Лекция 11. Дибарионные резонансы в процессах двухпионного рождения

Промежуточные дибарионы в процессах двухпионного рождения. АВС-эффект, свойства σ-мезона и частичное восстановление киральной симметрии. Современный экспериментальный статус дибарионных резонансов. Кварковая структура и спектроскопия дибарионов.

11.1. ПРОМЕЖУТОЧНЫЕ ДИБАРИОНЫ В ПРОЦЕССАХ ДВУХПИОННОГО РОЖДЕНИЯ

Поскольку процессы двухпионного рождения в соударениях нуклонов и ядер сопровождаются большими переданными импульсами, дибарионные резонансы в таких процессах должны проявляться сильнее, чем в упругом рассеянии и однопионном рождении. В таких реакциях основной «фоновый» процесс (при энергиях порядка 1-1.5 ГэВ/нуклон) — это возбуждение промежуточной системы $\Delta\Delta$ (см. Рис. 11.1).

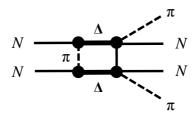


Рис. 11.1. Диаграмма основного t-канального процесса с двумя промежуточными Δ -изобарами для реакции двухпионного рождения в NN-соударении.

В этом процессе присутствует уже не одна, как для возбуждения промежуточной системы $N\Delta$, а две вершины $\pi N\Delta$ с виртуальным

пионом, что приводит к еще большей зависимости амплитуды от параметра короткодействующего обрезания $\Lambda_{\pi N\Delta}$, чем в соответствующем Δ -изобарном механизме реакций однопионного рождения (см. раздел 10.3). При выборе «мягких» значений $\Lambda_{\pi N\Delta}$ вклад такого t-канального $\Delta\Delta$ -механизма будет весьма мал, и на передний план должны выйти s-канальные резонансные механизмы типа рождения дибарионов.

Рассмотрим вначале сигналы изовекторных (с I=1) дибарионов в реакции двухпионного рождения $pp \to pp + \pi^0\pi^0$. В области энергий столкновения $\sqrt{s}=2.2-2.5$ ГэВ известны два изовекторных дибариона: $^3F_3(2220)$ и $^1G_4(2430)$. Сечение 2π -рождения через возбуждение и распад этих дибарионных резонансов описывается формулой типа Брейта—Вигнера:

$$\sigma = \sum_{J=3,4} \frac{\pi (2J+1)}{p^2} \frac{s\Gamma_{D_J}^{(i)}(s)\Gamma_{D_J}^{(f)}(s)}{\left(s - M_{D_J}^2\right)^2 + s\left[\Gamma_{D_J}(s)\right]^2},$$
 (1)

где p — импульс падающего протона в с.ц.и., а $\Gamma_{D_J}^{(i)}$ и $\Gamma_{D_J}^{(f)}$ — входная и выходная ширины распада резонанса D_J с полным моментом J.

На Рис. 11.2 экспериментальные сечения реакции $pp \to pp + \pi^0\pi^0$ сравниваются с результатами расчетов [1], выполненных с учетом резонансных вкладов дибарионов 3F_3 и 1G_4 , а также в рамках традиционной модели [2], которая предполагает t-канальное рождение промежуточных барионных резонансов (роперовского резонанса $N^*(1440)$ и двух Δ -изобар).

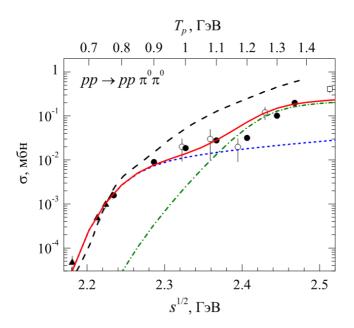


Рис. 11.2. Сечение реакции $pp \to pp + \pi^0\pi^0$, рассчитанное на основе *s*-канального резонансного механизма, включающего два изовекторных дибариона 3F_3 и 1G_4 (сплошная кривая), в сравнении с экспериментальными данными разных групп. Вклады дибарионов 3F_3 и 1G_4 показаны штриховой (с короткими штрихами) и штрих-пунктирной кривыми, соответственно. Штриховая кривая с длинными штрихами соответствует предсказаниям модели, учитывающей промежуточные состояния *NN**(1440) и $\Delta\Delta$.

Как видно из рисунка, традиционная модель [2], учитывающая только барионные резонансы, не описывает наблюдаемую форму сечения даже при очень высоких значениях параметров обрезания в вершинах ($\Lambda_{\pi N\Delta} = 1.3~\Gamma$ эВ). В то же время, в рамках модели, учитывающей рождение двух изовекторных дибарионных резонансов в двух разных парциальных волнах (которые были найдены ранее в упругом pp-рассеянии), экспериментальные данные описываются качественно лучше.

Однако здесь мы снова сталкиваемся с ситуацией, когда энергии возбуждения дибарионов близки к порогам рождения барионных резонансов в *NN*-соударениях, что, при учете больших ширин изовекторных дибарионов, затрудняет однозначную идентификацию их вкладов. Наиболее ясные указания на дибарионные сигналы в *NN*- и *Nd*-соударениях были получены в изоскалярном канале при детальном исследовании так называемого ABC-эффекта.

11.2. ЧТО ТАКОЕ АВС-ЭФФЕКТ?

В 1960 году группа американских физиков из Брукхейвенской национальной лаборатории выполнила эксперимент по слиянию высокоэнергичного протона с дейтроном в ядро ³He:

$$p + d \rightarrow {}^{3}\text{He} + X,$$
 (2)

при кинетической энергии падающих протонов $T_p = 743 \text{ M} \cdot \text{B}$ [3]. Результирующее ядро ³Не регистрировалось под одним или несколькими углами относительно падающего протонного пучка. Ожидалось, что сечение такой реакции будет монотонно падать с ростом энергии протонов, следуя поведению формфактора ядра ³Не в канале ³Не $\rightarrow p+d$ при высоких импульсах. Однако было обнаружено аномальное усиление сигнала, т.е. выхода ядер ³Не, в области импульсов, соответствующих массе $X \sim 300 \text{ M} \cdot \text{B}$, т.е. вблизи порога двухпионного рождения (см. Рис. 11.3). Это усиление получило название ABC-пика по первым буквам фамилий основных авторов экспериментальной работы [3] (Аbashian, Booth, Crowe). Само это явление также стало известно как ABC-эффект. Кинематический анализ, проведенный авторами, показал, что наблюдаемый большой пик в выходе ядер

³Не обусловлен рождением скалярной частицы X в реакции (11.2), состоящей, скорее всего, из пары пионов в скаляризоскалярном канале, т.е. с нулевым изоспином и нулевым относительным орбитальным угловым моментом (в s-волне).

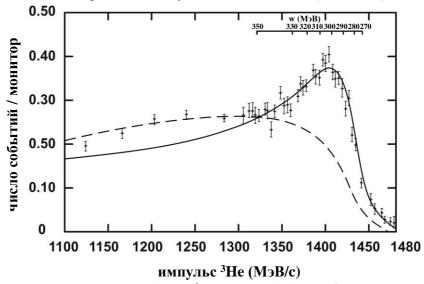


Рис. 11.3. Выход ядер 3 Не в реакции слияния $p+d \rightarrow ^3$ Не+X в зависимости от импульса образовавшегося ядра. Верхняя шкала — масса частицы X. Сплошная кривая — подгонка данных с резонансной (брейт-вигнеровской) функцией, штриховая кривая — распределение согласно фазовому объему.

Позже аналогичное усиление было найдено и в других реакциях: $n+p \to d+X$, $d+d \to {}^4{\rm He}+X$. Предполагается, что базовая реакция в этих экспериментах — это слияние двух нуклонов в дейтрон: $n+p \to d + (\pi\pi)_0$, где $(\pi\pi)_0$ означает изоскалярную пионую пару.

Традиционный механизм, предложенный для трактовки двухпионного рождения и ABC-эффекта в начале 1970-х годов, — это t-канальное возбуждение и последующий распад промежу-

точной системы $\Delta\Delta$ по пионному каналу, который может дать конечную пионную пару в скалярной моде (при параллельном вылете двух пионов вблизи порога). Этот механизм позволил частично описать старые инклюзивные данные, однако он приводит к противоречию с новыми эксклюзивными данными, полученными в 4π -геометрии и с очень высокой статистикой.

