Лекция 10:

Открытие и исследование изовекторных орбитальных (ножничных) М1-возбуждений.

Противофазное и синфазное орбитальные ядерные М1-возбуждения в предельной коллективной картине схематически изображены на рисунке:

Коллективная картина синфазных (изоскалярных) и противофазных (изовекторных) орбитальных М1-возбуждений Предпосылки для существования в ядрах ножничных возбуждений появились в связи с работами теоретиков Hilton (1976), Suzuki и Rowe (1977), Lo Iudice и Palumbo (1978, 1979). Двое последних выполнили первый расчёт возбуждений этого типа в рамках геометрической двухроторной модели (TRM).

Ножничное возбуждение было открыто в 1983 г. в прецизионных экспериментах по неупругому рассеянию электронов тяжёлыми деформированными ядрами на линейном ускорителе электронов непрерывного действия (А. Richter с сотрудниками, Дармштадт, Германия). На рисунке приведены данные для ядра $^{156}_{64}$ Gd. На средней части рисунка показан спектр неупругого рассеяния электронов, содержащий интенсивный пик с энергией 3,07 МэВ, отвечающий возбуждению состояния 1⁺. Кроме того, наблюдается ещё пять более слабых пиков, также отвечающих возбуждению 1⁺-состояний.

Сравнение спектров неупругого рассеяния фотонов, электронов и протонов ядром ¹⁵⁶₆₄Gd в области M1-возбуждения нового типа Эти пики со значительно лучшим разрешением наблюдаются в ЯРФ-эксперименте с использованием тормозного гамма-излучения с верхней границей 3,5 МэВ и Ge(Li)-детектора (верхний рисунок). Самый интенсивный пик в ЯРФ-спектре выделен красным цветом,

менее интенсивные – синим.

Все эти пики, отвечающие М1-возбуждениям, не видны в спектре неупругого рассеяния протонов (нижний рисунок).

Особенно показательно отсутствие в этом спектре интенсивного пика с энергией 3,07 МэВ. Поскольку при неупругом рассеянии протонов промежуточных энергий под малыми углами возбуждение ядра преимущественно вызывается спиновой частью нуклон-нуклонного взаимодействия, а при неупругом электронном и (γ, γ') -рассеянии участвует как спиновый, так и орбитальный магнетизм, то обсуждаемые 1⁺-состояния ядра $^{156}_{64}$ Gd должны быть отнесены к орбитальным М1-возбуждениям. Приведённая вероятность М1-возбуждения сильнейшего состояния 3,07 МэВ ≈ 1,3 μ_N^2 . С учётом пяти более слабых М1-переходов $\sum B(M1) \approx 2,4 \mu_N^2$.

Расширение области энергий возбуждения в ¹⁵⁶Gd(*e*, *e'*)-эксперименте до 9,5 МэВ (верхний рисунок) не обнаруживает скольконибудь заметных состояний в области выше

4 МэВ, сравнимых с теми, которые наблюдаются при меньших энергиях.
Аналогичная ситуация имеет место и для ядра ¹⁶⁸Er (нижний рисунок). В то же время расчёты в рамках RPA показывают концентрацию в области 5-10 МэВ интенсивных спин-флиповых переходов. Это подтверждается и чувствительным к спин-флиповым переходам

(*p*, *p*')-рассеянием под малыми углами, в котором для всех деформированных тяжёлых ядер в области 4-10 МэВ наблюдается плотный

набор интенсивных 1⁺-состояний (следующий слайд). Спектр М1-возбуждений в (*p*, *p*')-рассеянии на этом слайде изображён гистограммой (следствие менее высокого энергетического разрешения экспериментов этого типа по сравнению с (*γ*, *γ*') и (*e*, *e*')).

Таким образом, орбитальных М1-переходов в районе 4-10 МэВ практически нет. Область М1-переходов с энергиями 4-10 МэВ у тяжелых деформированных ядер формируется спин-флиповыми переходами в отличие от области 2-4 МэВ, где доминируют орбитальные (ножничные) возбуждения.

Сопоставление электромагнитного неупругого рассеяния $((\gamma, \gamma') u (e, e'))$ с (p, p')-рассеянием является высокоселективным методом идентификации природы М1-перехода, т. е. принадлежности его к орбитальному или спиновому типу. Пример дан на следующем слайде.

