

Сверхтяжелые элементы

Периодическая система элементов Менделеева

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ПЕРИОД	1 H hydrogen 1.00794(7)			19	32 ı		Katerop Alkali m Alkaline ear	DNN netals th metals	Actinoid: Post-transition	s metals	Halogens Noble gases							2 He helium 4.002602(2)
2	3 Li lithium 6.941(2)	4 Be beryllium 9.012182(3)					Italision metals Metaloids Properties unknown Lanthanoids Nonmetals Происхождение Состояние Na Изначальный					5 B boron 10.811(7)	6 C carbon 12.0107(8)	7 N nitrogen 14.0067(2)	8 O oxygen 15.9994(3)	9 F fluorine 18.9984032(5)	10 Ne neon 20.1797(6)	
3	11 Na sodium 22.98976928(2)	12 Mg magnesium 24.3050(6)					Радиоактивный распад (Rf) Искусственный Синтез Кf) Искусственный Синтез				13 AL aluminium 26.9815386(8)	14 Si silicon 28.0855(3)	15 P phosphorus 30.973762(2)	16 S sulfur 32.065(5)	17 Cl chlorine 35.453(2)	18 Ar argon 39.948(1)		
4	19 K potassium 39.0983(1)	20 Ca calcium 40.078(4)	21 Sc scandium 44.955912(6)	22 Ti titanium 47.867(1)	23 V vanadium 50.9415(1)	24 Cr chromium 51.9961(6)	25 Mn manganese 54.938045(5)	26 Fe iron 55.845(2)	27 CO cobalt 58.933195(5)	28 Ni nickel 58.6934(4)	29 Cu copper 63.546(3)	30 Zn zinc 65.38(2)	31 Ga gallium 69.723(1)	32 Ge germanium 72.64(1)	33 AS arsenic 74.92160(2)	34 Se selenium 78.96(3)	35 Br bromine 79.904(1)	36 Kr krypton 83.798(2)
5	37 Rb rubidium 85.4678(3)	38 Sr strontium 87.62(1)	39 Y yttrium 88.90585(2)	40 Zr zirconium 91.224(2)	41 Nb niobium 92.90638(2)	42 Mo molybdenum 95.96(2)	43	44 Ru ruthenium 101.07(2)	45 Rh rhodium 102.90550(2)	46 Pd palladium 106.42(1)	47 Ag silver 107.8682(2)	48 Cd cadmium 112.411(8)	49 In indium 114.818(3)	50 Sn 118.710(7)	51 Sb antimony 121.760(1)	52 Te tellurium 127.60(3)	53 iodine 126.90447(3)	54 Xe xenon 131.293(6)
6	55 CS caesium 132.9054519(2)	56 Ba barium 137.327(7)	* Lanthanoids 57-71	72 Hf hafnium 178.49(2)	73 Ta tantalum 180.9479(1)	74 W tungsten 183.84(1)	75 Re rhenium 186.207(1)	76 OS osmium 190.23(3)	77 Ir iridium 192.217(3)	78 Pt platinum 195.084(9)	79 Au gold 196.966569(4)	80 Hg mercury 200.59(2)	81 TL thallium 204.3833(2)	82 Pb lead 207.2(1)	83 Bi bismuth 208.98040(1)	84 PO polonium [208.9824]	85 At astatine [209.99]	86 Rn radon [222.02]
7	87	88 Ra radium (226.0254)	** Actinoids 89-103															

* Lanthanoids

ΓΡΥΠΠΑ

Распространенность нуклидов во Вселенной

АКТИНОИДЫ

1940 г. ₉₃Np Нептуний (Макмиллан, Абельсон) 1941 г. ₉₄Pu Плутоний (Макмиллан, Сиборг, Кеннеди, Валь) ${}^{238}\text{U} + n \rightarrow {}^{239}\text{U} \stackrel{\beta}{\rightarrow} {}^{239}\text{Np} \stackrel{\beta}{\rightarrow} {}^{239}\text{Pu}$

Нобелевская премия по химии

1951 г. – Э. М. Макмиллан, Г.Т. Сиборг. За открытия в области химии трансурановых элементов

актиноиды

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁵² Es	472 дня
²⁵⁷ Cf	100 дней

1 ноября 1952 года. Атолл Эниветок. Айви Майк

АКТИНОИДЫ

Движение частиц в электромагнитном поле

Электрическое поле

$$E_{\rm KMH} = q(\varphi_2 - \varphi_1)$$

Магнитное поле

 $T = \frac{2\pi R}{\nu} = \frac{2\pi m}{qB}$

1929 г. Э. Лоуренс предложил идею циклотрона 1932 г. *Е_{кин}* (**р**)= 1,2 МэВ (D = 25 cm)