В новых высокоточных экспериментах [4], выполненных на ускорителе COSY в Юлихе, использовался детектор WASA, способный регистрировать почти все частицы, в том числе π^0 -мезоны, вылетающие из зоны реакции под любыми углами. В исследовании реакции

$$p+d \to p_{\text{spectator}} + d + \pi^0 \pi^0 \tag{3}$$

в интервале энергий $T_p=1.0$ —1.4 ГэВ измерялись угловые и энергетические корреляции между всеми четырьмя вылетающими частицами. Это позволило восстановить угловые и энергетические распределения базовой реакции $pn \to d\pi^0\pi^0$ в широком интервале энергий (см. Рис. 11.4). Результаты этих экспериментов ясно показали образование изоскалярного дибарионного резонанса D_{03} с параметрами:

$$I(J^P) = 0(3^+), M \approx 2380 \text{ M} \cdot \text{B} = 2M_\Delta - 80 \text{ M} \cdot \text{B},$$

 $\Gamma = 70 \text{ M} \cdot \text{B} << 2\Gamma_\Delta = 235 \text{ M} \cdot \text{B},$

и прямую связь этого резонанса с АВС-эффектом (см. Рис. 11.5 и 11.6).

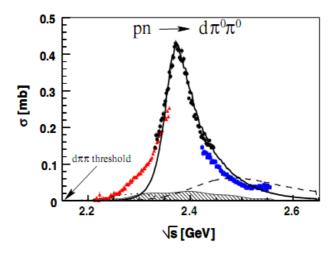


Рис. 11.4. Зависимость полного сечения реакции $pn \to d\pi^0\pi^0$ от полной энергии системы в с.ц.и., извлеченная из сечений реакции (3), измеренных при трех энергиях протонов $T_p = 1.0$, 1.2 и 1.4 ГэВ (соответствующие данные WASA@COSY [4] при этих трех энергиях показаны треугольниками, кружками и квадратиками). Сплошная кривая соответствует подгонке данных с учетом дибарионного резонанса D_{03} . Предсказания на основе традиционного t-канального механизма с двумя промежуточными Δ -изобарами (Рис. 11.1) показаны штриховой кривой.

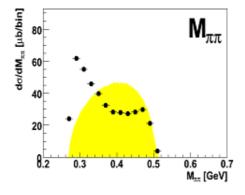


Рис. 11.5. Сечение реакции $pn \to d\pi^0\pi^0$ при энергии $\sqrt{s} = 2.38$ ГэВ как функция инвариантной массы $\pi\pi$ -системы. Область, закрашенная желтым цветом, отвечает фазовому объему.

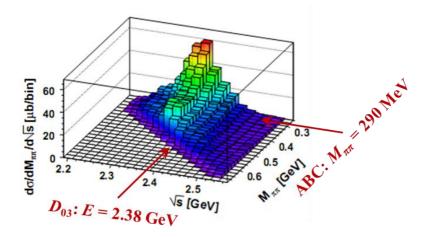


Рис. 11.6. Трехмерный график сечения реакции $pn \to d\pi^0\pi^0$ в зависимости от полной энергии в с.ц.и. и инвариантной массы $\pi\pi$ -системы.

После открытия дибарионного резонанса D_{03} в реакции $pn \to d\pi^0\pi^0$ естественно возник вопрос, могут ли дибарионы рождаться при столкновениях других частиц, например, дейтронов с дейтронами. Ответ был получен в серии экспериментов, также выполненных коллаборацией WASA@COSY в Юлихе. В частности, тот же самый изоскалярный $0(3^+)$ -резонанс (вместе с ABC-эффектом) был обнаружен и в реакциях двухпионного рождения $pd \to {}^3\text{He} + \pi^0\pi^0$ и $dd \to {}^4\text{He} + \pi^0\pi^0$ [5] (см. Рис. 11.7—11.10).

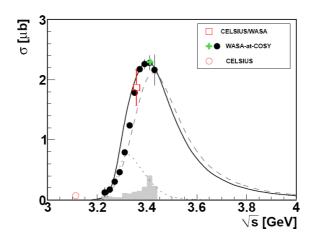


Рис. 11.7. Зависимость полного сечения реакции $pd \to {}^3{\rm He} + \pi^0\pi^0$ от полной энергии системы в с.ц.и. Точечная кривая соответствует вкладу дибарионного резонанса D_{03} , штриховая кривая — вкладу t-канального $\Delta\Delta$ -процесса, сплошная кривая — их когерентной сумме.

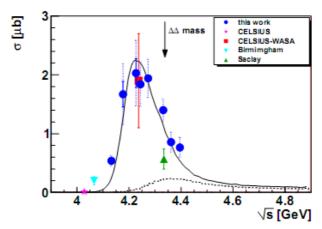


Рис. 11.8. Зависимость полного сечения реакции $dd \rightarrow {}^{4}\text{He} + \pi^{0}\pi^{0}$ от полной энергии системы в с.ц.и. Сплошная кривая — расчет с учетом дибарионного резонанса D_{03} , точечная кривая — расчет на основе t-канального $\Delta\Delta$ -процесса.

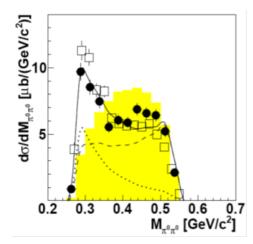
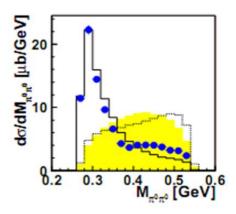



Рис. 11.10. Сечение реакции $dd \rightarrow$ 4 Не + $\pi^0\pi^0$ при энергии $\sqrt{s} = 4.27$ ГэВ как функция инвариантной массы $\pi\pi$ -системы. Область, закрашенная желтым цветом, отвечает фазовому объему. Обозначения кривых те же, что на Рис. 11.8.

Рис. 11.9. Сечение реакции $pd \rightarrow {}^{3}\text{He} + \pi^{0}\pi^{0}$ при энергии $\sqrt{s} = 3.35$ ГэВ как функция инвариантной массы $\pi\pi$ -системы. Область, закрашенная желтым цветом, отвечает фазовому объему. Обозначения кривых те же, что на Рис. 11.7.

Итог этих экспериментальных исследований подведен в работе [5]: «Таким образом, ABC-эффект в двухпионных реакциях слияния в ядрах имеет причиной pn-резонанс, который, очевидно, является достаточно сильным, чтобы выжить в ядерной среде».

Здесь, однако, возникает основной вопрос: какой механизм распада резонанса D_{03} приводит к ABC-усилению? Поиску ответа на этот вопрос посвящена недавняя работа [6], где рассматриваются несколько возможных сценариев распада D_{03} . Ниже мы детально рассмотрим механизм, предложенный в ра-

боте [7] в рамках дибарионной модели, который представляется нам наиболее вероятным для объяснения АВС-эффекта, поскольку напрямую связан с ядерными силами на коротких расстояниях.

11.3. ДИБАРИОННАЯ МОДЕЛЬ ДЛЯ РЕАКЦИИ $pn \rightarrow d + (\pi\pi)_0$

В дибарионной модели [7] предполагается, что основной вклад в сечение реакции $pn \to d + (\pi\pi)_0$ в области энергий $T_p = 1.0{\text -}1.4~\Gamma{\text 3B}$, при которых может рождаться дибарион $D_{03}(2380)$, дают две интерферирующие моды распада этого дибариона:

- эмиссия пионной пары из промежуточного скалярного σ -мезона (Рис. 11.11а),
- последовательная эмиссия двух пионов через образование промежуточного изовекторного дибариона $D_{12}(2150)$ (Рис. 11.11b).

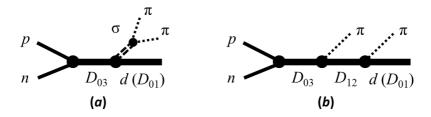


Рис. 11.11. Диаграммы двух механизмов реакции $pn \to d + (\pi\pi)_0$ через образование промежуточного дибариона D_{03} и его распад с эмиссией пионной пары из промежуточного скалярного омезона (а) и последовательной эмиссией двух пионов через изовекторный дибарион D_{12} (b).

Важно отметить, что в работе [7] были впервые рассмотрены переходы между различными дибарионными состояниями,

по аналогии с известными переходами между барионами (ср., например, две моды распада Роперовского резонанса $N^*(1440) \rightarrow N + \sigma \rightarrow N + \pi\pi$ и $N^*(1440) \rightarrow \Delta(1232) + \pi \rightarrow N + \pi\pi$).