Рассмотрим рисунок, на котором сравниваются спектры возбуждения дважды магического ядра ${}^{48}_{20}$ Са с заполненной нейтронной подоболочкой $1f_{7/2}$ в области энергий 8-12 МэВ, полученные в (e, e')- и (p, p')-рассеянии. В рассматриваемой области наблюдается только один сильный переход с энергией 10,22 МэВ. Он отвечает нейтронному спин-флиповому переходу $1f_{7/2} \rightarrow 1f_{5/2}$. Характерно, что в (e, e')-рассеянии отношение сигнал/фон для обсуждаемого пика около 5. В то же время аналогичное отношение в (p, p')-рассеянии около 25, что делает данную реакцию

идеальным инструментом исследования спин-флиповых возбуждений.

Сравнение спектров возбуждения ядра ⁴⁸20^{Ca} в области 8-12 МэВ, полученных в (e, e') и (p, p')-рассеянии

Любое реальное М1-состояние ядра, вообще говоря, является смесью орбитального и спинового возбуждений. Приведенная вероятность B(M1) ядерного М1-перехода формируется приведёнными вероятностями орбитального перехода B_l и спинового перехода B_s с помощью соотношения

$$B(M1) = \left(\sqrt{B_l} + \sqrt{B_s}\right)^2,$$

которое является следствием квадратичной зависимости *B*(M1) от матричного элемента M1-перехода и суммирования вкладов орбитального и спинового магнетизмов в полном операторе M1-перехода.

Для тяжёлых деформированных ядер совместный анализ данных (γ , γ')-, (e, e')- и (p, p')-экспериментов позволил установить, что для М1-переходов в области 2-4 МэВ отношение $B_l/B_s \approx 10$.

Опираясь на все вышеизложенные факты, структуру спектра М1-возбуждений тяжёлых деформированных ядер до ≈10 МэВ можно на примере ¹⁵⁴Sm изобразить рисунком

Эта пропорциональность (~ δ²) подтверждается модельно независимым правилом сумм для орбитальных М1-возбуждений (Lo Iudice, Richter, 1993):

$$\sum B(M1)_{scissors} \approx 0,016 \cdot E_{scissors} \cdot \frac{Z^2}{A^{1/3}} \delta^2 \mu_{N.}^2$$

Вместе с энергией ножничного возбуждения

$$E_{scissors} pprox 66 \cdot \delta \cdot A^{-1/3} M$$
 $_{3}$ B,

предсказываемой RPA-расчётами и хорошо воспроизводящей экспериментальные данные, оба этих соотношения позволяют быстро оценить основные характеристики ножничного возбуждения в широкой области массовых чисел *A* и параметров деформации *δ*.

Для области 140 < A < 200 характерные энергии и вероятности орбитальных и спин-флиповых М1-возбуждений следующие

$$E_{scissors} \approx 3$$
 МэВ,
 $E_{spin-flip} = 4 - 10$ МэВ.

$$\sum B(M1)_{scissors} = 0.5 - 3.5 \,\mu_N^2,$$

$$\sum B(M1)_{spin-flip} = 10 - 11 \,\mu_N^2.$$

Структура спектра низколежащих М1-возбуждений,

наблюдающаяся для тяжёлых деформированных ядер, таких как ¹⁵⁴Sm и ¹⁵⁶Gd,

воспроизводится и для ядер с другими массовыми числами.

Тенденция в изменении энергий орбитальных и спин-флиповых М1-возбуждений при переходе от более тяжёлых ядер к более лёгким демонстрируется рисунком:

Ножничные возбуждения ядер 1*f*2*p*-оболочки

Обратимся к чётно-чётным ядрам 1*f*2*p*-оболочки, таким как ${}_{22}^{46}$ Ti, ${}_{22}^{8}$ Ti, ${}_{24}^{50}$ Cr, ${}_{26}^{56}$ Fe, для которых $\delta \approx 0,2 - 0,3$. Используя соотношения $E_{scissors} \approx 66 \cdot \delta \cdot A^{-1/3}$ MэB, $\sum B(M1)_{scissors} \approx 0,016 \cdot E_{scissors} \cdot \frac{Z^2}{A^{1/3}} \delta^2 \mu_{N.}^2$

