

Научный семинар по программе Школы молодых ученых "Физика нейтрино и астрофизика"

NeuAstroSch_2010

Адрес секретариата семинара: Физический факультет МГУ (ауд. 1-51), Ленинские горы, 119991 Москва, тел.: (495) 939-16-17, факс: (495) 932-88-20, адрес электронной почты: studenik@srd.sinp.msu.ru

Программный комитет семинара

Е.Х.Ахмедов (РНЦ «Курчатовский институт» и Институт Макса Планка, Гейдельберг)
В.А.Бедняков (ОИЯИ, Д
В.А.Бедняков (ОИЯИ, Д
М.И.Высоцкий (ИТЭФ)
В.А.Бедняков (ИТЭФ)
А.В.Григорьев (НИИЯФ
В.А.Бедняков (ИТЭФ)
А.В.Григорьев (НИИЯФ
В.А.Бедняков (ИТЭФ)
А.В.Григорьев (НИИЯФ
В.А.Бедняков (ИЯИ РАН)
А.В.Григорьев (НИИЯФ
Б.С.Ишханов (Физический факультет МГУ)
А.Ю.Смирнов (ИЯИ РАН и МЦТФ, Триест)
В.И.Трухин (Физический факультет МГУ)
А.М.Черепашук (ГАИШ МГУ)

Организационный комитет семинара

В.А.Бедняков (ОИЯИ, Дубна) М.И.Высоцкий (ИТЭФ) В.Н.Гаврин (ИЯИ РАН) А.В.Григорьев (НИИЯФ МГУ) – ученый секретарь Г.В.Домогацкий (ИЯИ РАН) Б.С.Ишханов (Физический факультет МГУ) С.П.Михеев (ИЯИ РАН) А.Г. Ольшевский (ОИЯИ и физический факультет МГУ) Т.М.Роганова (НИИЯФ МГУ) О.Г.Ряжская (ИЯИ РАН) А.С.Старостин (ИТЭФ) А.И.Студеникин (МГУ) – председатель

29 сентября 2010 г. Физический факультет МГУ ЮФА (начало в 17.00) Лекцию

«Электромагнитные свойства нейтрино: окно в новую физику»

прочтёт профессор А.И.Студеникин (кафедра теоретической физики)

Международная школа молодых ученых "Физика нейтрино www.icas.ru www.phys.msu.ru и астрофизика"

939-16-17

 ЭЗЭ-10-17
 Адрес секретариата семинара:

 Физический факультет МГУ (ауд. 1-51), Ленинские горы, 119991 Москва, тел.: (495) 939-16-17, факс: (495) 932-88-20, адрес электронной почты: studenik@srd.sinp.msu.ru

NeuAstroSch_2010

Программный комитет семинара

Е.Х.Ахмедов (РНЦ «Курчатовский институт» и Институт Макса Планка, Гейдельберг)
В.С.Березинский (Национальная лаборатория Гран Сассо)
С.М.Биленький (ОИЯИ, Дубна)
А.Д.Долгов (ИТЭФ и ИНФН, Феррара)
В.А.Матвеев (ИЯИ РАН и физический факультет МГУ)
М.И.Панасюк (НИИЯФ МГУ)
В.А.Рубаков (ИЯИ РАН и физический факультет МГУ)
А.Н.Сисакян (ОИЯИ, Дубна)
М.Д.Скорохватов (РНЦ «Курчатовский институт»)
А.Ю.Смирнов (ИЯИ РАН и МЦТФ, Триест)
В.И.Трухин (Физический факультет МГУ)

Организационный комитет семинара

В.А.Бедняков (ОИЯИ, Дубна) М.И.Высоцкий (ИТЭФ) В.Н.Гаврин (ИЯИ РАН) А.В.Григорьев (НИИЯФ МГУ) – ученый секретарь Г.В.Домогацкий (ИЯИ РАН) Б.С.Ишханов (Физический факультет МГУ) С.П.Михеев (ИЯИ РАН) А.Г. Ольшевский (ОИЯИ и физический факультет МГУ) Т.М.Роганова (НИИЯФ МГУ) О.Г.Ряжская (ИЯИ РАН) А.С.Старостин (ИТЭФ) А.И.Студеникин (МГУ) – председатель

 1) С.М.Биленький (ОИЯИ, Дубна),
 NeuAstroSch_201

 «Осцилляции нейтрино: эксперимент и тео
 ия» www.icas.ru

 2) С.П.Михеев (ИЯИ РАН),
 www.phys.msu.ru

 «Исследование свойств массивных нейтрино с использованием их природных источников»
 939-16-17

3) В.А.Рубаков (ИЯИ РАН), «Масса нейтрино и барионная асимметрия Вселенной»

4) В.С. Березинский (Лаборатория Гран Сассо, ИНФН), «Космологические нейтрино: от обычной к новой физике»

5) П. Пикоцца (ИНФН и Университет Рима II), «Исследования космических лучей и поиск экзотических источников в эксперименте ПАМЕЛА»

6) А.М. Черепащук (ГАИШ МГУ им. М.В.Ломоносова), «Оптические исследования рентгеновских двойных систем» 8) В.Н. Лукаш и соавторы (АКЦ ФИАН), «Космологические ограничения на массу нейтрино»

