий Николаевич ФЛЕРОВ

Ha 2015 г: $T_{1/2} (^{259}Rf) \sim 3.2 c$ $T_{1/2} (^{260}Rf) \sim 0.02 c$

Взятие 104-го

$^{242}Pu + {}^{22}Ne \longrightarrow {}^{264}104 \longrightarrow$ $\longrightarrow {}^{260'}{}^{259}104 + (4,5)n$

НА ОТКРЫТИЕ

Явление образования радиоактивного изотопа элемента с атомным номером 106

В соответствии с Положением об открытиях, изобретениях и рационализаторских предложениях Государственный комитет СССР по делам изобретений и открытий установил, что граждане Союза Советских Социалистических Республик

> ТРЕТЬЯКОВ ЮРИЙ ПЕТРОВИЧ ИЛЫНОВ АЛЕКСАНДР СЕРГЕЕВИЧ ДЕМИН АЛЕКСАНДР СЕРГЕЕВИЧ ПЛЕВЕ АНАТОЛИЙ АЛЕКСЕЕВИЧ ТРЕТЬЯКОВА СВЕТЛАНА ПАВЛОВНА ПЕНИОНЖКЕВИЧ ЮРИЙ ЭРАСТОВИЧ ПЛОТКО ВАСИЛИЙ МАКСИМОВИЧ ИВАНОВ МИХАИЛ ПЕТРОВИЧ ДАНИЛОВ НИКОЛАЙ АНДРЕЕВИЧ КОРОТКИН ЮРИЙ СЕМЕНОВИЧ ФЛЕРОВ ГЕОРГИЙ НИКОЛАЕВИЧ 0ГАНЕСЯН ЮРИЙ ЦОЛАКОВИЧ

На снимке — участники открытия сто шестого элемента (слева направо): кандидат физико-математических наук С. П. Третьякова, инженер Н. А. Данилов, механик В. М. Плотко, научный сотрудник Ю. С. Короткин, доктор физико-математических наук Ю. Ц. Оганесян, академик Г. Н. Флеров, кандидат физико-математических наук А. С. Ильинов, инженер Ю. П. Третьяков, научный сотрудник М. П. Иванов.

Синтез сверхтяжелых элементов в Дубне

Год	Номер	Символ	Название
1966	102	No	Нобелий
1965	103	Lr	Лоуренсий
1964	104	Rf	Резерфордий
1970	105	Db	Дубний
1974	106	Sg	Сиборгий
1982	107	Bh	Борий
1984	108	Hs	Хассий
2003	109	Mt	Мейтнерий
	110	Ds	Дармштадтий
	111	Rg	Рентгений
	112	Cn	Коперниций
2003	113	Nh	Нихоний
1998	114	FI	Флеровий
2003	115	Мс	Московий
2000	116	Lv	Ливерморий
2010	117	Ts	Тенессин
2002	118	Og	Оганесон

Поиск новых элементов

с 1980: Исследование реакции слияния

- 1981 1996 Синтез элементов Z = 107 112 в реакциях холодного слияния GSI (SHIP), Дармштадт (П. Армбрустер, С. Хофманн, Г. Мюнценберг и др.,);
- 2004: Синтез Z = 113 в **RIKEN, Япония** (К. Морита и др.)

«Холодное слияние» Мишень: ²⁰⁸Pb (Z=82, N=126) или ²⁰⁹Bi (Z=83, N=126) Пучок: Z > 18 (^{40, 48}Ca, ⁵⁴Cr, ⁵⁸Fe, ^{62, 64}Ni и др) Минимальная кинетическая энергия пучка Слияние магических ядер E_x ~ 12 – 20 МэВ

- Синтез элементов Z = 113 – 118 в Дубне в реакциях слияния ⁴⁸Ca с мишенями из актинидов

<u>Горячее слияние</u> →

Мишень: Актиниды **Pu, Am, Cm** и **Cf** (Z = 94-96, 98) Пучок: ⁴⁸Ca; E_x= 30 – 40 MeV;

⁴⁸Ca + Actinide

- Силы Кулона ~ Z₁xZ₂< 2000
- 48Са дважды магическое ядро
- Энергия возбуждения компаунд-ядра ~ 30-35 МэВ
- Регистрация семейства альфа-распадов

Производство тяжелых изотопов

HFIR, ORNL, Oak Ridge, USA, 85 MW

СМ-3, IAR, Димитровград, РФ, 100 MW

Мишень

Work on mixed Cf at REDC ORNL

249Cf (351 y)250Cf (13 y)251Cf (898 y)5.61 mg1.43 mg4.03 mg50.7%12.9%36.4%Average thickness 0.35 mg/cm²

перед экспериментом...

