Исследование солнечных нейтрино в настоящее время является одной из важнейших задач современной физики и астрофизики. Daten о потоке солнечных нейтрино получены в четырёх экспериментах: Homestake, Kamiokande, Gallex и Sage. Измеренные потоки солнечных нейтрино во всех экспериментах оказались меньше предсказанного уровня в соответствии со стандартной моделью Солнца (СМС). Более того, сравнение результатов разных экспериментов дополнительно приводит к проблеме спектра нейтрино от распадов 8B и так называемой проблеме «бериллиевых» нейтрино: сравнение результатов Kamiokande и галлиевых экспериментов исключает вклад «бериллиевых» нейтрино от реакции электронного захвата на 7Be, хотя в эксперименте Kamiokande наблюдается нейтрино от распада дочернего ядра 8B. Теоретические исследования проблемы выходят за рамки стандартной теории электромагнитных взаимодействий и требуют создания новых детекторов, позволяющих исследовать спектр солнечных нейтрино в области низких энергий.

Borexino — первый детектор реального времени, способный регистрировать солнечные нейтрино низких энергий с порогом 250 кэВ по электронам отдачи. Наблюдение моноэнергетических нейтрино с энергией 0,86 МэВ («бериллиевые» нейтрино) является главной задачей эксперимента. Так как нейтрино-электронное рассеяние содержит вклад как заряженного, так и нейтрального токов, то нейтринный сигнал, регистрируемый детектором Borexino, определяет ароматическую композицию падающих нейтрино. Это, в свою очередь, позволяет исследовать ароматическую структуру «бериллиевых» нейтрино.

Детектор Borexino представляет собой сцинтилляционный детектор, содержащий 300 т жидкого органического сцинтиллятора, заключенного в сфе-
рический прозрачный контейнер диаметром 8,5 м и просматриваемого со всех сторон 2200 ФЭУ с большим диаметром фотокатода. Прозрачный контейнер из нейлона толщиной 500 мкм, ограничивающий активный объем детектора, размещён в стальной сфере диаметром 13,5 м, на которой крепится ФЭУ с оптическими концентраторами, перекрывающими 30% полного телесного угла. Буферная область между внутренним объемом и стальной сферой заполняется органической жидкостью, имеющей ту же плотность, что и сцинтиллятор (псевдокумол, C₆H₁₂), при этом компенсируется выталкивающая сила, действующая на нейлоновый контейнер. Вся конструкция помещена в бак из нержавеющей стали размером 18 × 18 м, заполненный ультрачистой диэлектрической водой, которая служит защитой от внутреннего и внешнего фона (нейтронов, γ-излучения от скальных пород и т.п.).

Основной проблемой эксперимента является уменьшение фона в сигнальном окне. Порог детектора 0.25 МэВ по электронам отдачи определяется присутствием радиоактивного изотопа ¹⁴С в органическом сцинтилляторе, поэтому будут наблюдаться солнечные нейтрино с энергиями выше 0.45 МэВ, что исключает возможность наблюдения pp-нейтрино. Ожидаемый в стандартной модели Солнца эффект составляет около 50 событий в сутки для 100-тонного выделенного объема сцинтиллятора. Спектр нейтриных сигналов и сопутствующий фон приведены на рисунке. Внутренний фон является наиболее критическим с точки зрения возможности создания детектора с требуемыми характеристиками. Radioактивность сцинтиллятора является

![Diagram](image.png)

Эффект, ожидаемый в СМС (без осцилляций нейтрино), в сравнении с фоном
Необходимая чистота сцинтиллятора

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>238U, 232Th</td>
<td>$< 10^{-16}$ r/t</td>
<td></td>
</tr>
<tr>
<td>40K</td>
<td>$< 10^{-14}$ r/t</td>
<td></td>
</tr>
<tr>
<td>14C/12C</td>
<td>$< 10^{-18}$ r/t</td>
<td></td>
</tr>
<tr>
<td>7Be, 10Be</td>
<td>< нескольких событий/сут</td>
<td></td>
</tr>
</tbody>
</table>

следствием естественной (238U, 232Th, 40K) и космогенной (14C, 7Be, 10Be) радиоактивности. Осуществление проекта Borexino требует высокой радионуклидной чистоты в масштабах сотен тонн сцинтиллятора и тысяч тонн воды защиты. Необходимые уровни очистки по различным радиоактивным изотопам приведены в таблице.

