Лекция 6:

Определение мультипольности гамма-переходов в ЯРФ-экспериментах.

ЯРФ-эксперименты позволяют установить мультипольность фотонов, участвующих в ядерных γ-переходах, и сделать заключение о спинах уровней, между которыми произошёл переход. Геометрия рассеяния поляризованных фотонов на неполяризованных ядрах мишени представлена на рисунке:

В случае поляризованных фотонов «угловая» вероятность $W(\theta, \varphi)$ их рассеяния на неполяризованных ядрах зависит от двух углов: θ — угла рассеяния (или полярного угла) и φ — азимутального угла (угла между плоскостями реакции и поляризации падающих фотонов). Для неполяризованных фотонов все углы φ равновероятны (т. е. имеет место азимутальная симметрия) и W перестает зависеть от φ :

$$W(\theta, \varphi) \to W(\theta)$$
.

Для определения мультипольности ядерного γ-перехода достаточно использование неполяризованного пучка тормозных фотонов. В этом случае для дифференциального сечения рассеяния фотонов на изолированном ядерном резонансе имеем формулу (см. Лекцию 2):

$$rac{d\sigma(\gamma,\gamma')}{d\Omega} = \int\limits_{ ext{pesohahcy}}^{ ext{no}} \sigma(\gamma,\gamma') dE = \int\limits_{ ext{pesohahcy}}^{ ext{no}} \sigma_i(E) \cdot \sigma(\theta) dE =$$
 $= (\pi \lambda)^2 rac{2J_r + 1}{2J_0 + 1} \cdot rac{\Gamma_0 \Gamma_i}{\Gamma} \cdot rac{W(\theta)}{4\pi}.$

В дальнейшем ограничимся «чистой» ЯРФ, т. е. когда $\gamma \equiv \gamma'$. В этом случае

$$\frac{d\sigma(\gamma,\gamma')}{d\Omega}\Big|_{\text{чистая ЯР}\Phi} = (\pi \chi)^2 \frac{2J_r + 1}{2J_0 + 1} \cdot \frac{\Gamma_0^2}{\Gamma} \cdot \frac{W(\theta)}{4\pi}.$$

Вид функции $W(\theta)$ в экспериментах с чётно-чётными ядрами (их спин-чётность в основном состоянии 0^+) однозначно определяет мультипольность рассеянного фотона, а значит и спин ядерного резонанса J_r).

Принцип определения мультипольности рассеянного γ -излучения иллюстрируется рисунком. Излучатель, в данном случае дипольный, имеет диаграмму направленности (угловую интенсивность излучения) $\sim Sin^2\theta$. Исследуя угловую интенсивность излучения с помощью приёмника и убеждаясь, что она $\sim Sin^2\theta = \frac{1}{2}(1-Cos2\theta)$, устанавливают, что это излучение имеет дипольный характер, т. е. мультипольность J=1.

Излучения других мультипольностей имеют другие (и характерные для каждой мультипольности) угловые интенсивности, которые исследуются аналогичным способом с помощью приёмника, что позволяет идентифицировать мультипольность излучения.

Колебание электрического \vec{d} дипольного момента частицы \vec{d} создающее E1-излучение

Аналогия с радиофизикой

С помощью приёмной антенны исследуется диаграмма излучения передающей радиоантенны и определяется характер (мультипольность) излучения

В ЯРФ

излучающая антенна — возбуждённое ядро, приёмная антенна — детектор γ-квантов (например, германиевый)

Угловое распределение интенсивности дипольного и квадрупольного излучений

Угловое распределение излучения $W(\theta)$ зависит от J и M (проекции J на выделенную ось пространства), т. е. $W(\theta) \equiv W_{JM}(\theta)$. Диаграммы дипольного и квадрупольного излучения для всех проекций M приведены на рисунке:

Угловые зависимости $W_{JM}(\theta)$ для дипольного и квадрупольного излучений имеют следующий аналитический вид

$$J = 1: W_{10} \sim \sin^2 \theta,$$

$$W_{1\pm 1} \sim (1 + \cos^2 \theta).$$

$$J = 2: W_{20} \sim \sin^2 \theta \cos^2 \theta,$$

$$W_{2\pm 1} \sim (1 - 3\cos^2 \theta + \cos^4 \theta),$$

$$W_{2+2} \sim (1 - \cos^4 \theta).$$

Итак, имеется пять угловых распределений W_{10} , W_{1+1} , W_{20} , W_{2+1} , W_{2+2} ,

Возникает вопрос о том, какие из этих угловых распределений нужно использовать для идентификации дипольного и квадрупольного излучений. Для этого нужно правильно выбрать направление движения фотона относительно атомного ядра, которое считается расположенным в начале координат.

Спин фотона $(\vec{S} = \vec{1})$ направлен по или против направления его движения.

А проекция орбитального момента \vec{L} фотона (как и любой частицы) на направление движения нулевая. Поэтому проекция M полного момента фотона \vec{J} на направление движения может быть только ± 1 .

При этом фотон должен двигаться (например, снизу) вдоль оси z, попадая в ядро, расположенное в начале координат. В силу сохранения в процессе чистой ЯРФ полного момента фотона J и его проекции M на ось z, переизлученный фотон также обязан иметь проекцию M момента на ось z, равную +1 или -1. Поэтому для анализа углового распределения фотонов в ЯРФ должны быть выбраны угловые зависимости излучения, отвечающие проекциям M момента фотона на ось z, равным ± 1 . Для дипольного и квадрупольного излучения это соответственно $W_{1\pm 1}$ и $W_{2\pm 1}$ и угол рассеяния θ отсчитывается от оси z. Остальные варианты угловой зависимости дипольного и квадрупольного излучений не отвечают первичным фотонам, летящим вдоль оси z.