1939

Трансфермиевые элементы

Элемент	Год	Лаборатория	Реакция			
101Md Менделевий	1955	Беркли, США	$^{253}\text{Es} + {}^{4}\text{He} \longrightarrow {}^{256}\text{Md} + n$			
₁₀₂No Нобелий	1963	Дубна, СССР	$^{248}Cm + {}^{13}C \rightarrow \rightarrow {}^{257}No + 4n$			
₁₀₃ Lr	1961	Беркли, США	$ \overset{249}{\longrightarrow} \text{Cm} + \overset{10'11}{\longrightarrow} \text{B} \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (4,5)n $			
Лоуренсий	1965	Дубна, СССР	$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} \text{O} \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (3,5) $			

Наиболее долгоживущие изотопы

	•
Изотоп	T _{1/2}
²⁵⁸ Md	56 суток
²⁵⁹ No	58 минут
²⁶² Lr	4 часа

проблемы:

•Отсутствие в требуемых количествах мишеней из тяжелых трансурановых элементов.

•Существенное уменьшение по мере увеличения Z времени жизни изотопов, что значительно усложняет их идентификацию.

Георгий Николаевич ФЛЕРОВ

Ha 2015 г: $T_{1/2} (^{259}Rf) \sim 3,2 c$ $T_{1/2} (^{260}Rf) \sim 0,02 c$

Взятие 104-го

$^{242}Pu + ^{22}Ne \rightarrow ^{264}104 \rightarrow$ $\rightarrow ^{260' 259}104 + (4,5)n$

на открытие

Явление образования радиоактивного изотопа элемента с атомным номером 106

В соответствии с Положением об открытиях, изобретениях и рационализаторских предложениях Государственный комитет СССР по делам изобретений и открытий установил, что граждане Союза Советских Социалистических Республик

> ТРЕТЬЯКОВ ЮРИЙ ПЕТРОВИЧ ИЛЬИНОВ АЛЕКСАНДР ССРГЕЕВИЧ ДЕМИН АЛЕКСАНДР ССРГЕЕВИЧ ПЛЕВЕ АНАТОЛИЙ АЛЕКСЕВИЧ ТРЕТЬЯКОВА СВЕТЛАНА ПАВЛОВНА ПЕНИОНЖКЕВИЧ ЮРИЙ ЭРАСТОВИЧ ПЛОТКО ВАСИЛИЙ МАКСИМОВИЧ ИВАНОВ МИХАИЛ ПЕТРОВИЧ ДАНИЛОВ НИКОЛАЙ АНДРЕЕВИЧ КОРОТКИН ЮРИЙ СЕМЕНОВИЧ ФЛЕРОВ ГЕОРГИЙ НИКОЛАЕВИЧ ОГАНЕСЯН ЮРИЙ ЦОЛАКОВИЧ

На снимке — участники открытия сто шестого элемента (слева направо): кандидат физико-математических наук С. П. Третьякова, инженер Н. А. Данилов, механик В. М. Плотко, научный сотрудник Ю. С. Короткин, доктор физико-математических наук Ю. Ц. Оганесян, академик Г. Н. Флеров, кандидат физико-математических наук А. С. Ильинов, инженер Ю. П. Третьяков, научный сотрудник М. П. Иванов.

Ядерная физика и Человек

Синтез сверхтяжелых элементов в Дубне

Год	Номер	Символ	Название				
1966	102	No	Нобелий				
1965	103	Lr	Лоуренсий				
1964	104	Rf	Резерфордий				
1970	105	Db	Дубний				
1974	106	Sg	Сиборгий				
1982	107	Bh	Борий				
1984	108	Hs	Хассий				
2003	109	Mt	Мейтнерий				
	110	Ds	Дармштадтий				
	111	Rg	Рентгений				
	112	Cn	Коперниций				
2003	113	Nh	Нихоний				
1998	114	FI	Флеровий				
2003	115	Мс	Московий				
2000	116	Lv	Ливерморий				
2010	117	Ts	Теннессин				
2002	118	Og	Оганесон				

