ЯДЕРНЫЕ СТЕПЕНИЯ СВОБОДЫ В АТОМНОЙ ФИЗИКЕ

Е.В. Грызлова

НИИЯФ МГУ Весенний семестр 2020 г.

- о «Разминка»
- о Спектры систем со сферической симметрией
- о Сжатые атомы и резонансы формы
- о Двухуровневая система с сильно связанными состояниями
- о Атомная спектроскопия антипротония
- о Поляризация излучения и дихроизм
- о Плоская волна и волновой пакет волна вещества.

Нобелевская премия по физике 2012 года.
 Изучение одиночной квантовой системы

- о Ионные ловушки
- о Когерентные и сжатые состояния волновых пакетов
- о Начала теории рассеяния
- о Особенности резонансного рассеяния и неэкспоненциальный распад

3. Сжатые атомы и резонансы формы

- а) определение потенциала фуллерена.
- б) резонансы формы в спектре фуллерена.
- в) Спектр эндоэдрального соединения.
- г) сжатые атомы.

Потенциал фуллерена

Y.B. Xu, M.Q. Tan, and U. Becker, *Phys. Rev. Lett.* **76**, 3538 (1996). «Oscillations in the Photoionization Cross Section of C_{60} »

λ>R

Волновые функции трехмерной потенциальной ямы

Спектр фуллерена в потенциальной модели

Y.B. Xu, M.Q. Tan, and U. Becker, *Phys. Rev. Lett.* **76**, 3538 (1996). «Oscillations in the Photoionization Cross Section of C_{60} »

Спектр фуллерена в потенциальной модели

J. L. Martins, N. Troullier and J.H. Weaver, *Chem. Phus. Lett.* **180**, 457 (1991). «Analysis of occupied and empty electronic states of C_{60} »

Потенциал H@C₆₀

 $\Phi = {}_{1}F_{1}, U = {}_{2}F_{0}$ - вырожденные гипергеометрические функции $I_{l+1/2}, K_{l+1/2}$ - функции Инфельда и Макдональда

Потенциал H@C₆₀ и H@C₃₆

уровень	Н	Яма@С ₆₀	$H@C_{60}$	Яма@С ₃₆	H@C ₃₆
1s	-0.5	-0.09697	-0.50014	-0.10323	-0.50187
2s	-0.125	-	-0.17762		-0.16617
2p	-0.125	-0.07122	-0.16312	-0.05084	-0.16416
3s	-0.05(5)	-	-0.05657		-0.06027
3p	-0.05(5)	0.02580	-0.05757		-0.05752
3d	-0.05(5)	-			

J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi and S.T. Manson, *J. Phys. B: At. Mol. Opt. Phys.* **32**, L239 (1999).

Волновые функции H@C₆₀ и H@C₃₆

Перестройка спектра фуллерена при доппировании

- Понижение уровней
- Стабилизация фуллерена
- Расщепление уровней из-за понижения симметрии
- ✓Увеличение числа линий UPS спектра (ультрафиолетовая фотоэлектронная спектроскопия)

√Изменение ширины зоны запрета

Phys. Rev. A 52, 141 (1995)

Сжатие атомов и молекул

- >Атом в кристалле (матрице) при криогенной температуре
- >Атом в фуллерене
- >Атомы при высоком давлении (ударные волны)

Константа сверхтонкого расщепления

Векторный потенциал, создаваемый точечным магнитным диполем (ядром) и соответствующее магнитное поле

$$\vec{A} = \frac{\left[\vec{\mu}_n \times \vec{r}\right]}{r^3} = \left[\nabla \times \frac{\vec{\mu}_n}{r}\right], \quad A_0 = 0;$$
$$H = \left[\nabla \times \vec{A}\right] = \nabla \left(\nabla \frac{\vec{\mu}_n}{r}\right) - \nabla^2 \frac{\vec{\mu}_n}{r},$$

Взаимодействие магнитного момента электрона с магнитным полем

$$\left\langle \psi \right| - \frac{e\hbar}{2mc} \sigma H \left| \psi \right\rangle = -\frac{e\hbar}{2mc} \left\langle u \right| \sigma_{z} \left| u \right\rangle \left\langle \varphi(r) \right| H \left| \varphi(r) \right\rangle;$$

В первом порядке теории возмущений величина сверхтонкого расщепления

$$\delta E = -\frac{e\hbar}{2mc} \left\langle \varphi(r) \left| \nabla^2 \frac{\vec{\mu}_n}{r} \right| \varphi(r) \right\rangle = \frac{e\hbar}{2mc} 4\pi \vec{\mu}_n \left\langle \varphi(r) \left| \delta(r) \right| \varphi(r) \right\rangle = 4\pi \frac{e\hbar}{2mc} \vec{\mu}_n \left| \varphi(0) \right|^2$$
$$a = \frac{8\pi}{3} \mu_e \mu_n \left| \psi(0) \right|^2$$