Электромагнитные свойства нейтрино: окно в новую физику Александр Иванович Международная школа для Студеникин молодёжи по физике studenik@srd.sinp.msu.ru нейтрино и астрофизике, 29 сентября 2010

ii ii

II II

C.Giunti, A.Studenikin, J.Phys.: Conf.Series 203 (2010) 1012100, arXiv: 1006.xxxx I.Balantsev, Yu.Popov, A.Studenikin, Nuov.Cim.B (2009) arXiv: 0906.2391 C.Giunti, A.Studenikin, Phys.Atom.Nucl. 73 (2009) 1089, arXiv: 0812.3646v5, Apr 12 2010 A.Grigoriev, A.Studenikin, A.Ternov, Phys.Atom.Nucl. 72 (2009) 718 A.Studenikin, J.Phys.A: Math.Theor. 41 (2008) 16402 A.Studenikin, J.Phys.A: Math.Gen. 39 (2006) 6769; Ann.Fond. de Broglie 31 (2006) 289 A.Studenikin, Phys.Atom.Nucl. 70 (2007) 1275; *ibid* 67 (2004)1014 A.Grigoriev, A.Savochkin, A.Studenikin, Russ.Phys. J. 50 (2007) 845 A.Grigoriev, S.Shinkevich, A.Studenikin, A.Ternov, I.Trofimov, Russ.Phys. J. 50 (2007) 596 A.Studenikin, A.Ternov, Phys.Lett.B 608 (2005) 107; Grav. & Cosm. 14 (2008) A.Grigoriev, A.Studenikin, A.Ternov, Phys.Lett.B 622 (2005) 199 Grav. & Cosm. 11 (2005) 132; Phys.Atom.Nucl. 69 (2006)1940 K.Kouzakov, A.Studenikin, **Phys.Rev.C 72** (2005) 015502 M.Dvornikov, A.Grigoriev, A.Studenikin, Int.J Mod.Phys.D 14 (2005) 309 S.Shinkevich, A.Studenikin, **Pramana 64** (2005) 124 Nucl.Phys.B (Proc.Suppl.) 143 (2005) 570 A.Studenikin, M.Dvornikov, A.Studenikin, **Phys.Rev.D 69** (2004) 073001 **Phys.Atom.Nucl. 64** (2001) 1624 Phys.Atom.Nucl. 67 (2004) 719 **JETP 99** (2004) 254; **JHEP 09** (2002) 016 A.Lobanov, A.Studenikin, Phys.Lett.B 601 (2004) 171; ibid 564 (2003) 27, 515 (2001) 94 A.Grigoriev, A.Lobanov, A.Studenikin, Phys.Lett.B 535 (2002) 187 A.Egorov, A.Lobanov, A.Studenikin, Phys.Lett.B 491 (2000) 137

2006	Александр Валентинович Григорье	в НИИЯФ
2005	Максим Сергеевич Дворников	ИЗМИРАН
2001	Андрей Михайлович Егоров	
2006	Артем Юрьевич Иванов	
2003	Владимир Леонидович Кауц	ФИАН
2004	Константин Алексеевич Кузаков	
<i>1995</i>	Геннадий Геннадиевич Лихачев	
2004	Андрей Евгеньевич Лобанов	
2007	Александр Михайлович Савочкин	
2005	Иван Алексеевич Пивоваров	
2007	Алексей Игоревич Тернов	ФИЗТЕХ
2006	Илья Евгеньевич Трофимов	
2007	Сергей Александрович Шинкевич	
2008	Алексей Викторович Лохов	
2009	Илья Анатольевич Баланцев	
2010	Илья Владимирович Токарев	

Carlo Giunti, Alexander Studenikin : "Neutrino electromagnetic properties" Phys.Atom.Nucl. 73, 2089-2125 (2009), *Instituto Nazionale di* arXiv:0812.3646 v5, Apr 12, 2010

.. within the agreement on cooperation between Moscow University and Fisica Nucleare (INFN)

A.Studenikin :

"Neutrino magnetic moment: a window to new physics" Nucl.Phys.B (Proc.Supl.) 188, 220 (2009)

> C. Giunti, A. Studenikin : "Electromagnetic properties of neutrinos"

J.Phys.: Conf.Series. 203 (2010) 012100, arXiv:1006.3646 June 8, 2010

C.Giunti, A.Studenikin : *"Theory and phenomenology of neutrino electromagnetic properties"* **Rev.Mod.Phys.** (in preparation)

Electromagnetic properties of V

provide a kind of window / bridge to

NEW Physics ?

... up to now, in spite of reasonable efforts,

• NO any unambiguous experimental confirmation in favour of nonvanishing V em properties,

• available experimental data in the field <u>does not rule out</u> possibility that *v* have "ZERO" em properties.