Горячее слияние

Элемент	Год	Лаборатория	Реакция
₁₀₄ Rf	1964	Дубна, СССР	$^{242}Pu + {}^{22}Ne \rightarrow \longrightarrow {}^{260'}{}^{259}Rf + (4,5)n$
Резерфордий	1969	Беркли, США	$^{249}\text{Cf} + {}^{12}\text{C} \longrightarrow {}^{257}\text{Rf} + 4n$
Du	1970	Дубна, СССР	$^{242}Am + ^{22}Ne \rightarrow ^{264}Db$
105 00 Дубний	1970	Беркли, США	$^{242}\text{Cf} + {}^{15}\text{N} \longrightarrow {}^{264}\text{Db} + 4n$
10cSa	1974	Беркли, США	$^{249}\text{Cf} + {}^{18}\text{O} \longrightarrow {}^{263}\text{Sg} + 4n$
Сиборгий	й 1974 Дубна		$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} 0 \longrightarrow $ $ \xrightarrow{255'} \overset{256}{\square} \text{Lr} + (3,5)n $

Наиболее
долгоживущие изотопы

Изотоп	T _{1/2}
²⁶³ Rf	10 минут
²⁶⁸ Db	32 часа
²⁷¹ Sg	2,4 минуты

Холодное слияние

ПРОБЛЕМА горячего синтеза:

•Высокая энергия возбуждения (E_x ~ 20 – 40 МэВ):

- Вероятность испустить нейтрон в 100 раз меньше вероятности деления. Для охлаждения необходимо 4-5 нейтронов, следовательно вероятность «выживания» ядра ~ (10⁻²)⁴ = 10⁻⁸
- Уменьшение роли оболочек

1974 г. Ю.Ц. Оганесян, А.Г. Дёмин и др. **Реакции «холодного слияния»** Мишень: ²⁰⁸Pb (Z=82, N=126) или ²⁰⁹Bi (Z=83, N=126) Пучок: Z > 18 (^{40, 48}Ca, ⁵⁴Cr, ⁵⁸Fe, ^{62, 64}Ni и др) Минимальная кинетическая энергия пучка Слияние магических ядер E_x ~ 12 – 20 МэВ

1976 - 96 гг. GSI, Дармштадт, ГДР. Синтез элементов с Z = 107 - 112

ПРОБЛЕМЫ:

•Рост кулоновского отталкивания при Z > 50 (208 Pb+ 50 Zn : Z₁xZ₂ = 2460)

•Недостаток нейтронов в компаунд-ядре

⁴⁸Ca + Actinide

- Силы Кулона ~ Z₁xZ₂< 2000
- 48Са дважды магическое ядро
- Энергия возбуждения компаунд-ядра ~ 30-35 МэВ
- Регистрация семейства альфа-распадов

⁴⁸Ca + Actinide

- Природный кальций: 0,187% ⁴⁸Са
- Пучок: ⁴⁸Ca 8·10¹² /с (расход 0.5 мг/час)
- Мишени: Pu, Am, Cm и Cf (Z = 94-96, 98) [Ок-Ридж, США; Димитроград, Россия; Саров, Россия]

Синтез элементов с Z = 104 - 118

Реакция синтеза

Трансурановые элементы, нарабатываемые в высоко-поточном ядерном реакторе

Ю.Ц. Оганесян, Дубна, 15 марта 2019 г.

Производство тяжелых изотопов

HFIR, ORNL, Oak Ridge, USA, 85 MW

СМ-3, IAR, Димитровград, РФ, 100 MW

Мишень

Work on mixed Cf at REDC ORNL

249Cf (351 y)250Cf (13 y)251Cf (898 y)5.61 mg1.43 mg4.03 mg50.7%12.9%36.4%Average thickness 0.35 mg/cm²

перед экспериментом...

и после

Сверхпроводящий источник ионов 18 GHz ECR

DECRIS-SC2

Пучок ⁴⁸Са на ускорителе тяжелых ионов **U400**

```
Энергия: 235-250 МэВ
(v ≈ 0.1 c);
Интенсивность: 1.0-1.5 рµА
(n×10<sup>12</sup> ÷ 10<sup>13</sup> 1/c);
Потребление: 0.5-0.8 мг/ч
Доза: (0.3-3.0)·10<sup>19</sup>
```


Цена за 1 мг

¹⁹⁷Au ≈ 0.045 US\$ ^{nat}U₃O₈ ≈ 0.03 US\$ ²³⁹Pu ≈ 4 US\$ ⁴⁸Ca ≈ 80 US\$ ²⁴⁹Cf ≈ 60,000 US\$

Синтез сверхтяжелых элементов (U-400)

Пучки ускоренных ионов A = 4 – 209 с энергией 3 – 29 МэВ/нуклон Магнит 2100 тонн, диаметр 4 м Потребление энергии 1,5 МВт

OTACHO

Детектирование по альфа-распаду

Pixel:	5 mm × 150 µm → 3700 pixels
ΔE _α :	14 keV (FWHM)

Низкофоновая схема детектирования

Июнь, 2013

International Union of Pure and Applied Chemistry *Май 2011:* Признание открытия новых элементов 114 и 116