получаем для этих ядер:

$$E_{scissors}^{1f2p} = 3 - 6 \text{ M} \Rightarrow B,$$
 $\sum B(M1)_{scissors}^{1f2p} \approx 0.4 - 1.0 \ \mu_N^2.$

У перечисленных ядер в области ниже 6 МэВ действительно наблюдаются М1возбуждения. Для ядра ${}^{48}_{22}$ Ті в этой области в ЯРФ-спектре (НИИЯФ МГУ, 1995) выделяются три 1⁺-возбуждения: два довольно сильных с энергиями 3,739 и 5,640 МэВ и менее интенсивное с энергией 4,311 МэВ. Их суммарная приведенная вероятность $\sum B(M1) \approx 1,1 \, \mu_N^2$. Для ядра ${}^{56}_{26}$ Fe в ЯРФ-эксперименте, выполненном также в НИИЯФ МГУ, наблюдается сильное 1⁺-возбуждение с энергией 3,449 МэВ и $B(M1) = 0,65 \pm 0,08 \, \mu_N^2$. Соответствующие спектры ЯРФ-фотонов показаны на следующем слайде.

Данные ЯРФ-эксперимента НИИЯФ МГУ для ядра ⁵⁶Fe

<i>Е</i> , МэВ	J^{π}	Г ₀ ² /Г, эВ	Г ₀ , эВ	$B(M1), \mu_N^2$
3,449	1+	0,083±0,008	0,166	0,65±0,08
4,847	(1)	0,018±0,004	0,018	(0,041)
5,227	1	0,041±0,004	0,041	(0,074)
5,257	2	0,015±0,003	0,015	
5,404	(1)	0,018±0,030		
5,853	(1)	0,020±0,004		
6,078	(1)	0,027±0,006		
6,250	1	0,070±0,009		
	<i>E</i> , МэВ 3,449 4,847 5,227 5,257 5,404 5,853 6,078 6,250	E , M \ni B J^{π} 3,4491+4,847(1)5,22715,25725,404(1)5,853(1)6,078(1)6,2501	E , M \ni B J^{π} Γ_0^2/Γ , \ni B3,4491+0,083 \pm 0,0084,847(1)0,018 \pm 0,0045,22710,041 \pm 0,0045,25720,015 \pm 0,0035,404(1)0,018 \pm 0,0305,853(1)0,020 \pm 0,0046,078(1)0,027 \pm 0,0066,25010,070 \pm 0,009	E , M $ ideal$ J^{π} Γ_0^2/Γ , $ideal$ Γ_0 , $ideal$ 3,4491+0,083 \pm 0,0080,1664,847(1)0,018 \pm 0,0040,0185,22710,041 \pm 0,0040,0415,25720,015 \pm 0,0030,0155,404(1)0,018 \pm 0,0305,853(1)0,020 \pm 0,0046,078(1)0,070 \pm 0,009

 $^{56}_{26}$ Fe

В (*e*, *e*')-экспериментах у ядер $^{46}_{22}$ Ті и $^{50}_{24}$ Сг также в области 4-5 МэВ проявляются заметные 1⁺-состояния. Так для ядра $^{46}_{22}$ Ті в (*e*, *e*')-эксперименте (Дармштадт, 1990) выделяется 1⁺-состояние с энергией 4,32 МэВ и *B*(M1) $\approx 1 \mu_N^2$ (нижняя часть рисунка).

Это состояние проявляется и в спектре (p, p')-рассеяния

(верхняя часть рисунка), что указывает на присутствие в этом состоянии примеси спин-флипового возбуждения.

На рисунке сравниваются спектры (*p*, *p*')- и (*e*, *e*')-рассеяния для ядра ⁴⁸₂₂Ti. Два сильнейших 1⁺-состояния (3,74 и 5,64 МэВ) проявляются в обоих спектрах, что свидетельствует о смешивании в этих состояниях орбитального и спинового возбуждений.