 \bigcirc ... However, in course of recent development of knowledge on \checkmark mixing and oscillations,

Recent studies (exp. & theor.) of flavour conversion of solar, atmospheric, reactor and accelerator neutrinos have conclusively established that

and they mix among themselves that provides the first evidence of new physics beyond the standard model

B.
$$\Gamma_{pu}S_{0}\delta_{1}, \overline{\Sigma} \Pi_{0}HTekopbo (1965)$$

C. $\overline{\Sigma}_{UA}eHKUG, \overline{\Sigma} \Pi_{0}HTekopbo (1976)$
C. $\overline{\Sigma}_{UA}eHKUG, \overline{\Sigma} \Pi_{0}HTEKopbo (1976)$
C. $\overline{\Sigma}_{UA}eHKUG, \overline{\Sigma}_{UA} U U V B Bakyyme$
V $\mathcal{Y}^{+} = \begin{pmatrix} \mathcal{V}_{e} \\ \mathcal{V}_{p} \end{pmatrix} \qquad \mathcal{Y}^{+} = \begin{pmatrix} \mathcal{V}_{e} \\ \mathcal{V}_{p} \end{pmatrix}$

$$V_{e} = V_{1} (\omega S \Theta_{v} + V_{2} Fin \Theta_{v} Heitopino G
Bakygne
$$V_{\mu} = -V_{1} Fie \Theta_{v} + V_{2} (\omega S \Theta_{v} Mampuna
CMEMBARIUM
$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$= Boanoung nyaka V Bo Bpemenu (npocipanet)
$$i \frac{d}{dt} V^{P}(t) = H v^{P}(t), H = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon_{2} \end{pmatrix}, E_{i} \approx I \overline{\rho} I + \frac{m_{i}^{2}}{2 I \overline{\rho} I}$$

$$P (x) = Sin^{2} 2\Theta_{v} Fin^{2} \frac{\pi x}{2}$$

$$P (x) = Sin^{2} 2\Theta_{v} Fin^{2} \frac{\pi x}{2}$$

$$Heitopinho$$

$$Manantyga L = \frac{4\overline{u} E}{\Delta m^{2}}, \Delta m^{2} m_{2}^{2} - m_{1}^{1}$$

$$P (x) = Ganatyga L = \frac{4\overline{u} E}{\Delta m^{2}}, \Delta m^{2} - m_{1}^{1}$$$$$$$$

$$\mathbf{K} = \omega_{\mathbf{23}} \cdot \omega_{\mathbf{13}} \cdot \omega_{\mathbf{12}}$$

PDG

Even in its simplest unitary form K differs from quark mixing matrix, with two extra (Majorana) phases

In seesaw-schemes K is not unitary => extra an& phases => NSI, new propagation effects & LFV among charged leptons

• We assume K real unitary in description of oscillations

Table I: Best fit values from global data (solar, atmospheric, reactor (KamLand and CHOOZE) and K2K experiments)

parameter	best fit	2σ	3σ	
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.59^{+0.23}_{-0.18}$	7.22-8.03	7.03-8.27	
$ \Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2\right]$	$2.40^{+0.12}_{-0.11}$	2.18-2.64	2.07 - 2.75	
$\sin^2 \theta_{12}$	$0.318\substack{+0.019\\-0.016}$	0.29-0.36	0.27 - 0.38	
$\sin^2 \theta_{23}$	$0.50^{+0.07}_{-0.06}$	0.39–0.63	0.36 - 0.67	
$\sin^2 \theta_{13}$	$0.013^{+0.013}_{-0.009}$	≤ 0.039	≤ 0.053	
Neutrino20010 Athens 19/06/10 Schwetz, Tartola, Valle, 0808.2016v3, Feb 2010				

electromagnetic properties

something that is tiny or probably even does not exist at all...

... we very much hope that

will not follow the presentiment of Pauli

Outline (short list)

- V electromagnetic properties theory
- **v** magnetic moment experiment
- constraints on V electromagnetic properties
- \mathbf{v} electromagnetic interactions (\mathbf{v} - \mathbf{v} processes)

- **0.** Introduction
- 1. **V** magnetic moment in experiments
- 2. New experimental result on μ_{ν}
- 3. **V** electromagnetic properties theory
 - 3.1 **v** vertex function
 - 3.2 μ_{ν} (arbitrary masses)
 - 3.3 relationship between m_{y} and μ_{y}
 - 3.4 **v** vertex function in case of flavour mixing **S**
 - 3.5 **V** dipole moments in case of mixing
 - 3.6 $\mu_{\mathbf{v}}$ in left-right symmetry models
 - 3.7 astrophysical bounds on μ_{γ}
 - **3.8 v** millicharge (Red Gaints cooling etc)
 - 3.9 **v** charge radius and anapole moment
 - 3.10 **v** electromagnetic properties in matter and e.m.f.
- **4.** Effects of **v** electromagnetic properties
 - 3.11 **v** radiative decay, *Ch* radiation and *Spin Light of* **v** in matter
 - 3.12 **v** radiative 2**×7** decay
 - 3.13 **v** spin-flavour oscillations
- **5.** Direct-Indirect influence of e.m.f. on \mathbf{v}
- 6. Conclusion

Giunti, Studenikin : *"Neutrino electromagnetic properties"* arXiv:0812.3646, Phys.Atom.Nucl. 73 (2009)

Studenikin : *"Neutrino magnetic moment: a window to new physics"* arXiv:0812.4716, Nucl.Phys.B (Proc.Supl.) 188, 220 (2009)