Полная амплитуда реакции $pn \to d + (\pi \pi)_0$ имеет вид [1,7]:

$$\mathcal{M}_{\lambda_{p},\lambda_{n},\lambda_{d}} = \frac{\sum_{\lambda_{3}} \mathcal{M}_{\lambda_{p},\lambda_{n},\lambda_{3}}^{(D_{03})} \left[\mathcal{M}_{\lambda_{3},\lambda_{d}}^{(\sigma)} + \mathcal{M}_{\lambda_{3},\lambda_{d}}^{(D_{12})} \right]}{s - M_{D_{03}}^{2} + i\sqrt{s}\Gamma_{D_{03}}(s)}.$$
 (4)

Амплитуда рождения дибариона D_{03} (при выборе оси z параллельно начальному импульсу p в с.ц.и. pn-системы) может быть записана в такой форме:

$$\mathcal{M}_{\lambda_{p},\lambda_{n},\lambda_{3}}^{(D_{03})} = \sqrt{5} p^{2} F_{pn \to D_{03}} C_{1\lambda_{3}}^{3\lambda_{3}} C_{\frac{1}{2}\lambda_{p}\frac{1}{2}\lambda_{n}}^{1\lambda_{3}}, \tag{5}$$

а амплитуды распада резонанса D_{03} по каналу $d+\pi\pi$ через промежуточный σ -мезон и изовекторный дибарион D_{12} равны, соответственно:

$$\mathcal{M}_{\lambda_{3},\lambda_{d}}^{(\sigma)} = \frac{F_{D_{03}\to d\sigma}F_{\sigma\to\pi\pi}}{M_{\pi\pi}^{2} - m_{\sigma}^{2} + iM_{\pi\pi}\Gamma_{\sigma}\left(M_{\pi\pi}^{2}\right)}C_{1\lambda_{d}2\mu}^{3\lambda_{3}}\mathcal{Y}_{2\mu}(\mathbf{p}_{d},\mathbf{p}_{d}),$$

$$\mathcal{M}_{\lambda_{3},\lambda_{d}}^{(D_{12})} = \sqrt{\frac{6}{5}} \frac{F_{D_{03}\to D_{12}\pi_{1}}F_{D_{12}\to d\pi_{2}}}{M_{d\pi_{2}}^{2} - M_{D_{12}}^{2} + iM_{d\pi_{2}}\Gamma_{D_{12}}\left(M_{d\pi_{2}}^{2}\right)} \times$$

$$\times C_{1\lambda_{d}2\mu}^{3\lambda_{3}}\mathcal{Y}_{2\mu}(\mathbf{p}_{\pi_{1}},\mathbf{p}_{d\pi_{2}}) + \left(\pi_{1}\leftrightarrow\pi_{2}\right),$$
(6)

где $F_{R\to ab}$ — вершинные функции, $\mathcal{Y}_{2\mu}(\mathbf{p}_a,\mathbf{p}_b)$ — телесные сферические гармоники как функции импульсов частиц, $C_{s_1\lambda_1s_2\lambda_2}^{J\Lambda}$ — коэффициенты Клебша–Гордана, $\mu=\lambda_3-\lambda_d$. Через \mathbf{p}_a обозначен импульс частицы a в общей с.ц.и., через \mathbf{p}_{ab} — импульс частицы a в с.ц.и. пары частиц a и b.

Вершинные функции связаны с парциальными ширинами $\Gamma_{R \to ab}$ распада резонанса R соотношением

$$F_{R\to ab}(p_{ab}) = M_{ab} \sqrt{\frac{8\pi \ \Gamma_{R\to ab}^{(l)}(p_{ab})}{(p_{ab})^{2l+1}}},\tag{7}$$

где l — относительный орбитальный угловой момент частиц a и b. В расчетах была использована следующая параметризация энергетической зависимости парциальных ширин распада резонансов:

$$\Gamma_{R \to ab}^{(l)}(p) = \Gamma_{R \to ab}^{(l)} \left(\frac{p}{p_0}\right)^{2l+1} \left(\frac{p_0^2 + \Lambda_{ab}^2}{p^2 + \Lambda_{ab}^2}\right)^{l+1}, \tag{8}$$

где p_0 — значение относительного импульса p частиц a и b в точке резонанса. Значения параметров высокоимпульсного обрезания определяются из условия постоянства ширины вблизи резонанса:

$$\Lambda_{\sigma d} = 0.18, \ \Lambda_{\pi\pi} = 0.09, \ \Lambda_{\pi D_{2}} = 0.12, \ \Lambda_{\pi d} = 0.15 \ \Gamma \ni B.$$
 (9)

Для входной ширины распада дибариона по NN-каналу использовалась гауссова параметризация, которая следует из дибарионной модели NN-сил:

$$\Gamma_{D_{03} \to pn}(p) = \Gamma_{D_{03} \to pn} \left(\frac{p}{p_0}\right)^5 \exp\left(-\frac{p^2 - p_0^2}{\alpha^2}\right),$$
 (10)

где $\alpha = 0.35 \; \Gamma$ эВ.

Распределение по инвариантным массам (спектр инвариантных масс) пары конечных частиц b и c находится по формуле:

$$\frac{d\sigma}{dM_{bc}} = \frac{1}{4\pi^5 ps} \iint p_a p_{bc} d\Omega_a d\Omega_{bc} \sum_{\text{spin}} \left| \mathcal{M}(\mathbf{p}_a, \mathbf{p}_{bc}) \right|^2, \quad (11)$$

где \sum_{spin} означает усреднение по начальным и суммирование по

конечным спиновым состояниям. Угловые распределения конечных частиц находятся по аналогичным формулам.

Наконец, полное сечение находится интегрированием формулы (11):

$$\sigma = \int_{m_{c}+m}^{\sqrt{s}-m_{a}} dM_{bc} \frac{d\sigma}{dM_{bc}}.$$
 (12)

В расчетах использовалось три модельных параметра: масса M_{σ} и ширина Γ_{σ} промежуточного скалярного мезона и относительный вес амплитуд первого и второго механизмов на Рис. 11.11. Эти параметры находились из описания спектра инвариантных масс $M_{\pi\pi}$ при энергии \sqrt{s} =2.38 ГэВ и затем использовались в расчетах других распределений.

11.4. СПЕКТРЫ ИНВАРИАНТНЫХ МАСС ПРИ ЭНЕРГИИ $\sqrt{s} = 2.38$ ГЭВ

Хорошей проверкой дибарионного механизма для описания ABC-эффекта являются спектры инвариантных масс пар частиц, возникающих при распаде дибариона D_{03} , измеренные при различных энергиях в окрестности резонанса. На Рис. 11.12—11.13 представлены результаты для полной энергии 2.38 ГэВ. Эта энергия соответствует массе самого D_{03} -резонанса, и поэтому при этой энергии распределения по инвариантным массам были изучены лучше всего. (На рисунках 11.12—11.16, кроме 11.14, данные WASA@COSY [4] приведены в абсолютной нормировке, описанной в работе [8].)

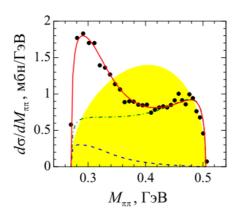


Рис. 11.12. Сечение двухпионного рождения в процессе $pn \to d + \pi^0\pi^0$ при энергии $\sqrt{s} = 2.38$ ГэВ в зависимости от инвариантной массы $\pi\pi$ -системы. Точки — данные эксперимента WASA@COSY [4], штриховая кривая — вклад моды распада $D_{03} \to d + \sigma$, штрих-пунктирная кривая — вклад моды распада $D_{03} \to D_{12} + \pi$, сплошная кривая — полный расчет (когерентная сумма двух мод распада). Область, закрашенная желтым цветом, отвечает фазовому объему.

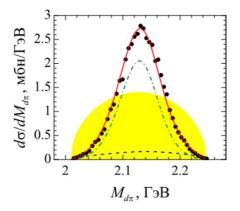


Рис. 11.13. То же, что на Рис. 11.12, но для зависимости сечения от инвариантной массы πd -системы.

Каждый из двух рассматриваемых механизмов распада дибариона D_{03} дает резонансное усиление в соответствующем спектре инвариантных масс. АВС-пик (Рис. 11.12) появляется вследствие рождения промежуточного околопорогового омезона (хотя сам вклад омоды весьма мал, он усиливается интерференцией со вторым механизмом). Пик в спектре масс $M_{d\pi}$ (Рис. 11.13) отражает рождение изовекторного D_{12} -дибариона. В принципе, в промежуточном состоянии могут рождаться и другие изовекторные дибарионы, однако вероятность их возбуждения отностельно мала, и, кроме того, их вклад подавлен центробежным барьером, т.к. пионы будут излучаться в более высоких парциальных волнах (в случае D_{12} -дибариона оба пиона излучаются в p-волнах).