Данные ЯРФ-эксперимента НИИЯФ МГУ для ядра ⁴⁸Ті

	<i>Е</i> , МэВ	J^{π}	Γ_0^2/Γ , эВ	Г ₀ , эВ	$B(M1)$, μ_N^2
	3,700	1 ⁽⁻⁾	0,015±0,003	0,041	(0,21)
→	3,739	1+	0,055±0,005	0,085	0,41±0,04
	4,311	1+	0,051±0,010	0,088	(0,2)
	5,526	1	0,040±0,010		(0,06)
→	5,640	1+	+ 0,180±0,020 0,46	0,46	0,52±0,06
	6,126	1, 2	0,153±0,010	0,153	(0,17)
	6,138	1	0,065±0,010		

Величины B(M1) (в единицах μ_N^2), полученные в разных опытах для наиболее сильных низколежащих M1-возбуждений ядра ⁴⁸Ti

Уровень (МэВ)	S-DALINAC (<i>e</i> , <i>e</i> ')	Dynamitron (γ, γ')	НИИЯФ МГУ (ү,ү')
3,739	0,50±0,08	0,45±0,06	0,41±0,04
5,640	0,50±0,08	0,59±0,20	0,52±0,006

Теоретические оценки показывают, что примесь спиновых возбуждений в M1-переходах средних и легких ядер высока. Типичные величины $B_l/B_s = 0,4 - 1,0$. Это существенно отличает низколежащие M1-переходы легких и средних ядер от аналогичных переходов тяжёлых деформированных ядер, где доминирует орбитальный магнетизм ($B_l/B_s \approx 10$). Отметим, что в ЯРФ-спектре ещё одного чётно-чётного ядра 1f2p-оболочки – 528^{58} Ni (см. следующий слайд) нет сколько-нибудь заметных магнитных дипольных возбуждений, по крайней мере до энергии 6 МэВ, что можно объяснить большей сферичностью этого магического по протонам ядра по сравнению

с ядрами ⁴⁶₂₂Ti, ⁴⁸₂₂Ti, ⁵⁰₂₄Cr, ⁵⁶₂₆Fe.

Изучение низколежащих М1-возбуждений открывает возможность обнаружить неаксиальные ядра (деформированные ядра, не обладающие аксиальной симметрией). В этом плане показателен пример изотопов титана – $\frac{46}{22}$ Ti и $\frac{48}{22}$ Ti. Напомним, что у $\frac{46}{22}$ Ti имеется одно сильное 1⁺-состояние с энергией 4,32 МэВ и $B(M1) \approx 1 \,\mu_N^2$. В то же время у изотопа $\frac{48}{22}$ Ti – два сильных 1⁺-состояния, причем для каждого из них $B(M1) \approx 0,5 \,\mu_N^2$. Таким образом, сила М1-возбуждения, сосредоточенная у ядра $\frac{46}{22}$ Ti в одном состоянии, делится у ядра $\frac{48}{22}$ Ti почти поровну между двумя состояниями. Наиболее естественное объяснение этого – неаксиальность $\frac{48}{22}$ Ti, что увеличивает число ножничных мод до трёх (появляется возможность ножничных колебаний вокруг трёх ядерных осей). Две из них, возможно и наблюдаются у $\frac{48}{22}$ Ti.

Заключение

Эксперименты по ядерной резонансной флуоресценции, вместе с (*e*, *e'*)- и (*p*, *p'*)рассеянием, позволили внести ясность в структуру низколежащих (до 10–12 МэВ) дипольных ядерных возбуждений, инициируемых фотонами (см. рисунок).

У легких и средних ядер они смешаны со спиновыми (спин-флиповыми) возбуждениями, главная часть которых сдвинута к более высоким энергиям, концентрируясь в области 5-10 МэВ. У тяжелых ядер ножничные возбуждения имеют незначительную примесь спиновых переходов. Спиновые переходы, как и орбитальные (ножничные), являются в основном изовекторными,

отвечающими противофазным движениям протонов и нейтронов.

При переходе к ещё более высоким энергиям (выше 10 МэВ) начинают доминировать электрические дипольные возбуждения изовекторного типа – гигантский дипольный резонанс.

Важная роль, принадлежащая ЯРФ-экспериментам в выяснении природы низколежащего спектра ядерных возбуждений, связана, прежде всего, с их высоким энергетическим разрешением. Кроме того ЯРФ-эксперименты способны дать полную информацию о возбуждаемом ядерном уровне – его спине и чётности, вероятности возбуждения и способах распада этого возбуждения.