Vertex function $\Lambda_{\mu}(q,l)$ \longrightarrow there are three sets of operators: $\bigcirc \hat{1}q_{\mu}, \hat{1}l_{\mu}, \gamma_5 q_{\mu}, \gamma_5 l_{\mu}$ $\not qq_{\mu}, \quad \not lq_{\mu}, \quad \gamma_5 q_{\mu}, \quad \gamma_5 \not qq_{\mu}, \quad \gamma_5 \not lq_{\mu}, \quad \sigma_{\alpha\beta} q^{\alpha} l^{\beta} q_{\mu}, \quad \left\{ q_{\mu} \leftrightarrow l_{\mu} \right\}$ $\circ \gamma_{\mu}, \quad \gamma_5 \gamma_{\mu}, \quad \sigma_{\mu\nu} q^{\nu}, \quad \sigma_{\mu\nu} l^{\nu}.$ $\bullet \epsilon_{\mu\nu\sigma\gamma}\sigma^{\alpha\beta}q^{\nu}, \quad \epsilon_{\mu\nu\sigma\gamma}\sigma^{\alpha\beta}l^{\nu}, \quad \epsilon_{\mu\nu\sigma\gamma}\sigma^{\nu\beta}q_{\beta}q^{\sigma}l^{\gamma}, \\ \epsilon_{\mu\nu\sigma\gamma}\sigma^{\nu\beta}l_{\beta}q^{\sigma}l^{\gamma}, \quad \epsilon_{\mu\nu\sigma\gamma}\gamma^{\nu}q^{\sigma}l^{\gamma}\mathbf{\hat{1}}, \quad \epsilon_{\mu\nu\sigma\gamma}\gamma^{\nu}q^{\sigma}l^{\gamma}\gamma_{5}$ **vertex function** (using Gordon-like identities) $\Lambda_{\mu}(q,l) = f_1(q^2)q_{\mu} + f_2(q^2)q_{\mu}\gamma_5 + f_3(q^2)\gamma_{\mu} + f_4(q^2)\gamma_{\mu}\gamma_5 + f_5(q^2)\sigma_{\mu\nu}q^{\nu} + f_6(q^2)\epsilon_{\mu\nu\rho\gamma}\sigma^{\rho\gamma}q^{\nu},$

the only dependence on q^2 remains because $p^2 = p'^2 = m^2$, $l^2 = 4m^2 - q^2$

Electromagnetic gauge invariance (2) (requirement of current conservation) $\partial_{\mu}j^{\mu} = 0$ $f_1(q^2)q^2 + f_2(q^2)q^2\gamma_5 + 2mf_4(q^2)\gamma_5 = 0,$ $f_1(q^2) = 0, \quad f_2(q^2)q^2 + 2mf_4(q^2) = 0$ vertex function $\Lambda_{\mu}(q) = f_{Q}(q^{2})\gamma_{\mu} + f_{M}(q^{2})i\sigma_{\mu\nu}q^{\nu} + f_{E}(q^{2})\sigma_{\mu\nu}q^{\nu}\gamma_{5} + f_{A}(q^{2})(q^{2}\gamma_{\mu} - q_{\mu}q)\gamma_{5}$ charge ... consistent with dipole electric and magnetic Lorentz-covariance (1) anapole **4 Form Factors** electromagnetic gauge invariance (2)

Matrix element of electromagnetic current between neutrino states $\langle \nu(p')|J_{\mu}^{EM}|\nu(p)\rangle = \bar{u}(p')\Lambda_{\mu}(q)u(p),$ where vertex function generally contains 4 form factors $\Lambda_{\mu}(q) = f_{Q}(q^{2}) \gamma_{\mu} + f_{M}(q^{2}) i \sigma_{\mu\nu} q^{\nu} - f_{E}(q^{2}) \sigma_{\mu\nu} q^{\nu} \gamma_{5}$ 1. electric dipole 2. magnetic $\pm f_A(q^2)(q^2\gamma_\mu - q_\mu q)\gamma_5$ 3. electric 4. anapole Hermiticity and discrete symmetries of EM current $J_{\mu}^{\rm EM}$ put constraints on form factors Dirac V Majoran V **1)** CP invariance + hermiticity $\implies f_E = \mathbf{0}$, 1) from CPT invariance (regardless CP or CP) 2) at zero momentum transfer only electric $f_Q = f_M = f_E = 0$ charge $f_Q(0)$ and magnetic moment $f_M(0)$ contribute to $H_{int} \sim J_{\mu}^{EM} A^{\mu}$, 3) hermiticity itself \implies three form factors are real: $Imf_Q = Imf_M = Imf_A = 0$as early as 1939, W.Pauli...

EM properties _____> a way to distinguish **Dirac** and **Majorana**

magnetic moment ?