Отметим также, что представленные здесь результаты были получены в рамках модели [7] без учета небольшого различия масс нейтральных и заряженных пионов (5 МэВ). Дальнейшие исследования показали, что эта разница масс существенно влияет на форму полной ширины о-мезона вблизи порога, в результате чего вклад σ -моды распада дибариона D_{03} в сечение рождения двух π^0 -мезонов приобретает характерный касп в спектре $M_{\pi\pi}$ на пороге рождения пары $\pi^+\pi^-$ (при $M_{\pi\pi}=280$ МэВ). Вклад второго механизма и суммарное сечение при этом остаются практически такими же, как показано на Рис. 11.12. Учет разницы масс пионов также приводит к экспериментально наблюдаемому уменьшению АВС-пика в реакции рождения пары $\pi^+\pi^-$ по сравнению с реакцией рождения двух π^0 -мезонов [8]. Причем в дибарионной модели это уменьшение АВС-пика происходит не только за счет сокращения доступного фазового объема, но в основном за счет уменьшения вклада σ -моды распада

 D_{03} в сечение реакции $pn \to d\pi^+\pi^-$ по сравнению с реакцией $pn \to d\pi^0\pi^0$ (вблизи 2π -порога).

Угловые распределения вылетающих дейтронов и пионов показаны на Рис. 11.14. Видно, что дибарионная модель дает весьма неплохое качественное и даже полуколичественное согласие с экспериментальными данными. Вероятно, полное количественное описание данных для угловых распределений можно получить, если учесть примесь G-волны, присутствующую в изоскалярном D_{03} -дибарионе (об этом однозначно говорят экспериментальные данные) или рождение промежуточных изовекторных дибарионов в более высоких парциальных волнах.

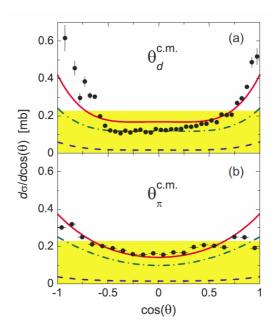


Рис. 11.14. Угловые распределения конечных дейтронов и пионов при энергии $\sqrt{s}=2.38$ ГэВ. Обозначения те же, что на Рис. 11.12.

На Рис. 11.15 показано полное сечение процесса $pn \to d$ + $\pi^0\pi^0$ в зависимости от энергии \sqrt{s} в области возбуждения D_{03} -резонанса, рассчитанное в рамках дибарионной модели. Видно, что модель дает хорошее описание полного сечения при энергиях, близких к резонансу. Отметим, что при приближении к $\Delta\Delta$ -порогу растет вклад фоновых процессов, в основном, за счет t-канального $\Delta\Delta$ -механизма.

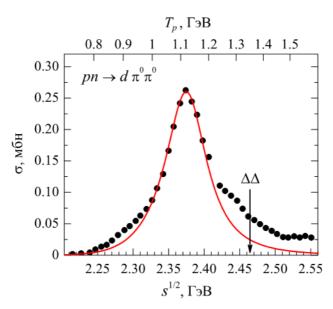


Рис. 11.15. Полное сечение процесса $pn \to d + \pi^0 \pi^0$ в зависимости от энергии. Точки — экспериментальные данные [4], сплошная кривая — расчет на основе дибарионной модели. Стрелкой указан порог рождения системы $\Delta\Delta$.

На Рис. 11.16 показано сравнение экспериментальных и теоретических спектров инвариантных масс $M_{\pi\pi}$ при различных энергиях столкновения вблизи резонансного пика. Из представленных результатов видно, что в области ниже и немного выше резонансного пика при $\sqrt{s} = 2.38$ ГэВ, т.е. там, где полное сече-

ние хорошо описывается дибарионной моделью, согласие теории и эксперимента для распределений по $M_{\pi\pi}$ также хорошее.

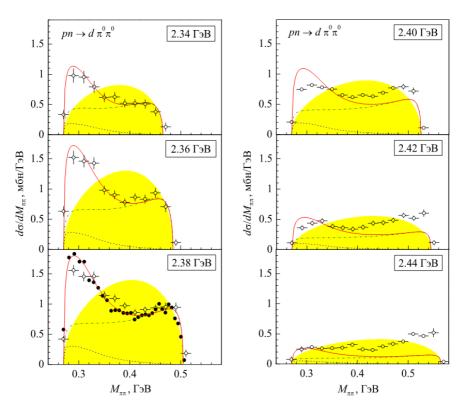


Рис. 11.16. Спектры $M_{\pi\pi}$ для энергий вблизи резонансного пика. Обозначения те же, что на Рис. 11.12. Пустые кружки — данные из работы [8].

При более высоких энергиях $\sqrt{s} > 2.4$ ГэВ, где в полных сечениях явно виден вклад фоновых t-канальных процессов (см. Рис. 11.15), дибарионная модель не описывает количественно экспериментальные $M_{\pi\pi}$ -спектры, хотя по-прежнему дает хорошее описание при малых инвариантных массах. Усиление выхода пионных пар с большими инвариантными массами, по всей

видимости, обусловлено t-канальным возбуждением системы $\Delta\Delta$, которое не учитывалось в рассматриваемой модели.

Подчеркнем, что при расчете спектров, показанных на Рис. 11.16, не делалось никакой специальной нормировки под экспериментальные данные при энергиях, отличных от резонансной энергии $\sqrt{s} = 2.38$ ГэВ. Поэтому вполне разумное в целом согласие с экспериментальными данными как по форме спектров, так и по абсолютной величине сечений при различных энергиях говорит об адекватном описании процесса на основе дибарионной модели.

Внимательный взгляд на ABC-пик на Рис. 11.12 и 11.16 позволяет понять, что масса и ширина рожденного σ -мезона, извлекаемая из этих данных, существенно меньше массы и ширины свободного σ -мезона, свойства которого мы обсудим в следующем разделе.

11.5. СВОЙСТВА σ-МЕЗОНА, ПРОЯВЛЯЮЩИЕСЯ ПРИ ОПИСАНИИ АВС-ЭФФЕКТА. ВОССТАНОВЛЕНИЕ КИРАЛЬНОЙ СИММЕТРИИ

Скалярный σ -мезон — самый легкий резонанс в КХД с квантовыми числами вакуума $0(0^+)$. Известно, что он сильно связан с киральным конденсатом и поэтому имеет сложную структуру (возможно, гибридную $q\bar{q}+2g$) и необычные свойства. Его масса и ширина, извлекаемые из разных экспериментов, лежат в очень широком диапазоне: $m_{\sigma}=400$ –550 МэВ, $\Gamma_{\sigma}=400$ –700 МэВ, что, вообще говоря, нехарактерно для других мезонов. Более того, если σ -мезон рождается не в пустом пространстве, а в среде, то значения его массы и ширины могут

стать существенно меньше. Таким образом, значения основных параметров σ -мезона непостоянны и зависят от условий его рождения. Например, в $\pi\pi$ -рассеянии он проявляется как очень широкий резонанс с массой $m_{\sigma} \approx 440$ МэВ и шириной $\Gamma_{\sigma} \approx 540$ МэВ. Однако, из описания АВС-пика в двухпионном рождении можно извлечь следующие базовые параметры σ -мезона: $m_{\sigma} \approx 300$ МэВ и $\Gamma_{\sigma} \approx 100$ МэВ [7]. Этот результат очень важен, поскольку уменьшение массы и ширины σ -мезона может являться признаком частичного восстановления киральной симметрии КХД.

Нарушение (и восстановление) киральной симметрии, отвечающее за изменение физических масс адронов, является, наряду с конфайнментом (т.е. невылетанием кварков), одним из двух основных аспектов непертурбативной КХД. В этой книге мы не имеем возможности детально описать фундаментальную роль киральной симметрии в адронной физике. За этим мы отсылаем читателя к руководствам по квантовой теории поля и теории сильных взаимодействий. Однако кратко ситуацию можно изложить следующим образом. (Частично этот материал уже рассматривался нами в Лекции 9, но мы считаем нужным повторить здесь основные моменты.)

Известно, что кварки в КХД являются безмассовыми и приобретают массу благодаря хиггсовскому механизму спонтанного нарушения симметрии, который был недавно блестяще подтвержден открытием бозона Хиггса в 2012 году на Большом адроном коллайдере в Церне. Однако, хиггсовский бозон ответственен только за электрослабую массу частиц, т.е. в случае кварков — за появление у легких d- и u-кварков небольшой (токовой) массы 3 и 5 МэВ. Конституэнтная масса у кварков (\approx 300

МэВ) возникает благодаря механизму нарушения киральной (т.е. лево-правой) симметрии. При этом возникает киральный конденсат, свойства которого тесно связаны со свойствами скалярного σ -мезона (см. раздел 9.3). Таким образом, можно заключить, что скалярный σ -мезон в сильном секторе Стандартной модели играет ту же роль, что и бозон Хиггса в электрослабом секторе.

С ростом плотности или температуры ядерной среды киральная инвариантность, нарушенная при низкой температуре или плотности, частично или полностью восстанавливается. При этом масса σ -мезона уменьшается, пока не сравняется с массой своего кирального партнера — пиона, которая при этих условиях практически не меняется, но с дальнейшим ростом температуры начинает возрастать (см. раздел 9.3 и Рис. 9.10).