Май 2012:

Утверждение названия *Flerovium* для элемента 114 и названия *Livermorium* для элемента 116

30 декабря 2015:

Признание открытия новых элементов 113, 115, 117 и 118

Приоритет :

118:

- •113: RIKEN (Япония)
- •115 и 117: ОИЯИ (Дубна) LLNL (США) ORNL (США)
 - ОИЯИ (Дубна) LLNL (США)

8 июня 2016:

Предварительные рекомендации по названиям элементов 113, 115, 117, 118

Все эти элементы впервые были синтезированы

на ускорительном комплексе У400

Лаборатории ядерных реакций имени Г.Н. Флерова (ОИЯИ, Дубна).

Периодическая система элементов Менделеева

	ГРУППА																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ПЕРИОД	1 H hydrogen 1.00794(7)			20	06 I	г.	Katerop Alkali m Alkaline ear	DUU netals th metals	Actinoid Post-transition	s metais	Halogens Noble gases							2 He helium 4.002602(2)
2	3 Li lithium 6.941(2)	4 Be beryllium 9.012182(3)					Iransition metals Metalloids Properties unknown Lanthanoids Nonmetals Происхождение Состояние (Na) Изначальный				5 B boron 10.811(7)	6 C carbon 12.0107(8)	7 N nitrogen 14.0067(2)	8 0 0xygen 15.9994(3)	9 F fluorine 18.9984032(5)	10 Ne neon 20.1797(6)		
3	11 Na sodium 22.98976928(2)	12 Mg magnesium 24.3050(6)					Родираст Родираст Родин	Радиоактивный распад Искусственный интез Коросственный Коросственны К Коросственны К К К К К К К К К К К К К К К				13 Al aluminium 26.9815386(8)	14 Si silicon 28.0855(3)	15 P phosphorus 30.973762(2)	16 S sulfur 32.065(5)	17 Cll chlorine 35 453(2)	18 Ar argon 39.948(1)	
4	19 K potassium 39.0983(1)	20 Ca calcium 40.078(4)	21 Sc scandium 44.955912(6)	22 Ti titanium 47.867(1)	23 V vanadium 50.9415(1)	24 Cr chromium 51.9961(6)	25 Mn manganese 54.938045(5)	26 Fe	27 CO cobalt 58.933195(5)	28 Ni nickel 58.6934(4)	29 Cu copper 63.546(3)	30 Zn zinc 65.38(2)	31 Ga gallium 69.723(1)	32 Ge germanium 72.64(1)	33 As arsenic 74.92160(2)	34 Se selenium 78.96(3)	35 Br bromine 79.904(1)	36 Kr krypton 83.798(2)
5	37 Rb rubidium 85.4678(3)	38 Sr strontium 87.62(1)	39 Y yttrium 88.90585(2)	40 Zr ^{zirconium} 91.224(2)	41 Nb niobium 92.90638(2)	42 Mo molybdenum 95.96(2)	43 TC technetium [98.9063]	44 Ru ruthenium 101.07(2)	45 Rh rhodium 102.90550(2)	46 Pd palladium 106.42(1)	47 Ag silver 107.8682(2)	48 Cd cadmium 112.411(8)	49 In indium 114.818(3)	50 Sn 118.710(7)	51 Sb antimony 121.760(1)	52 Te tellurium 127.60(3)	53 iodine 126.90447(3)	54 Xe xenon 131.293(6)
6	55 CS caesium 132.9054519(2)	56 Ba barium 137.327(7)	Lanthanoids 57-71	72 Hf hafnium 178.49(2)	73 Ta tantalum 180.9479(1)	74 W tungsten 183.84(1)	75 Re rhenium 186.207(1)	76 OS osmium 190.23(3)	77 Ir iridium 192.217(3)	78 Pt platinum 195.084(9)	79 Au gold 196.9665569(4)	80 Hg mercury 200.59(2)	81 TL thallium 204.3833(2)	82 Pb lead 207.2(1)	83 Bi bismuth 208.98040(1)	84 PO polonium [208.9824]	85 At astatine [209.99]	86 Rn radon [222.02]
7	87 Fr francium [223.0197]	88 Ra radium [226.0254]	** Actinoids 89-103	104 RF rutherfordium [265.12]	105 DD dubnium [268.13]	106 Sg seaborgium [271.13]	107 Bh bohrium [270]	108 HS hassium [277.15]	109 Mt meitnerium [276.15]	110 DS darmstadtium [281.16]	111 Rg roentgenium [280.16]	112 CD copernicium [285.17]	113 Uut ununtrium [284.18]	114 Fl flerovium [289.19]	115 Uup ununpentium [288.19]	116 LV livermorium [293]	117 UUS ununseptium [294]	118 UUO ununoctium [294]