Samuel Ting (*wrote on the wall at Department of Theoretical Physics of Moscow State University*):

"Physics is an experimental science"

Studies of
$$\mathcal{V}-\mathcal{C}$$
 scattering - most sensitive method of
experimental investigation of $\mu_{\mathcal{V}}$
Cross-section:
• $\frac{d\sigma}{dT}(\nu + e \rightarrow \nu + e) = \left(\frac{d\sigma}{dT}\right)_{SM} + \left(\frac{d\sigma}{dT}\right)_{\mu\nu}$,
where the Standard Model contribution
• $\left(\frac{d\sigma}{dT}\right)_{SM} = \frac{G_F^2 m_e}{2\pi} \left[(g_V + g_A)^2 + (g_V - g_A)^2 \left(1 - \frac{T}{E_\nu}\right)^2 + (g_A^2 - g_V^2) \frac{m_e T}{E_\nu^2} \right]$,
 T is the electron recoil energy and
• $\left(\frac{d\sigma}{dT}\right)_{\mu\nu} = \frac{\pi \alpha_{em}^2}{m_e^2} \left[\frac{1 - T/E_\nu}{T} \right] \mu_{\nu}^2$
 $\mu_{\nu}^2 = \sum_{j = \nu_e, \nu_{\mu}, \nu_{\tau}} |\mu_{ij} - \epsilon_{ij}|^2$,
 $g_V = \begin{cases} 2\sin^2 \theta_W + \frac{1}{2} & \text{for } \nu_e, \\ 2\sin^2 \theta_W - \frac{1}{2} & \text{for } \nu_{\mu, \nu_{\tau}}, \end{cases}$
 $g_V \to g_V + \frac{2}{3} M_W^2 \langle r^2 \rangle \sin^2 \theta_W$

Effective v_e magnetic moment measured in *v-e* scattering experiments ?

Two steps:

1) consider \mathcal{V}_{e} as superposition of mass eigenstates (i=1,2,3) at some distance L, and then sum up magnetic moment contributions to $\mathcal{V}-e$ scattering amplitude (of each of mass components) induced by their magnetic moments

$$A_j \sim \sum_i U_{ei} e^{-iE_i L} \mu_{ji}$$

J.Beacom, P.Vogel, 1999

2) amplitudes combine incoherently in total cross section

 $\sigma \sim \mu_e^2 = \sum_j \left| \sum_i U_{ei} e^{-iE_i L} \mu_{ji} \right|^2$

C.Giunti, A.Studenikin, 2009

NB! Summation over j=1,2,3 is outside the square because of incoherence of different final mass states contributions to cross section.

Effective v magnetic moment in experiments

First and future *v-e* scattering experiments

•
$$\mu_{\nu} \leq 2 \div 4 \times 10^{-10} \mu_B$$

Savannah River (1976), first observation Vogel, Engel, 1989 of v-e Kurchatov, Krasnoyarsk (1992), Rovno (1993) reactors

•
$$\mu_{\nu} \leq 1.1 \times 10^{-10} \mu_B$$

SuperKamiokande (2004)

$$\mu_{\nu} \le few \times 10^{-11} \mu_B$$

Beta-beams *McLaughlin, Volpe, 2004*

...was considered as the world best constraint...

$$\mu_{\nu} \leq 8.5 \times 10^{-11} \mu_B \ (\nu_{\tau}, \ \nu_{\mu})$$

Montanino, Picariello, Pulido, PRD 2008 based on first release of BOREXINO data

GEMMA (2005-2008)

Germanium Experiment on measurement

of Magnetic Moment of Antineutrino

JINR (Dubna) + ITEP (Moscow) at Kalinin Nuclear Power Plant

$$\mu_{\nu} < 3.2 \times 10^{-11} \mu_B$$

...till 13 January 2010 and again since 23 August 2010 best limit on V magnetic moment

A.Beda, E.Demidova, A.Starostin, V.Brudanin, V.Egorov, D.Medvedev, M.Shirchenko, A.Starostin, Ts.Vylov, arXiv:09.06.1926, June 10, 2009,

> A.Beda, V.Brudanin, E.Demidova, V.Egorov, G.Gavrilov, M.Shirchenko, A.Starostin, Ts.Vylov, in: "Particle Physics on the Eve of LHC", ed. A.Studenikin, World Scientific (Singapore), p.112, 2009 www.icas.ru (13th Lomonosov Conference)

... quite recent claim that *v-e* cross section should be increased by *Atomic Ionization* effect:

$$\nu + (A, Z) \longrightarrow \nu' + (A, Z)^+ + e^-$$

 \downarrow recombination

 $(A,Z) + \gamma$

H.Wong et al., arXiv: 1001.2074, 13 Jan 2010, reported at the Neutrino 2010 Conference (Athens, June 2010), PRL 105 (2010) 061801

(*v-e* scattering on free electrons)

... a bit of *V* electromagnetic properties theory

The most general study of the massive neutrino vertex function (including electric and magnetic form factors) in arbitrary R. gauge in the context of the SM + SU(2)-singlet 期日日 Vp accounting for masses of particles in polarization loops

(for arbitrary neutrino mass, heavy neutrino...)

for any additional neutrino

Large magnetic moment $\mathcal{M}_{v} = \mathcal{M}_{v} (m_{v}, m_{s}, m_{e})$ • In the <u>L-R</u> symmetric models Kim, 1976 (SU(2)×SU(2)×U(4)) Beg. Marciano, Ruderman, 1978

"On compatibility of small " with large \mathcal{M}_{v} of neutrino", Sov.J.Nucl.Phys. 48 (1988) 512 ... there may be $SU(2)_{v}$ symmetry that forbids ", but not \mathcal{M}_{v}

- Bar, Freire, Zee, 1990
- supersymmetry
- extra dimensions

Voloshin, 1988

considerable enhancement of \mathcal{M}_{v} to experimentally relevant range

... A remark on electric charge of \mathcal{V} ...