Частичное восстановление киральной симметрии (ВКС) может происходить не только в ядерной материи при высокой плотности и/или температуре, но и в изолированных сильно возбужденных адронах. При этом происходит следующее: повышение энергии возбуждения частиц E^* , плотности ρ или температуры T среды приводит к росту энергии кварков внутри адронов, что, в свою очередь, подавляет кварковый конденсат $\langle q\overline{q} \rangle$ внутри адронов. В результате ВКС проявляется в уменьшении массы скалярного σ -мезона и ширины распада $\sigma \rightarrow \pi\pi$ (за счет уменьшения доступного фазового объема).

Теперь рассмотрим эффекты ВКС применительно к рождению промежуточных дибарионов на примере изоскалярного дибариона $D_{03}(2380)$. Для него характерна высокая плотность материи (при радиусе $r(D_{03}) \approx 0.7$ –0.9 Фм он имеет плотность р ≈ 6 –8 ρ_0 , где ρ_0 — нормальная плотность ядерного вещества) и

одновременно большая энергия возбуждения ($E^* \approx 500 \text{ МэВ}$ над NN-порогом, не считая внутреннего возбуждения $2\hbar\omega \approx 600 \text{ МэВ}$, характерного для всех дибарионов, включая дейтронный $0(1^+)$ -дибарион). Поэтому внутри этого дибариона должно происходить частичное ВКС. Если это так, то σ -мезон, испускаемый промежуточным дибарионом D_{03} в процессе $pn \to d + (\pi\pi)_0$, будет иметь меньшую массу и ширину в сравнении со свободным σ -мезоном, рождающимся в $\pi\pi$ -рассеянии. Именно это и показывает эксперимент в области ABC-пика.

Согласно дибарионной модели ядерных сил, явление ВКС играет ключевую роль в *NN*-взаимодействии на коротких расстояниях. Поэтому АВС-эффект можно рассматривать как первое экспериментальное подтверждение этого предсказания. Это наблюдение может иметь далеко идущие последствия для всей ядерной физики.

11.6. ОБОБЩЕНИЕ НА СЛУЧАЙ РЕАКЦИИ $pd \rightarrow {}^{3}\text{He} + (\pi\pi)_{0}$

Один из возможных механизмов реакции $pd \to {}^{3}\text{He} + (\pi\pi)_{0}$ — тот же, что и в базовой реакции $pn \to d + \pi^{0}\pi^{0}$ (см. Рис. 11.17). Экспериментальное полное сечение реакции $pd \to {}^{3}\text{He} + \pi^{0}\pi^{0}$ имеет максимум при энергии (\sqrt{s}) $_{pd} = 3.35$ ГэВ, что соответствует энергии падающих протонов $T_{p} = 0.88$ ГэВ. Тогда полная энергия в pn-паре для механизма на Рис. 11.17 получается равной (\sqrt{s}) $_{pn} \approx 2.28$ ГэВ. При этом энергия возбуждения pn-пары равна $E_{pn}^{*} \approx 400$ МэВ, тогда как для рождения D_{03} -дибариона необходима энергия 500±40 МэВ.

Это означает, что вероятность рождения D_{03} -дибариона в этом процессе сильно подавлена. Однако, возможен альтернативный механизм, показанный на Рис. 11.18, — возбуждение D_{03} -дибариона из дейтрона как целого, т.е. из его компактной дибарионной компоненты, посредством, например, σ -обмена.

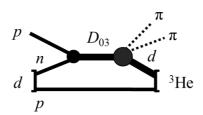


Рис. 11.17. Диаграмма, описывающая рождение промежуточного D_{03} -дибариона в процессе $pd \rightarrow {}^{3}\text{He} + (\pi\pi)_{0}$.

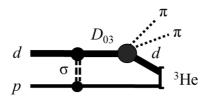


Рис. 11.18. Диаграмма, описывающая альтернативный механизм рождения D_{03} -дибариона в процессе $pd \to {}^3{\rm He} + (\pi\pi)_0$ в результате σ -обмена между дейтроном (точнее, его дибарионной компонентой) и налетающим протоном.

При такой кинематике энергия возбуждения в с.ц.и. pd-системы при $(\sqrt{s})_{pd}=3.35$ ГэВ равна $E_{pd}^*=530$ МэВ, что находится вблизи порога рождения резонанса D_{03} . Соответственно, механизм на Рис. 11.18 должен быть более вероятным. Однако, поскольку примесь дибарионной компоненты в дейтроне весьма мала, выяснение относительной роли указанных механизмов в

рассматриваемой реакции требует более детального исследования. Вероятнее всего, полное сечение реакции будет определяться интерференцией обоих резонансных механизмов, а также некоторым вкладом фоновых процессов.

Рассмотрим теперь механизм, изображенный на Рис. 11.18, с несколько другой точки зрения — как частный случай возбуждения изоскалярного дибариона в дейтроне налетающим адроном. При этом образование ядра ³Не в конечном состоянии является только одним из возможных каналов такого процесса. Другие возможные каналы изображены на Рис. 11.19.

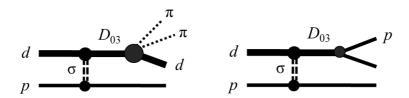


Рис. 11.19. Различные моды распада D_{03} -дибариона, возбуждаемого в pd-соударении.

При этом основным механизмом всех таких реакций будет неупругое возбуждение «дейтронного» изоскалярного дибариона D_{01} в его возбужденное состояние D_{03} , т.е. чисто дибарионый переход. Хорошим независимым подтверждением этого механизма является результат недавней работы [9], где авторы смогли ясно увидеть D_{03} -дибарион в упругом рассеянии поляризованных нейтронов на протонах (см. Рис. 11.20).

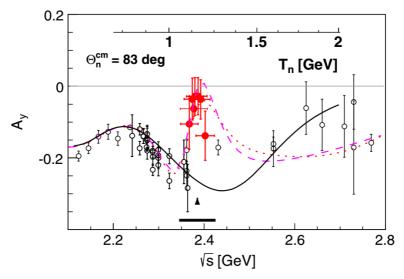


Рис. 11.20. Векторная анализирующая способность в упругом $\vec{n}p$ -рассеянии на угол 83 град. в зависимости от полной энергии. Заполненные кружки — новые экспериментальные данные (WASA@COSY), пустые кружки — старые данные. Сплошная и штриховая (точечная) кривые отвечают результатам старого (SP07) и нового взвешенного (невзвешенного) фазового анализа SAID [9]. Вертикальная стрелка и горизонтальная черта показывают массу и ширину дибарионного $0(3^+)$ -резонанса.

Авторы работы [9] сделали фазовый анализ полученных ими экспериментальных данных по упругому $\vec{n}p$ -рассеянию и нашли, что D_{03} -дибарион включает не одну, а две сильно связанных парциальных волны в NN-системе: 3D_3 и 3G_3 , т.е. D-волна со спином 1, параллельным орбитальному угловому моменту, связана с G-волной со спином 1, антипараллельным орбитальному моменту. Такое состояние является полным аналогом дейтронного дибариона, в котором два связанных канала со спином 1 и угловыми моментами L=0 и 2 смешиваются в одно состояние с полным моментом J=1. Таким образом, для возбуждения

 $0(3^+)$ -дибариона из состояния $0(1^+)$ в дейтроне достаточно придать дейтрону дополнительный вращательный момент с $\Delta L=2$. Именно такое вращательное возбуждение дейтрона, точнее говоря, его внутренней дибарионной компоненты, легко реализуется при рассеянии протона или нейтрона с энергией $1-1.5~\Gamma$ эВ на дейтронной мишени.

11.7. ПЕРЕХОДЫ МЕЖДУ РАЗЛИЧНЫМИ ДИБАРИОННЫМИ СОСТОЯНИЯМИ

Новые данные по рождению дибарионов в реакциях с быстрыми нуклонами можно рассматривать, как было указано выше, как обычные квантовые переходы между различными дибарионными состояниями, в полной аналогии, например, с возбуждением атома водорода.

Рассмотрим ниже дополнительные подтверждения этой водородной аналогии. В самом деле, для дибарионных переходов не должно быть принципиальных различий между разными способами возбуждения, так же, как одни и те же переходы в атоме водорода могут происходить под действием быстрых электронов, быстрых ионов или γ -квантов. Различия будут только в величине сечений и форме резонансных пиков, но положение самих пиков будет одинаковым (в энергетической шкале возбуждений атома водорода). Ниже мы приведем результаты двух различных экспериментов, в которых дибарионы возбуждаются из дейтрона γ -квантом и поглощением виртуального пиона.