и после

Сверхпроводящий источник ионов 18 GHz ECR

DECRIS-SC2

Пучок ⁴⁸Са на ускорителе тяжелых ионов **U400**

```
Энергия: 235-250 МэВ
(v ≈ 0.1 c);
Интенсивность: 1.0-1.5 рµА
(n×10<sup>12</sup> ÷ 10<sup>13</sup> 1/c);
Потребление: 0.5-0.8 мг/ч
Доза: (0.3-3.0)·10<sup>19</sup>
```


Цена за 1 мг

¹⁹⁷Au ≈ 0.045 US\$ ^{nat}U₃O₈ ≈ 0.03 US\$ ²³⁹Pu ≈ 4 US\$ ⁴⁸Ca ≈ 80 US\$ ²⁴⁹Cf ≈ 60,000 US\$

Синтез сверхтяжелых элементов (U-400)

OTACHO

Июнь, 2013

International Union of Pure and Applied Chemistry *Май 2011:* Признание открытия новых элементов 114 и 116

Май 2012:

Утверждение названия *Flerovium* для элемента 114 и названия *Livermorium* для элемента 116

30 декабря 2015:

Признание открытия новых элементов 113, 115, 117 и 118

Приоритет :

•**118**:

- •113: RIKEN (Япония)
- •115 и 117: ОИЯИ (Дубна) LLNL (США) ORNL (США)
 - ОИЯИ (Дубна) LLNL (США)

8 июня 2016:

Предварительные рекомендации по названиям элементов 113, 115, 117, 118

Все эти элементы впервые были синтезированы на ускорительном комплексе У400

Лаборатории ядерных реакций имени Г.Н. Флерова (ОИЯИ, Дубна).

Синтез элементов

Микромир и Вселенная

FROM Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan

ФИЗИКА на границах карты изотопов

118 известных элементов Около 3000 известных изотопов

Сверхтяжелые элементы

ЭКЗОТИКА

- > Нейтронное гало
- > Двухнейтронное гало, системы Борромео

Octupole Y₃₀

 208 Pb

 ^{11}Li

НУКЛЕОСИНТЕЗ Be СОО цикл р-р цикл erter! ¹Η

p

- Последовательность реакций с испусканием лептонов и гамма-квантов
- Уравнения химического равновесия
- Данные: (p, γ), (α , γ), (p,p'), (α ,p), (n, γ), (α ,n), β ⁻, β ⁺..... •
- Каталитические циклы (pp vs. CNO) •
- Пропуски масс А=5, А=8

- Медленный захват нейтронов slow process
- Быстрый захват нейтронов rapid process
- Быстрый захват протонов rp-process
- Распространенность элементов связаны с r-процессом
- Для количественного описания необходима информация о ядрах и реакциях на границах существования ядер

Адронная материя в нейтронных звездах

Уравнение состояния для ядерной материи

Нейтронная звезда: ОЧЕНЬ большое ядро с ассиметричной материей

Продвигаясь к границам существования ядер мы получаем экспериментальные данные о все более ассиметричной материи

Адронная материя в нейтронных звездах

Фракция барионов: зависит от YN, YY взаимодействия

-> Максимальная масса звезды, скорость остывания

Для более реалистичных расчетов нужны

данные по гиперядрам

M. Danysz, J. Pniewski, Delayed Disintegration of a Heavy Fragment Emitted in Nuclear Explosion, *Bull. Acad. Pol. Sci.* 1, 42 (1953)

Гиперон, находясь в окружении нетождественных частиц (нуклонов), не подвержен действию принципа Паули.

Гиперон-нуклонное притяжение слабее, чем нуклон-нуклонное

Двойные гиперядра

Странные ядра