Radiative decay rate

Petkov 1977; Zatsepin, Smirnov 1978; Bilenky, Petkov 1987; Pal, Wolfenstein 1982

$$\Gamma_{\nu_i \to \nu_j + \gamma} = \frac{\mu_{eff}^2}{8\pi} \left(\frac{m_i^2 - m_j^2}{m_i^2}\right)^3 \approx 5 \left(\frac{\mu_{eff}}{\mu_B}\right)^2 \left(\frac{m_i^2 - m_j^2}{m_i^2}\right)^3 \left(\frac{m_i}{1 \ eV}\right)^3 s^{-1} \frac{\mu_{eff}^2}{\mu_{eff}^2} = |\mu_{ij}|^2 + |\epsilon_{ij}|^2$$

Radiative decay has been constrained from absence of decay photons:1) reactor \bigvee_e and solar \bigvee_e fluxes,Raffelt 19992) SN 1987A \bigvee burst (all flavours),Kolb, Turner 1990;3) spectral distortion of CMBRRessell, Turner 1990

The tightest astrophysical bound on $\mu_{\mathbf{v}}$ G.Raffelt. **PRL 1990** comes from cooling of red giant stars by plasmon $L_{int} = \frac{1}{2} \sum_{a,b} \left(\mu_{a,b} \bar{\psi}_a \sigma_{\mu\nu} \psi_b + \epsilon_{a,b} \bar{\psi}_a \sigma_{\mu\nu} \gamma_5 \psi_b \right)$ neutrino flavour states $\epsilon_{\alpha}k^{\alpha} = 0$ Matrix element $|M|^2 = M_{\alpha\beta} p^{\alpha} p^{\beta}, \quad M_{\alpha\beta} = 4\mu^2 (2k_{\alpha}k_{\beta} - 2k^2\epsilon_{\alpha}^*\epsilon_{\beta} - k^2g_{\alpha,\beta}),$ $\Gamma_{\gamma \to \nu \bar{\nu}} = \frac{\mu^2}{24\pi} \frac{(\omega^2 - k^2)^2}{\omega} = 0 \text{ in vacuum } \omega = k$ **Decay rate** In the classical limit χ - like a massive particle with $\omega^2 - k^2 = \omega_{pl}^2$ $Q_{\mu} = g \int \frac{d^3k}{(2\pi)^3} \omega f_{BE} \Gamma_{\gamma \to \nu \bar{\nu}}$ **Energy-loss rate per unit volume** $\mu^2 \to \sum_{i} \left(|\mu_{a,b}|^2 + |\epsilon_{a,b}|^2 \right)$ distribution function of plasmons

$$Q_{\mu} = g \int \frac{d^3k}{(2\pi)^3} \omega f_{BE} \Gamma_{\gamma \to \nu \bar{\nu}}$$

Magnetic moment plasmon decay ______ enhances the Standard Model photo-neutrino cooling by photon polarization tensor

more fast cooling of the star.

In order not to delay helium ignition ($\leq 5\%$ in Q)

Astrophysics bounds on μ_{ν} $\mu_{\nu}(astro) < 10^{-10} - 10^{-12} \mu_{\rm B}$

Mostly derived from consequences of **helicity-state change** in astrophysical medium:

- available degrees of freedom in BBN,
- stellar cooling via plasmon decay, cooling of SN1987a. Red Giant Jumin. G. Raffelt, J. Dearborn,

Bounds depend on

- modeling of astrophysical systems,
- on assumptions on the neutrino properties.

J. Silk. 1989

Generic assumption:

absence of other nonstandard interactions except for $\mu_{\mathbf{v}}$

A global treatment would be desirable, incorporating oscillation and matter effects as well as the complications due to interference and competitions among various channels

properties (magnetic moment):

neutrino spin

different

charged particles coupled to neutrinos

neutron beta-decay in
change of V oscillation pattern due to matter polarization under influence of external e.m. fields ...

B-decay of neutron in magnetic field Birth of 2 astrophysics in B $n \xrightarrow{B} p + e + \tilde{\nu}_{e}$ * L. Korovina, "B-decay of polarized neutron in magnetic field", Sov.Phys.J., # 6 (1964) 86 * I. Ternov, B. Lysov, L. Korovina, Mosc. Univ. Bull., Phys., Astron., #5 (1965) 58 "On the theory of neutron B-decay in external magnetic field." * J. Matese, R. O'Connell, "Neutron beta decay Phys. Rev. 180 (1969) 1289 in a uniform magnetic field," * L. Fassio-Canuto, "Neutron beta decay in a Phys.Rev.187 (1969) 2141 Strong magnetic field" 6. Greenstein, Nature 223 (1969) 938

* Asymmetry in V emission $\frac{W(e)}{W_{0}} = \frac{1}{2} \int \sin\theta_{y} d\theta_{y} \left\{ 1 + \frac{2(\alpha^{2} \cdot \alpha)}{1 + 3\alpha^{2}} S_{n} \cos\theta_{y} \right\}$ $-4.9 \frac{eB}{\Delta^2} \left(\frac{d^2 - 1}{1 + 3d^2} \cos \theta + \frac{2(d^2 - d)}{1 + 3d^2} S_n \right) \Big\}$