А.С. Давыдов гл. 67

Сжатие атомов в криокристаллах

Определение величины сжатия

Сверхтонкое расщепление

 $\phi = (a - a_0)/a_0$

$$a = \frac{8\pi}{3} \mu_e \mu_n \left| \psi \left(0 \right) \right|^2$$

 μ_{e}, μ_{n} - магнитные моменты электрона и ядра

atom	matrix	φ (%)	ref	atom	matrix	φ (%)	ref
Η	H_2	-0.23^{a}	2	D	Kr	$+0.62^{b}$	5
D	$\overline{D_2}$	-0.32^{a}	4	Н	Ne	$+4.0^{\circ}$	6
H	Ne	-0.10^{a}	4	D	Ne	$+5.0^{c}$	6
D	Ne	-0.07^{a}	4 J	Н	Ar	$+10.8^{\circ}$	6
H	Ar	-0.47^{a}	4	Н	Kr	$+5.4^{\circ}$	6
D	Ar	-0.53^{a}	4	D	Kr	$+8.2^{\circ}$	6
H	Kr	-0.59^{a}	3	Π	Xe	-0.97^{a}	5
Η	Ne	$+0.43^{b}$	3	D	Xe	-1.04^{b}	5
Η	Ar	$+1.15^{b}$	3	Н	Xe	-1.5^{c}	6
Η	Kr	$+0.47^{b}$	3	D	Xe	-1.8^{c}	6
Н	Kr	$+0.55^{b}$	5				

 Осаждение при электрическом разряде
 Фотолиз

- (2) Jen, C. K.; Foner, S. N.; Cochran, E. L.; Bowers, V. A. Phys. Rev. 112, 1169 (1958).
- (3) Foner, S. N.; Cochran, E. L.; Bowers, V. A.; Jen, C. K. J. Chem. Phys. 32, 963 (1960).
- (4) Zhitnikov, R. A.; Dmitriev, Y. A. In Optical Orientation of Atoms and Molecules; Klementiev, G., Ed.; Physical Institute Press: Leningrad, Vol. **2**, p 109 (1990).
- (5) Morton, J. R.; Preston, R. F.; Strach, S. J.; Adrian, F. J.; Jette, A.N. J. Chem. Phys. 70, 2889 (1979,).
- (6) Knight, L. B.; Rice, W. E.; Moore, L. J. Chem. Phys. 109,1409 (1998,).

Интерпретация величины сжатия

Сверхтонкое расщепление

$$\phi = (a - a_0)/a_0$$

$$a = \frac{8\pi}{3} \mu_e \mu_n \left| \psi \left(0 \right) \right|^2$$

 μ_{e} , μ_{n} - магнитные моменты электрона и ядра

atom	matrix	φ (%)	ref	atom	matrix	φ (%)	ref
Η	H_2	-0.23^{a}	2	D	Kr	$+0.62^{b}$	5
D	D_2	-0.32^{a}	4	Η	Ne	$+4.0^{c}$	6
Η	Ne	-0.10^{a}	4	D	Ne	$+5.0^{\circ}$	6
D	Ne	-0.07^{a}	4	Η	Ar	$+10.8^{c}$	6
Η	Ar	-0.47^{a}	4	Η	Kr	$+5.4^{\circ}$	6
D	Ar	-0.53^{a}	4	D	Kr	$+8.2^{\circ}$	6
Η	Kr	-0.59^{a}	3	Η	Xe	-0.97^{a}	5
Η	Ne	$+0.43^{b}$	3	D	Xe	-1.04^{b}	5
Η	Ar	$+1.15^{b}$	3	Η	Xe	-1.5^{c}	6
Η	Kr	$+0.47^{b}$	3	D	Xe	-1.8^{c}	6
Н	Kr	$+0.55^{b}$	5				

а) газовый разряд;

b) фотолиз;

с) осаждение на SiO₂

>Знак изменения характеризует подкачку или утечку электронной плотности на ядре

Два эффекта противоположного знака наблюдаются одновременно. Ван-дер-Ваальсовская делокализация и спиновая поляризация Паули.

Для слабо поляризуемых атомов матрицы наблюдаются эффекты обоих знаков, но для сильно поляризуемого Хе один