Итак, имеем следующие подходящие для анализа ЯРФ-экспериментов угловые распределения для дипольных и квадрупольных фотонов:

Распределение интенсивности переизлучённых дипольных и квадрупольных фотонов в пространстве и в плоскости реакции

Чистая ЯРФ с переизлучением дипольного и квадрупольного фотона реализуется, например, в следующих процессах в чётно-чётных ядрах, которые мы в основном и будем рассматривать ниже:

$$0^{+} \xrightarrow{\gamma} 1 \xrightarrow{\gamma'} 0^{+},$$

$$0^{+} \xrightarrow{\gamma} 2 \xrightarrow{\gamma'} 0^{+}.$$

Отметим следующую особенность этих процессов. Вообще говоря, энергии возбужденных состояний с J=1 или 2 в отсутствии внешних полей не зависят от проекций момента M (0 и ± 1 для дипольного возбуждения; $0, \pm 1$ и ± 2 для квадрупольного возбуждения). Однако в процессе чистой ЯРФ, когда сохраняется не только мультипольность излучения, но и проекция момента фотона, для промежуточного возбуждения ядра остаются лишь две возможности: $M = \pm 1$. При этом, конечно, вырождение по энергии сохраняется.

Рассмотрим в качестве примера чистую ЯРФ на дипольном уровне чётно-чётного ядра

$$0^+ \xrightarrow{\gamma} 1 \xrightarrow{\gamma'} 0^+$$

Поглощается и затем высвечивается дипольный γ -квант

Из вида дипольных диаграмм W_{10} и $W_{1\pm 1}$ следует, что ядро может поглотить лишь γ -квант с J=1 и $M=\pm 1$ (γ -квант с J=1 и M=0 вдоль оси z не распространяется)

Итак, ядро окажется в состояниях с J=1 и $M=\pm 1$ и затем излучит γ' -квант, которому отвечает диаграмма W_{1+1}

Диаграммы дипольного и квадрупольного рассеяния фотонов в плоскости реакции и углы рассеяния, обеспечивающие наиболее надёжное разделение излучениий с J = 1 и 2

Как следует из этих зависимостей наибольшие отличия между $W_{1\pm 1}(\theta)$ и $W_{2\pm 1}(\theta)$ имеют место при $\theta=90^{\circ}$ и 127° :

$$\frac{W_{1\pm 1}(90^{0})}{W_{1\pm 1}(127^{0})} = 0.734; \quad \frac{W_{2\pm 1}(90^{0})}{W_{2\pm 1}(127^{0})} = 2.28.$$

Столь сильное отличие между этими отношениями позволяет легко сделать выбор между фотонами с J = 1 и 2, ограничиваясь измерениями лишь при двух углах $\theta = 90^{\circ}$ и 127° .

Установка НИИЯФ МГУ для определения мультипольности ЯРФ-излучения

Данные по определению мультипольностей некоторых у-переходов					
в ядрах ¹² С, ⁴⁸ Ті и ⁵⁶ Fe					

Ядро	Основное	Возбуждённое	Энергия,	Процесс	$W(90^{\circ})$
	состояние	состояние	МэВ		$\overline{W(127^{\circ})}$
¹² C	0+	2+	4,442	$0^{+} \rightarrow 2^{+} \rightarrow 0^{+}$	2,24±0,11
⁴⁸ Ti	0+	1+	3,699	$0^+ \to 1^+ \to 0^+$	0,76±0,26
⁴⁸ Ti	0+	1+	3,739	$0^+ \to 1^+ \to 0^+$	0,78±0,07
⁴⁸ Ti	0+	1+	4,312	$0^{+} \rightarrow 1^{+} \rightarrow 0^{+}$	0,74±0,14
⁴⁸ Ti	0+	1+	5,640	$0^+ \to 1^+ \to 0^+$	0,62±0,12
⁵⁶ Fe	0+	1+	3,449	$0^+ \to 1^+ \to 0^+$	1,0±0,1

Данные, полученные в ЯРФ-экспериментах НИИЯФ МГУ по определению мультипольностей некоторых у-переходов в ядрах ¹²C, ⁴⁸Ti и ⁵⁶Fe. Указаны энергии у-переходов в МэВ.

Горизонтальные линии отвечают предсказанным отношениям для дипольных и квадрупольных переходов.

КэВ

ന

в интервале

число фотонов

Разными цветами отмечены пики от трёх γ-переходов:

1) Ядро
$$^{11}_{5}$$
B: $0(3/2^{-}) \rightarrow 7286 \text{ кэВ}(5/2^{+}) \rightarrow 0(3/2^{-}),$

- 2) Ядро $^{16}_{8}$ O: $0(0^{+}) \rightarrow 7117$ кэВ $(1^{-}) \rightarrow 0(0^{+})$,
- 3) Ядро $^{16}_{8}$ O: $0(0^{+}) \rightarrow 6917$ кэ $B(2^{+}) \rightarrow 0(0^{+})$.

Первый и второй переходы E1, третий – E2. Величины пиков под углами 90° и 127° соотносятся именно так, как предсказываются соотношениями для вышеупомянутых переходов. Так для пика 7117 кэВ (дипольный переход) $W(90^{\circ})/(127^{\circ}) = 0.78 \pm 0.07$. Для пика 6917 кэВ (квадрупольный переход) $W(90^{\circ})/(127^{\circ}) = 2.02 \pm 0.09$.

National Institute of Advanced Industrial Science and Technology (AIST), Japan