Pe+2

"Bound-state beta-decay of neutron in strong magnetic field"

Usual (continuum - state)
$$\beta$$
 decay $n \rightarrow p + e^- + \overline{v_e}$
"Rare" (bound - state) β decay $n \rightarrow (pe^-) + \overline{v_e}$

R. Daudel, M. Jean, and M. Lecoin, J. Phys. Radium 8, 238 (1947)

K.Kouzakov, A.Studenikin

Phys.Rev.C 72 (2005) 015502

$$\frac{W_{b}}{W_{c}} \cong 4.2 \times 10^{-6}$$

$$\tau_c \sim 15 \min$$

 $\tau_b \sim 7 \text{ years}$

J.N. Bahcall, Phys. Rev. **124**, 495 (1961) [Dirac equation] L.L. Nemenov, Sov. J. Nucl. Phys. **15**, 582 (1972) [Schrödinger equation] X. Song, J. Phys. G: Nucl. Phys. **13**, 1023 (1987) [Bethe-Salpeter equation] K.A. Kouzakov and A.I. Studenikin, Phys. Rev. C **72**, 015502 (2005) http://arxiv.org/hep-ph/0412134

Summary

First analysis of bound-state β decay in a strong magnetic field ($B\sim 10^{13}-10^{18}$ G)

 $\sqrt{w_b/w_c} \sim 0.1-0.4$ in contrast to the field-free case, where $w_b/w_c \sim 10^{-6}$

✓ A logarithmiclike behavior
w_b/w_c∞log₁₀(B/B_e)+b (b>0) Outlook: Astrophysical applications?

New mechanism of electromagnetic radiation

Spin light of neutrino in matter

new mechanism of the electromagnetic process stimulated by the presence of matter, in which neutrino with **non-zero magnetic moment** emits light

> A.Lobanov, A.Studenikin, Phys.Lett. B 564 (2003) 27, Phys.Lett. B 601 (2004) 171 A.S., A.Ternov, Phys.Lett. B 608 (2005) 107 A.Grigoriev, A.S., A.Ternov, Phys.Lett. B 622 (2005) 199 A.S., J.Phys.A: Math.Gen. 39 (2006) 6769 A.S., J.Phys.A: Math.Theor. 41 (2008) 16402

New mechanism of electromagnetic radiation

Spin light of neutrino in matter

(quantum approach)

new mechanism of the electromagnetic process stimulated by the presence of matter, in which a neutrino with **non-zero magnetic moment** emits light.

> A.Studenikin, A.Ternov, PLB 2005 A.Grigoriev, Studenikin, Ternov, PLB 2005 A.S., J.Phys.A: Math.Gen. 39 (2006) 6769 A.S., J.Phys.A: Math.Theor. 41 (2008) 16402

V_L
Modified Dirac equation for neutrino in matter

Addition to the vacuum neutrino Lagrangian $\Delta L_{eff} = \Delta L_{eff}^{CC} + \Delta L_{eff}^{NC} = -f^{\mu} \left(\bar{\nu} \gamma_{\mu} \frac{1 + \gamma^{5}}{2} \nu \right)$ where $f^{\mu} = \frac{G_{F}}{\sqrt{2}} \left((1 + 4 \sin^{2} \theta_{W}) j^{\mu} - \lambda^{\mu} \right)$ matter polarization $\left\{ i \gamma_{\mu} \partial^{\mu} - \frac{1}{2} \gamma_{\mu} (1 + \gamma_{5}) f^{\mu} - m \right\} \Psi(x) = 0$

It is supposed that there is a macroscopic amount of electrons in the scale of a neutrino de Broglie wave length. Therefore, **the interaction of a neutrino with the matter (electrons) is coherent.**

L.Chang, R.Zia, '88; J.Panteleone, '91; K.Kiers, N.Weiss, M.Tytgat, '97-'98; P.Manheim, '88; D.Nötzold, G.Raffelt, '88; J.Nieves, '89; V.Oraevsky, V.Semikoz, Ya.Smorodinsky, 89; W.Naxton, W-M.Zhang'91; M.Kachelriess, '98; A.Kusenko, M.Postma, '02.

A.Studenikin, A.Ternov, hep-ph/0410297; *Phys.Lett.B* 608 (2005) 107

This is the most general equation of motion of a neutrino in which the effective potential accounts for both the **charged** and **neutralcurrent** interactions with the background matter and also for the possible effects of the matter **motion** and **polarization**.

Quantum theory of spin light of neutrino (I)

Quantum treatment of *spin light of neutrino* in matter

showns that this process originates from the **two subdivided phenomena**:

the **shift** of the neutrino **energy levels** in the presence of the background matter, which is different for the two opposite **neutrino helicity states**,

$$E = \sqrt{\mathbf{p}^2 \left(1 - s\alpha \frac{m}{p}\right)^2 + m^2} + \alpha m$$
$$s = \pm 1$$

the radiation of the photon in the process of the neutrino transition from the "excited" helicity state to the low-lying helicity state in matter

A.Studenikin, A.Ternov, A.Grigoriev, A.Studenikin, A.Ternov, Phys.Lett.B 608 (2005) 107; Phys.Lett.B 622 (2005) 199; Grav. & Cosm. 14 (2005) 132;

neutrino-spin self-polarization effect in the matter

A.Lobanov, A.Studenikin, Phys.Lett.B 564 (2003) 27; Phys.Lett.B 601 (2004) 171

Method of exact solutions

Modified **Dirac equations** for γ (and e) (containing the correspondent effective matter potentials)

exact solutions (particles wave functions)

a basis for investigation of different phenomena which can proceed when **neutrinos** and **electrons** move in dense media (astrophysical and cosmological environments).