Для измерения возможности достижения необходимых технических требований был сооружен реалистичный детектор со всеми характеристиками Borexino. Прототип установки Borexino (Counting Test Facility — CTF) был сооружен в Национальной лаборатории Gran-Sasso в Италии (в подземном тоннеле длиной 100 м под горным массивом Апеннины в центральной Италии) и защищен от космических лучей. Основной целью создания CTF являлось измерение содержания радиоактивных примесей в жидком сцинтилляторе, в частности 14C, 238U и 232Th. Предел чувствительности установки к содержанию 14C находится на уровне 10^{-19}.

Анализ данных CTF показал, что непрерывная очистка сцинтиллятора позволяет уменьшить внутренний фон в энергетическом окне $250 < E < 800$ кэВ до порога чувствительности. Относительно небольшие размеры CTF ограничивают возможности активной защиты, поэтому в этом энергетическом интервале чувствительность детектора ограничена 10^{-7} Бк/кг. Предел для измерения двух наиболее распространенных и хорошо идентифицируемых радионуклидов — радия и тория — находится на уровне 10^{-9} Бк/кг. В области энергий от 25 до 250 кэВ доминирующим компонентом фона является распад 14C со скоростью $\sim 0,1$ мБк/кг, что соответствует относительному изотопическому содержанию 14C/12C $\approx 10^{-18}$ r/t. Чувствительность CTF к содержанию изотопов из цепочек радиоактивных распадов 238U (определенная по 226Ra) и 232Th составила 10^{-16} r/t сцинтиллятора соответственно.

Высокая чувствительность, недостижимая при использовании классических методов (масс-спектроскопии или нейтронно-активационного анализа), получена за счет высокой чистоты сцинтиллятора и тщательного контроля содержания радиоизотопов в используемых материалах. Большой объем используемого в прототипе сцинтиллятора (4 т) позволил снизить отношение поверхность/объем, ограничивающее возможности лабораторных методов. Важным параметром, определившим успех экспериментов, является тщательно проду-
манская система пассивной (детектор размещен глубоко под землей и окружен слоем воды высокой очистки) и активной (мионое вето) защиты.

С помощью детектора CTF отработаны методы реконструкции событий в жидкострильционном детекторе большого объема. Получены также параметры, описывающие распространение света в большом объеме сцинтиллятора. Таким образом, экспериментально доказана возможность создания низкофонового детектора низкозергетических нейтрино Borexino на основе жидкого органического сцинтиллятора с порогом 250 кэВ по электронам отдачи, ограниченным только присутствием изотопа 14C в сцинтилляторе.

Сотрудниками группы ОИЯИ разработан новый метод восстановления событий в пространстве детектора, что позволило в 2–2,5 раза улучшить пространственное и энергетическое разрешение детектора. Это дало возможность снизить порог регистрации прототипа детектора и разработать модификацию установки, позволяющую в реальном времени исследовать спектр pp-нейтрино от Солнца. Данные с прототипа детектора CTF были использованы для получения нижней границы стабильности электрона. Новый улучшенный предел на время жизни составил более $4.6 \cdot 10^{26}$ лет по моде распада $e \rightarrow \gamma + \nu$ (опубликовано в «Phys. Lett. B». 2002. V.525. P.29–40). На прототипе CTF получены также новые данные о магнитном моменте нейтрино, распаде нейтрино и распаде нуклонов в невидимые каналы.