В первой серии экспериментов, выполненных еще в середине 1970-х годов японской группой ученых в Токио [10], измерялась спиновая поляризация протонов, вылетающих из реакции

$$\gamma + d \rightarrow \vec{p} + n$$

при энергии γ -квантов в интервале от 300 до 700 МэВ. Авторы нашли, что модель прямого расщепления дейтрона γ -квантами совершенно не подходит для описания экспериментально наблюдаемой векторной поляризации (см. Рис. 11.21).

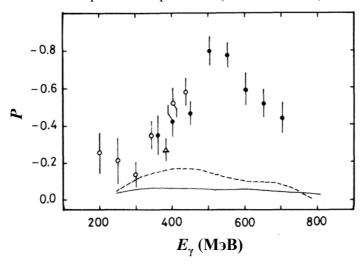


Рис. 11.21. Поляризация протонов, вылетающих под углом 90° в с.ц.и. в реакции $\gamma + d \rightarrow \vec{p} + n$, в зависимости от энергии фотонов. Кривые — расчеты без учета дибарионных резонансов [10].

Для объяснения сильного расхождения теоретических и экспериментальных результатов авторы этой работы рассмотрели обобщенную модель, в которой к традиционному прямому механизму они феноменологическим образом добавили резонансное возбуждение дибариона в конечном состоянии. При этом параметры дибариона подгонялись под экспериментальные

данные. В результате они получили квантовые числа дибариона $0(3^+)$, а также массу 2380 МэВ, что полностью совпало с результатами, полученными в недавних экспериментах коллаборации WASA@COSY [4]. Такое хорошее согласие результатов для двух различных экспериментов с совершенно разными способами возбуждения этого дибариона и различными конечными состояниями однозначно указывает на то, что в обоих экспериментах был найден один и тот же дибарион.

Второй эксперимент, который пока не получил количественной интерпретации, — это фрагментация быстрых дейтронов на различных мишенях, исследованная Аблеевым с сотр. в ОИЯИ [11] (см. Рис. 11.22).

В этих экспериментах пучок быстрых дейтронов с энергией в несколько ГэВ падал на различные ядерные мишени и фрагментировался. Регистрировались быстрые протоныспектаторы, и изучалось их импульсное распределение. Можно было бы ожидать, что импульсное распределение нуклоновспектаторов будет повторять их распределение в падающем дейтроне (показано штриховой линией на Рис. 11.22). Однако во всех измеренных распределениях был ясно виден «наплыв», отвечающий импульсам относительного движения нуклонов в дейтроне в интервале $0.2-0.6 \, \Gamma_{9} B/c$. Но таких больших импульсов в дейтроне нет, поэтому наблюдаемый в распределениях высокоимпульсный «наплыв» не может быть обусловлен нуклонами в самом дейтроне.

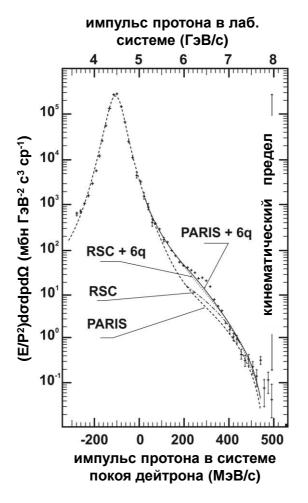


Рис. 11.22. Фрагментация быстрых дейтронов (с импульсом $p_d = 8.9~\Gamma \mathfrak{g} B/c$) на углеродной мишени. Штриховая и штрихпунктирная кривые — расчеты со стандартной дейтронной функцией в модели Парижского и RSC *NN*-потенциалов. Сплошная и точечная кривые — расчеты с учетом 6q-компоненты в дейтроне.

Кобушкин с сотр. объяснили этот «наплыв» примесью шестикварковой компоненты (s^6) в волновой функции дейтрона.

Однако оказалось, что для объяснения эксперимента вес такой компоненты должен быть слишком большим, тогда как хорошо известно, что вероятность ее распада в *NN*-канал очень мала. С общефизической точки зрения, прямой распад в *NN*-канал такого компактного шестикваркового мешка без его возбуждения кажется маловероятным.

Более вероятным механизмом такой фрагментации представляется возбуждение дибариона D_{01} (присутствующего в волновой функции падающего высокоэнергетического дейтрона) в изовекторное состояние D_{12} (2150), которое хорошо и давно известно именно в pp-рассеянии. Этот дибарион легко распадается в конечное pp- или pn-состояние (с I=1).

Наблюдаемые импульсные распределения, показанные на Рис. 11.22, качественно объясняются следующим механизмом. Налетающий изоскалярный дейтрон захватывает виртуальный пион из пионного облака ядра-мишени и переходит в изовекторное состояние D_{12} , нуклоны из распада которого в NN-канал и регистрируются как спектаторы в дубненских экспериментах. Нужно подчеркнуть, что приведенная качественная интерпретация этих экспериментов еще не проверена в точных расчетах и поэтому является пока рабочей гипотезой.

Экспериментальное изучение описанных выше переходов между разными дибарионными состояниями дает основу для развития полной спектроскопии дибарионов и создания микроскопических кварковых моделей для описания дибарионных состояний. Хотя в этой области еще много белых пятен и нерешенных вопросов, некоторые контуры будущей динамической теории дибарионных резонансов можно очертить уже сегодня на

основе имеющихся данных. Для этого мы сначала обсудим современный экспериментальный статус дибарионных резонансов.

11.8. СОВРЕМЕННЫЙ ЭКСПЕРИМЕНТАЛЬНЫЙ СТАТУС ДИБАРИОННЫХ РЕЗОНАНСОВ

В мезонной теории ядерных сил Юкавы было сначала предположено существование особых частиц — мезонов, обмен которыми приводит к наблюдаемым эффектам, например, к сильной связи нуклонов в ядрах, а спустя годы эти частицы были открыты экспериментально. Точно так же в дибарионной концепции ядерных сил сначала было предположено существование одетых мезонными полями дибарионов, вызывающих сильное притяжение нуклонов на средних расстояниях, и только спустя годы существование дибарионных резонансов было надежно установлено в экспериментах (хотя некоторые экспериментальные указания на их существование были известны задолго до этого).

Первые экспериментальные указания на возможное существование дибарионных резонансов появились в середине 1950-х годов в экспериментах дубненской лаборатории М.Г. Мещерякова [12] еще до официального открытия Объединенного Института Ядерных Исследований (ОИЯИ) в 1956 году в г. Дубне. Позднее в ОИЯИ были получены и другие многочисленные экспериментальные указания на существование дибарионных резонансов, многие из которых затем не получили подтверждения в работах других экспериментальных групп.

Однако относительно надежные исходные данные в этой области появились, когда на мезонных фабриках были получены пучки поляризованных протонов с энергиями 400–800 МэВ, ко-

торыми можно было облучать спин-поляризованную водородную мишень. В экспериментах по рассеянию поляризованных протонов на поляризованной водородной мишени изучалось поведение комбинаций сечений вида

$$\sigma_{l} = \frac{\frac{d\sigma}{d\Omega}(\uparrow\uparrow) - \frac{d\sigma}{d\Omega}(\uparrow\downarrow)}{\frac{d\sigma}{d\Omega}(\uparrow\uparrow) + \frac{d\sigma}{d\Omega}(\uparrow\downarrow)},$$
(13)

где стрелки указывают на поляризацию падающих частиц и ядер мишени для продольной поляризации, или аналогичных комбинаций для поперечной поляризации. Оказалось, что такие комбинации сечений гораздо более чувствительны к небольшим вариациям амплитуд, свойственных проявлению дибарионных резонансов, чем сами дифференциальные сечения. Дело в том, что из-за относительно слабой связи с NN-каналом дибарионные резонансы редко проявляются в сечениях упругого NN-рассеяния в форме характерных пиков, а гораздо чаще в характерной форме неупругого сечения, причем лишь в отдельных парциальных волнах. Основные каналы проявления дибарионных резонансов — это каналы одно- и двухпионного рождения: $NN \to NN\pi$ и $NN \to NN\pi\pi$.

При выполнении парциально-волнового анализа для комбинаций сечений типа (13) или для дифференциальных сечений однопионного рождения $pp \leftrightarrow d\pi^+$, можно из поведения парциальных амплитуд с энергией извлечь сведения о возможных дибарионных резонансах. В 80-е годы прошлого века был накоплен достаточный массив данных для построения энергетического поведения парциальных амплитуд процессов $pp \leftrightarrow pp$, $pp \leftrightarrow \pi^+ d$ и $\pi^+ d \leftrightarrow \pi^+ d$.