Состояния с положительным *ф* существует намного дольше

Сжатие азота и фосфора (I)

atrix crystal	φ (%) +19 +9.6 +15.6 +29.5 +7.8 +48.6	ref 7 8 8 8 9 10	 Большое изменение (10-50%), связанное с размером атома Изменение порядка заполнения оболочек (Ферми назвал этот эффект «электронные переходы под давлением»
crystal	+19 +9.6 +15.6 +29.5 +7.8 +48.6	7 8 8 8 9 10	связанное с размером атома > Изменение порядка заполнения оболочек (Ферми назвал этот эффект «электронные переходы под давлением»
crystal	+9.6 +15.6 +29.5 +7.8 +48.6	8 8 9 10	Изменение порядка заполнения оболочек (Ферми назвал этот эффект «электронные переходы под давлением»
crystal	+15.6 +29.5 +7.8 +48.6	8 8 9 10	оболочек (Ферми назвал этот эффект «электронные переходы под давлением»
crystal	+29.5 +7.8 +48.6	8 9 10	(Ферми назвал этот эффект «электронные переходы под давлением»
crystal	+7.8 +48.6	10	«электронные переходы под давлением»
	1 10.0	10	давлением»
			давлением»
↑↑↑ ↑↓ ↑↓	Promotion to higher s orbitals lan Sr Configue Net po	t tit t > 0 rge unbalance t < 0 mall unbalance ration Interaction Me sitive s density at nuclei	<pre> Promotion to valence p shell * >0 still larger unbalance</pre>
	Ground State	Sround State Configurentsity at nucleus Net po	f image: f f image: f Ground State Configuration Interaction M nsity at nucleus Net positive s density at nucle

(7) Adrian, F. J.; Cochran, E. L.; Bowers, V. A. AdV. Chem. 36, 50 (1962).

- (8) Knighrt, L. B.; Steadman, J. J. Chem. Phys. 77, 1150 (1982).
- (9) Dmitriev, Y. A.; Zhitnikov, R. A. J. Tech. Phys. 57, 1811 (1987).
- (10) Wylie, D.; Shuskus, A.; Young, C.; Gilliam, O. Phys. Rev.125, 451 (1962).

Сжатие азота и фосфора (II)

atom	matrix	φ (%)	ref
Р	Ar	+19	7
Ν	H_2	+9.6	8
Ν	N_2	+15.6	8
Ν	CH_4	+29.5	8
Ν	Ne	+7.8	9
Ν	KN ₃ , crystal	+48.6	10
atom	φ (%)	size of cage (Å)	ref
$N @ C_{70}$	+49.1	7.80 (6.99 equator)	28
$N@C_{66}(COOC_2)$	$(H_5)_{12} + 53.4$	7.31	28
$N@C_{61}(COOC_2)$	$(H_5)_2 + 54.1$		28
N@C ₆₀	+54.1	6.96	27, 28
$P(\vec{a})C_{60}$	+250	6.96	29b

Большое изменение (10-50%),
 связанное с размером атома
 Изменение заполнения оболочек

 Электронная конфигурация сохраняется

>Энергия связи не превышает 0.9 kcal/mol.

 Значительное изменение константы сверхтонкого расщепления 50%
 Сверхтонкое расщепление чувствительно к химическому соединению
 Структура подтверждается теоретическим анализом

⁽²⁷⁾ Pietzak, B.; Waiblinger, M.; Murphy, T. A.; Weibinger, A.; Höhne, M.; Dietel, E.; Hirsch, A. Chem. Phys. Lett. 279, 259 (1997).
(28) Dietel, E.; Hirsch, A.; Pietzak, B.; Wailblinger, M.; Lips, K.; Weidlinger, A.; Gruss, A.; Dinse, K.-P J. Am. Chem. Soc. 121, 2432 (1999).

^{(29) (}a) Weiden, N.; Goedde, B.; Käss, H.; Dinse, K.-H.; Rohrer, M. Phys. ReV. Lett. 85, 1544 (2000).

⁽b) Knapp, C.; Weiden, N.; Käss, H.; Dinse, K.-P.; Pietzak, B.; Waiblinger, M.; Weidinger, A. Mol. Phys. 95, 999 (1998).

β-распад

⁷Li+p→⁷Be+n

$$Li_2CO_3 + p + C_{60} \rightarrow Be@C_{60} + \dots$$

 $^{7}\text{Be+e} \rightarrow ^{7}\text{Li+}\gamma$

Период β-распада [*]

Host materials	$T_{1/2}$ (days)	References
C ₆₀	52.68 ± 0.05	This work
Beryllium metal	53.12 ± 0.05	This work
Lithium fluoride	53.12 ± 0.07	[5]
Graphite	53.107 ± 0.022	[8]
Boron nitride	53.174 ± 0.037	[8]
Tantalum	53.195 ± 0.052	[8]
Gold	53.311 ± 0.042	[8]

Электронная плотность[**]

	Orbitals					
	1st	2nd	Others	Total		
Be@C ₆₀	34.22	1.24	0.02	35.48		
Be atom	34.25	1.13	_	35.38		
Be metal	34.11	0.32	0.33	34.78		

[*] T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi and K. Ohno Phys. Rev. Lett. 93 112501 (2004).

[8] E. B. Norman et al., *Phys. Lett. B* **519**, 15 (2001).

[**] E.V. Tkalya, A.V. Bibikov, and I.V. Bodrenko Phys, Rev. C 81, 024610 (2010).

⁴¹Ar, ¹⁵⁹Gd