* Lanthanoids

57 58 58 60 61 62 63 64 65 66 67 68 69 70 71 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Ce La Lu lanthanum 138.90547(7 gadolinium 157.25(3) terbium 158.92535(2) neodymium 144.242(3) promethium [144.91] samarium 150.36(2) dysprosium 162.500(1) 94 102 89 90 91 92 93 95 96 97 98 99 100 101 103 Th U Es Fm Md No Pu Am Lr ** Actinoids berkelium [247.0703] nobelium [259.1009] actinium [227.03] thorium 232.03806(2) protactinium 231.03588(2) uranium 238.02891(3) neptunium [237.0482] plutonium [244.0642] americium [243.0614] curium [247.0704] californium [251.0796] einsteinium [252.0829] fermium [257.0951] mendelevium [258.0986] lawrencium [262.11]

FROM Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan

SHE - фабрика

Профессии сверхтяжелых элементов

Радиоизотопные источники энергии

- Используют энергию радиоактивного распада
- Превосходят химические источники (аккумуляторы, топливные элементы и др.) в десятки и сотни тысяч раз по массовой и объёмной энергоёмкости
- Обеспечивают автономность работы оборудования, значительную надёжность, малый вес и габариты

Топливный элемент из оксида ²³⁸Pu Падение энерговыделения 0,78% в год

ТРЕБОВАНИЯ К ИЗОТОПАМ

•высокая активность для получения значительного энерговыделения в ограниченном объёме установки (относительно малый период полураспада)

•длительный период поддержания мощности (период полураспада – годы и десятилетия)

•безопасный вид ионизирующего излучения (простая и легкая защита от излучения)

•для изотопов, способных к делению, возможно большая критическая масса
•дешевизна и простота получения изотопа

Радиоизотопные источники энергии

Изотоп	Получение	Удельная мощность , Вт/г	Температура плавления топлива, °С	T _{1/2}	Энергия распада, кВт'ч/г
²³⁸ Pu	ядерный реактор	0,568	2500	86 лет	608,7
⁹⁰ Sr	осколки деления	0,93	2460 (SrO)	28 лет	162,721
¹⁴⁴ Ce	осколки деления	2,6	~2600	285 дней	57,439
²⁴² Cm	ядерный реактор	121	~2270	162 дня	677,8
²¹⁰ Po	облучение висмута	142	600 (PbPo)	138 дней	677,59
²⁴⁴ Cm	ядерный реактор	2,8	~2270	18,1 года	640,6
²³² U	облучение тория	8,097	2850	68,9 лет	4887,103
¹⁰⁶ Ru	осколки деления	29,8	2250	371,63 сут	9,854

Станция **«Новые горизонты**» и предназначенная для изучения Плутона, его естественного спутника Харона и объектов пояса Койпера. Запущена в 2006 г. Стартовая мощность РИТЭГ – 228 Вт.

Взаимодействие тяжелых ионов с веществом. Модификация физических свойств облученных материалов

- моделирование эффектов, вызываемых осколками деления в конструкционных реакторных материалах;
- исследование структурных эффектов ионизации высокой плотности в радиационно-стойких диэлектриках;
- разработка основ технологии высокоэнергетической ионной имплантации;
- исследование процессов формирования наноразмерных дефектов, вызываемых единичными тяжелыми ионами высоких энергий на поверхности твердых тел.

Наноразмерные структуры, образованные на поверхности MgAl₂O₄, образованные ионами Bi с энергией 710 МэВ при потоке 5х10¹⁰ см⁻²

Трековые мембраны

ИЦ-100

диаметр полюсов 1 метр Потребление энергии 150 кВт.

Энергия ионов (Xe, Kr) Толщина пленки 1,2 МэВ/нуклон 20 мкм

Твердотельные детекторы

Трековые мембраны

Трековые мембраны

диаметр пор – от 30 нм до 15000 нм;

плотность – 10⁶ ÷ 10⁸ пор/см²

Загрязнение на поверхности мембраны в результате очистки водопроводной воды

Принципиальная схема разделения крови на плазму и эритроцитарную массу на мембранном фильтре

Премия Правительства РФ 2008 года в области науки и техники

за разработку и создание технологии плазмафереза и внедрение ее в медицинскую практику

Трековые мембраны

Медная трубка с микроструктурами на поверхности гораздо лучше отводит тепло, чем гладкая. На фото видно, что на участке с микроструктурами происходит интенсивное кипение охлаждающей жидкости.