«method of exact solutions » Interaction of particles in external electromagnetic fields (Furry representation in quantum electrodynamics)

...beyond perturbation series expansion, strong fields and non linear effects... ... evaluation of the method

 within a project of research of in dense matter and external fields
 stimulated by a need to obtain a consistent theory of "spin light of neutrino (electron) in matter"

A.Studenikin,

"Neutrinos and electrons in background matter: a new approach", **Ann.Fond. de Broglie 31 (2006) 289;**

"Method of wave equations exact solutions in studies of neutrino and electron interactions in dense matter", J.Phys.A: Math.Theor. 41 (2008) 164047 QFEXT'07

A.Studenikin, A.Ternov, Phys.Lett.B 608 (2005) 107;

hep-ph/0410297, "Neutrino quantum states in matter";

and *e*

hep-ph/0410296,

"Generalized Dirac-Pauli equation and neutrino quantum states in matter"

A.Grigoriev, A.Studenikin, A.Ternov, Phys.Lett.B 608 622 (2005) 199 in matter being treated within the method of exact solutions of quantum wave equations -

«method of exact solutions »

A.Studenikin,

J.Phys.A: Math.Theor. 41 (2008) 16402,

"Method of wave equations exact solutions in studies of neutrino and electron interactions in dense matter"

Ann. Fond. de Broglie 31 (2006) 289, "Neutrinos and electrons in background matter: a new approach"

J.Phys.A: Math.Gen.39 (2006) 6769

Neutrino energy quantization in rotating media: new mechanism for neutrino trapping inside dense rotating stars

> Neutrino'08, Christchurch, May 25-31, 2008

Alexander Studenikin

Moscow State University

A.Studenikin, "Method of exact solutions in studies of neutrinos and electrons in dense matter" J.Phys.A:Math.Theor. 41 (2008) 164047 (20 pp)

Neutrino energy quantization in matter

\dots consistent model of a rotating matter with account for \mathcal{V} mass

I.Balantsev, Yu.Popov, A.Studenikin, Nuov.Cim.B 32 (2009) 53, *arXiv:* 0906.2391

$$\left\{i\gamma_{\mu}\partial^{\mu} - \frac{1}{2}\gamma_{\mu}(1+\gamma_{5})f^{\mu} - m\right\}\Psi(x) = 0$$

$$f^{\mu} = -G(n, n\mathbf{v}), \quad \mathbf{v} = (-\omega y, \omega x, 0)$$

Energy spectra

$$p_{0} = \sqrt{m^{2} + p_{3}^{2} + 4N\rho} - Gn \qquad for \quad \checkmark$$

$$\tilde{p}_{0} = \sqrt{m^{2} + p_{3}^{2} + 4N\rho} + Gn \qquad for \quad \checkmark$$

$$N = 0, 1, 2, ... \qquad \rho = Gn\omega$$

thus, $\tilde{\mathbf{v}}$ with energy $\tilde{p}_0 \sim 1 \ eV$ can be bound inside \mathbf{NS} $N \gg 1$ and $p_3 = 0$

EM properties _____> a way to distinguish **Dirac** and **Majorana**

• Standard Model with $V_{R}(m, \neq 0)$: $M_{e} = \frac{3eG_{F}}{8\sqrt{2}\pi^{2}} m_{e} \sim 3 \cdot 10^{-19} M_{\odot} \left(\frac{m_{e}}{10V}\right)$

In extensions of SM<</p>

enhancement of v, even (electrically magnetic moment), even (millicharged v)

Limits from reactor v-e scattering experiments (2010):

 $\mu_{\nu} < 3.2 \times 10^{-11} \mu_B$ A.Beda et al. (GEMMA Coll.) *Limits from astrophysics,* star cooling (1990):

$$\mu \leq 3 imes 10^{-12} \mu_B$$
 G.Raffelt

 μ_{γ} is presently known to be in the range

$$10^{-20}\mu_B \leq \mu_{\gamma} \leq 10^{-11}\mu_B$$

 $\mu_{\it v}$ provides a tool for exploration possible physics beyond the Standard Model

Due to smallness of neutrino-mass-induced magnetic moments,

 $\mu_{ii} \approx 3.2 \times 10^{-19} \left(\frac{m_i}{1 \ eV}\right) \mu_B$

any indication for non-trivial electromagnetic properties of \mathcal{V} , that could be obtained within reasonable time in the future, would give evidence for interactions beyond extended Standard Model

... situation with

electromagnetic properties

is better that it was for V in the time of W. Pauli, 1930

... once they will be observed experimentally

... are important in astrophysics

... there is a need for further theoretical and experimental studies