На Рис. 11.23 показаны диаграммы Аргана для парциальных амплитуд процесса $\pi^+d \to pp$, полученных в результате парциально-волнового анализа SAID [13]. Диаграмма Аргана — это изображение энергетической зависимости парциальной амплитуды процесса в комплексной плоскости (Re A, Im A). Петли, описываемые парциальными амплитудами на диаграмме Аргана, — так называемые петли Аргана — характерны, как легко показать, для резонансного поведения амплитуд типа Брейта—Вигнера.

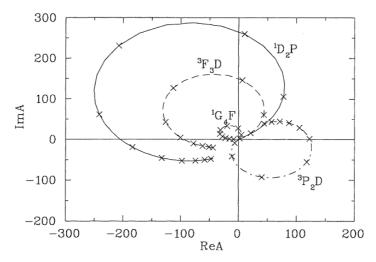


Рис. 11.23. Энергетическое поведение доминирующих парциальных амплитуд процесса $\pi^+ d \to pp$ на диаграмме Аргана.

В результате такого анализа в 1980–90-е годы были обнаружены дибарионные (pp-) изовекторные резонансы в парциальных волнах 1D_2 , 3F_3 , 1G_4 , 3P_2 (см. Рис. 11.23), а также указания на резонансы в парциальных волнах 3H_5 и 1I_6 . Тогда же было замечено, что положения этих резонансов оказываются весьма близкими к $N\Delta$ -порогу в соответствующей парциальной волне,

который определяется с учетом центробежного барьера в $N\Delta$ системе. Например, дибарион ${}^{1}D_{2}$ в pp-системе оказался близко расположенным к $N\Delta$ -порогу в относительной S-волне. Тогда возникло предположение, что наблюдаемые петли Аргана для парциальных амплитуд могут быть связаны на самом деле с близкими $N\Delta$ -порогами, а не с реальными дибарионными резонансами. Последующие работы Симонова с соавторами [14] подтвердили, что $N\Delta$ -порог (открытие $N\Delta$ -канала) может привести к появлению петель на диаграмме Аргана. Потребовались дальнейшие исследования, чтобы найти критерии, которые позволяют отличить эффект порога от реальных дибарионных резонансов, и споры о природе найденного резонансного поведения парциальных амплитуд pp- и π^+d -рассеяния идут до сих пор. Однако на самом деле, наличие энергетических уровней вблизи неупругих порогов характерно как для адронов, так и для большинства ядер, поэтому нет ничего удивительного в том, что вблизи $N\Delta$ -порогов в разных парциальных волнах появляются связанные состояния (или резонансы), т.е. дибарионы.

Наконец, несколько лет назад были получены экспериментальные данные коллаборации WASA@COSY [4] в эксклюзивной постановке, в 4π -геометрии и с очень высокой статистикой, которые однозначно указывают на существование дибарионных резонансов (см. раздел 11.2). Недостаточная статистика и неполная кинематика старых инклюзивных экспериментов, выполненных с использованием пузырьковой камеры, не позволяла обнаружить резонансный пик в pn-соударении (см. ссылки в работе [4]). В новом эксперименте WASA@COSY изучалась реакция (3), и регистрировались три конечные частицы: протонспектатор и два вылетающих пиона. Тогда импульс конечного

дейтрона можно найти на основе кинематического анализа и тем самым восстановить полную кинематику эксперимента в 4π -геометрии. Также был использован тот факт, что импульсное распределение нуклонов в дейтроне-мишени хорошо известно (при относительно небольших импульсах), так что измерение импульса протона-спектатора, вылетающего из дейтрона, дает однозначную информацию об импульсе нейтрона, на который налетает внешний протон. Поэтому, меняя измеряемую энергию протона-спектатора, можно легко менять эффективную относительную энергию pn-соударения.

Таким образом, впервые был обнаружен четкий сигнал изоскалярного $0(3^+)$ -дибариона в базовой реакции 2π -рождения $pn \to d + \pi^0 \pi^0$ [4] (см. Рис. 11.4), а затем также в реакциях $pd \to {}^3\mathrm{He} + \pi^0 \pi^0$, $dd \to {}^4\mathrm{He} + \pi^0 \pi^0$ [5], $pn \to d + \pi^+ \pi^-$ [8] и др.

Наконец, наиболее убедительным подтверждением существования $0(3^+)$ -дибариона стало его обнаружение в упругом np-рассеянии в связанных каналах 3D_3 – 3G_3 [9]. Коллаборация WASA@COSY в Юлихе впервые выполнила измерения анализирующей способности A_y в квази-свободном рассеянии поляризованных нейтронов на протонах (в реакции $dp \rightarrow np + p_{\text{spectator}}$) при энергиях вблизи порога рождения $0(3^+)$ -резонанса (раньше данные в этой области энергий отсутствовали). Затем ученые из Вашингтонского университета (группа SAID) провели фазовый анализ с учетом этих новых данных и нашли резонансный полюс при энергии $\sqrt{s} = (2380\pm10) - i(40\pm5)\,\text{МэВ}$. На Рис. 11.24 показаны диаграммы Аргана для парциальных амплитуд упругого np-рассеяния в каналах 3D_3 и 3G_3 , полученной в новом фазовом анализе SAID [9]. На рисунке явно видны характерные

резонансные петли, и в этом случае, в отличие от ситуации с $N\Delta$ -порогами, описанной выше, $\Delta\Delta$ -порог находится достаточно далеко, а ширина резонанса достаточно узка, чтобы отличить эффект порога от истинного резонанса.

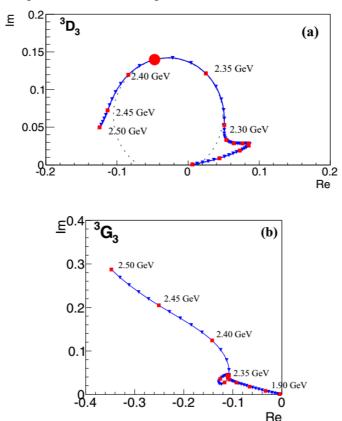


Рис. 11.24. Диаграммы Аргана для парциальных 3D_3 - и 3G_3 - амплитуд упругого np-рассеяния, полученных в новом фазовом анализе SAID [9].

Важно, что найденный в этих новых экспериментах $0(3^+)$ -дибарион с массой 2.38 ГэВ совпал по квантовым числам и практически совпал по массе с D_{03} -дибарионом, предсказанным

еще в 1964 году Дайсоном и Ксуонгом [15], всего через несколько месяцев после создания Гелл-Манном и Цвейгом кварковой модели элементарных частиц. В работе [15] на основе симметрии SU(6) было предсказано 6 различных дибарионных резонансов: 3S_1 (в дейтронном NN-канале), 1S_0 (в канале синглетного дейтрона), 3D_3 ($J^PI = 3^+0$), 1D_2 ($J^PI = 2^+1$), а также два дибариона с высокими изоспинами ($J^PI = 0^+3$ и $J^PI = 1^+2$). Интересно, что четыре из этих шести дибарионов (с изоспинами I = 0 и 1) связаны с NN-каналом и должны проявляться в NN-рассеянии, а два других дибариона с высокими изоспинами связаны с $N\Delta$ - и $\Delta\Delta$ -каналами.

В Таблице 11.1 приведены параметры основных известных на сегодня дибарионных резонансов. Ссылки на соответствующие экспериментальные работы можно найти в работе [1]. Как следует из таблицы, к настоящему времени открыто, с большей или меньшей степенью надежности, уже довольно много дибарионных резонансов. Но еще целый ряд предсказанных ранее дибарионов только ожидает своего открытия. Например, два триплетных P-волновых дибариона 3P_0 и 3P_2 с массой \sim 2.20 ГэВ были открыты совсем недавно группой Комарова на установке ANKE/COSY в Юлихе [16]. Есть не до конца подтвержденные данные о P-волновых дибарионах с массами $M \sim 2.02-2.11$ ГэВ.

Таблица 11.1. Параметры известных на сегодня дибарионных резонансов D_{IJ} (I — изоспин, J — полный момент дибариона). Массы и ширины резонансов даны в ГэВ. В последнем столбце приведены первые теоретические предсказания масс дибарионов [15]. В двух последних строках показаны дибарионы с высокими изоспинами, также предсказанные в работе [15], но пока не открытые экспериментально. Степень надежности обнаруженных сигналов изовекторных (I = 1) дибарионов убывает с ростом полного момента J.

$D_{IJ}(M)$	$I(J^P)$	$^{2S+1}L_J$	$M_D^{\rm exp}$	$\Gamma_D^{ m exp}$	$M_D^{SU(6)}$
$D_{01}(1.88)$	$0(1^{+})$	${}^{3}S_{1}$	1.88	0	1.88
$D_{10}(1.88)$	$1(0^{+})$	${}^{1}S_{0}$	1.88	≈0	1.88
$D_{12}(2.15)$	1(2+)	$^{1}D_{2}$	2.14-2.17	0.08-0.14	2.16
$D_{10}^{-}(2.20)$	1(0-)	$^{3}P_{0}$	2.204±0.004	0.095 ± 0.009	
$D_{12}^{-}(2.20)$	1(2-)	$^{3}P_{2}$	2.207±0.012	0.17±0.032	
$D_{13}^{-}(2.22)$	1(3-)	$^{3}F_{3}$	2.20-2.25	0.1-0.2	
$D_{03}(2.38)$	$0(3^{+})$	$^{3}D_{3}$	2.38±0.01	0.08 ± 0.01	2.35
$D_{14}(2.43)$	1(4+)	$^{1}G_{4}$	2.43-2.50	≈0.15	_
$D_{15}^{-}(2.70)$	1(5-)	$^{3}H_{5}$	2.70±0.1	≈0.15	_
$D_{16}(2.90)$	1(6+)	$^{1}I_{6}$	2.90±0.1	≈0.15	_
D_{21}	2(1+)		?	?	2.16
D_{30}	3(0+)		?	?	2.35

Весь известный на сегодня массив экспериментальных и теоретических данных (см. также старые обзоры по дибарионам, например, [17]) позволяет сформулировать новую проблему в КХД о дибарионной спектроскопии, т.е. об изучении спектров дибарионных состояний и переходов между ними, наряду со спектроскопией барионов, мезонов или гиперонов. Решающим моментом в развитии такой новой спектроскопии является, конечно, создание подходящей теоретической модели для описания дибарионов разного типа. Хотя к настоящему времени было предложено несколько таких моделей, как полностью микро-

скопических, так и феноменологических, мы рассмотрим здесь в основном двухкластерную модель, предложенную в Наймегене и впоследствии обобщенную в ИТЭФ (мы уже частично рассматривали эту модель в разделе 7.3).

11.9. КВАРКОВАЯ СТРУКТУРА И СПЕКТРОСКОПИЯ ДИБАРИОНОВ

Краткое описание модели Наймеген-ИТЭФ

В этой модели шестикварковые дибарионы рассматриваются как орбитальные возбуждения двухкластерной системы q^4 - q^2 (см. Рис. 11.25), которым соответствует траектория Редже на графике (J,M^2) . Однако, для низших слабовозбужденных состояний ($\Delta M << M_0$) применима нерелятивистская модель жесткого ротатора, которой отвечает прямая линия на графике (L(L+1),M):

$$M(L) = M_0 + \frac{\hbar^2}{2Z}L(L+1),$$
 (14)

где \mathcal{I} — момент инерции системы. При этом для тетракварка q^4 принимаются значения квантовых чисел (S=1,T=0). Другая возможность для тетракварка — (S=1,T=1), но такая конфигурация является неустойчивой и легко распадается на два дикварка.

Для дикварка q^2 допустимы следующие комбинации: скалярный дикварк (S'=T'=0) для дибарионов с I = 0 и аксиальный дикварк (S'=T'=1) для дибарионов с I = 1. В этой схеме каждый изовекторный (I = 1) дибарион должен иметь партнера на изоскалярной (I = 0) траектории.

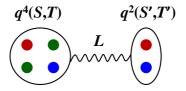


Рис. 11.25. Схематическое изображение дибариона в q^4 - q^2 модели. Два цветных кварковых кластера связаны цветной КХД струной, которая может колебаться и вращаться.

Как следует из дибарионных траекторий, показанных на Рис. 11.26, модель q^4 - q^2 хорошо объясняет имеющиеся данные по спектрам дибарионов.

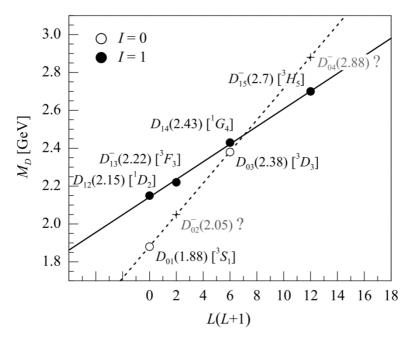


Рис. 11.26. Траектории изовекторных и изоскалярных дибарионных резонансов в плоскости (L(L+1), M_D). Гипотетические пока не обнаруженные изоскалярные резонансы показаны крестиками.

Существуют ли еще состояния с I=0? Есть ли другие дибарионные траектории? На эти и многие другие вопросы еще предстоит найти ответы.

11.10. ВЫВОДЫ

В настоящей лекции мы проанализировали вклад промежуточных дибарионных резонансов в процессы двухпионного рождения в *NN*-соударениях. В отличие от упругого рассеяния, процессы рождения мезонов всегда сопровождаются большой передачей импульса, т.е. затрагивают область малых межнуклонных расстояний. Поэтому очень важную роль в них играют короткодействующие механизмы *NN*-взаимодействия, определяемые кварковой структурой нуклонов. Вполне естественно, что в области перекрывания двух нуклонов резко повышается вероятность образования компактных шестикварковых объектов, т.е. дибарионных резонансов.

Однако следует отметить, что дибарионные вклады могут быть весьма точно сымитированы стандартными мезонобменными механизмами, чем и объясняется успех мезонобменных моделей в описании многих адронных и электромагнитных процессов. Тем не менее, описание короткодействующих процессов в рамках традиционных моделей не является вполне последовательным и содержит ряд противоречий: подгоночные параметры для одних и тех же механизмов различаются для разных процессов и часто противоречат оценкам, полученным из кварковых моделей. С аналогичной ситуацией мы сталкиваемся и в киральной теории возмущений (уРТ), где описание (т.е. значения параметров) короткодействующей части NN-

взаимодействия меняется при переходе к следующим порядкам кирального разложения.

С другой стороны, при описании одно- и двухпионного рождения с помощью дибарионных степеней свободы параметры дибарионов, используемые в расчетах как упругого, так и неупругого *NN*-рассеяния, вполне хорошо согласуются между собой. При этом КХД-механизмы рождения дибарионов на малых межнуклонных расстояниях вовсе не противоречат традиционной мезон-обменной картине на больших и средних расстояниях, а скорее дополняют ее.

Таким образом, было показано, что учет рождения промежуточных дибарионных резонансов позволяет согласованно описать широкий круг процессов, сопровождающихся большими передачами импульса и не имеющих последовательного объяснения в рамках традиционных мезон-обменных моделей.

Можно предположить, что дибарионные резонансы — это не только «мультикварковая экзотика», но и проявление фундаментальных свойств непертурбативной КХД, которые определяют взаимодействие нуклонов на малых расстояниях и короткодействующие корреляции в ядрах. Количественная проверка этой гипотезы требует дальнейших теоретических и экспериментальных исследований.

Литература

- 1. M.N. Platonova, V.I. Kukulin, Nucl. Phys. A946, 117 (2016).
- 2. L. Alvarez-Ruso, E. Oset, E. Hernandez, Nucl. Phys. A633, 519 (1998).
- 3. A. Abashian, N.E. Booth, K.M. Crowe, Phys. Rev. Lett. **5**, 258 (1960); *ibid.* **7**, 35 (1961).
- 4. P. Adlarson et al., Phys. Rev. Lett. 106, 242302 (2011).
- 5. P. Adlarson et al., Phys. Rev. C 91, 015201 (2015); ibid. 86, 032201 (2012).

- 6. M. Bashkanov, H. Clement, T. Skorodko, Nucl. Phys. A958, 129 (2017).
- 7. M.N. Platonova, V.I. Kukulin, Phys. Rev. C 87, 025202 (2013).
- 8. P. Adlarson et al., Phys. Lett. **B721**, 229 (2013).
- 9. P. Adlarson et al., Phys. Rev. Lett. **112**, 202301 (2014); Phys. Rev. C **90**, 035204 (2014).
- 10. T. Kamae et al., Phys. Rev. Lett. **38**, 468 (1977); T. Kamae and T. Fujita, Phys. Rev. Lett. **38**, 471 (1977).
- 11. V.G. Ableev et al., Nucl. Phys. A393, 491 (1983).
- 12. М.Г. Мещеряков, Б.С. Неганов, Докл. АН СССР 100, 677 (1955).
- 13. R.A. Arndt, I.I. Strakovsky, R.L. Workman, D.V. Bugg, Phys. Rev. C **48**, 1926 (1993).
- 14. Yu.A. Simonov, M. van der Velde, J. Phys. G 5, 493 (1979).
- 15. F.J. Dyson, N.-H. Xuong, Phys. Rev. Lett. 13, 815 (1964).
- 16. V.I. Komarov et al., Phys. Rev. C 93, 065206 (2016).
- 17. М.М. Макаров, *Дибарионные резонансы*, УФН **136**, 185 (1982).