Лекция 6:

Определение мультипольности гамма-переходов в ЯРФ-экспериментах. ЯРФ-эксперименты позволяют установить мультипольность фотонов, участвующих в ядерных γ-переходах, и сделать заключение о спинах уровней, между которыми произошёл переход. Геометрия рассеяния поляризованных фотонов на неполяризованных ядрах мишени представлена на рисунке:

В случае поляризованных фотонов «угловая» вероятность $W(\theta, \varphi)$ их рассеяния на неполяризованных ядрах зависит от двух углов: θ – угла рассеяния (или полярного угла) и φ – азимутального угла (угла между плоскостями реакции и поляризации падающих фотонов). Для неполяризованных фотонов все углы φ равновероятны (т. е. имеет место азимутальная симметрия) и W перестает зависеть от φ :

 $W(\theta, \varphi) \to W(\theta).$

Для определения мультипольности ядерного у-перехода достаточно использование неполяризованного пучка тормозных фотонов. В этом случае для дифференциального сечения рассеяния фотонов на изолированном ядерном резонансе имеем формулу (см. Лекцию 2):

$$\frac{d\sigma(\gamma,\gamma')}{d\Omega} = \int_{\text{pesohahcy}}^{\text{no}} \sigma(\gamma,\gamma')dE = \int_{\text{pesohahcy}}^{\text{no}} \sigma_i(E) \cdot \sigma(\theta)dE =$$
$$= (\pi\lambda)^2 \frac{2J_r + 1}{2J_0 + 1} \cdot \frac{\Gamma_0\Gamma_i}{\Gamma} \cdot \frac{W(\theta)}{4\pi}.$$

В дальнейшем ограничимся «чистой» ЯРФ, т. е. когда $\gamma \equiv \gamma'$. В этом случае

$$\frac{d\sigma(\gamma,\gamma')}{d\Omega}\Big|_{\text{чистая } \text{ЯР}\Phi} = (\pi\lambda)^2 \frac{2J_r + 1}{2J_0 + 1} \cdot \frac{{\Gamma_0}^2}{\Gamma} \cdot \frac{W(\theta)}{4\pi}.$$

Вид функции $W(\theta)$ в экспериментах с чётно-чётными ядрами (их спин-чётность в основном состоянии 0⁺) однозначно определяет мультипольность рассеянного фотона, а значит и спин ядерного резонанса J_r).

Принцип определения мультипольности рассеянного γ -излучения иллюстрируется рисунком. Излучатель, в данном случае дипольный, имеет диаграмму направленности (угловую интенсивность излучения) $\sim Sin^2 \theta$. Исследуя угловую интенсивность излучения с помощью приёмника и убеждаясь, что она $\sim Sin^2 \theta = \frac{1}{2}(1 - Cos2\theta)$, устанавливают, что это излучение имеет дипольный характер, т. е. мультипольность J = 1.

Колебание электрического дипольного момента частицы \vec{d} создающее E1-излучение

E1-излучение дипольной антенны, возникающее при линейном колебании зарядов

передающей радиоантенны и определяется характер (мультипольность) излучения приёмная антенна – детектор γ-квантов (например, германиевый)

Угловое распределение интенсивности дипольного и квадрупольного излучений

Угловое распределение излучения $W(\theta)$ зависит от *J* и *M* (проекции *J* на выделенную ось пространства), т. е. $W(\theta) \equiv W_{JM}(\theta)$. Диаграммы дипольного и квадрупольного излучения для всех проекций *M* приведены на рисунке:

 $J = 1: W_{10} \sim \sin^2 \theta,$ $W_{1\pm 1} \sim (1 + \cos^2 \theta).$ $J = 2: W_{20} \sim \sin^2 \theta \cos^2 \theta,$ $W_{2\pm 1} \sim (1 - 3\cos^2 \theta + \cos^4 \theta),$ $W_{2\pm 2} \sim (1 - \cos^4 \theta).$

Угловые зависимости $W_{JM}(\theta)$ для дипольного и квадрупольного излучений имеют следующий аналитический вид Итак, имеется пять угловых распределений

 W_{10} , $W_{1\pm1}$, W_{20} , $W_{2\pm1}$, $W_{2\pm2}$,

Возникает вопрос о том, какие из этих угловых распределений нужно использовать для идентификации дипольного и квадрупольного излучений. Для этого нужно правильно выбрать направление движения фотона относительно атомного ядра, которое считается расположенным в начале координат. Спин фотона ($\vec{S} = \vec{1}$) направлен по или против направления его движения. А проекция орбитального момента \vec{L} фотона (как и любой частицы) на направление движения нулевая. Поэтому проекция *M* полного момента фотона \vec{J} на направление движения может быть только ±1.

При этом фотон должен двигаться (например, снизу) вдоль оси *z*, попадая в ядро, расположенное в начале координат. В силу сохранения в процессе чистой ЯРФ полного момента фотона *J* и его проекции *M* на ось *z*, переизлученный фотон также обязан иметь проекцию *M* момента на ось *z*, равную +1 или –1. Поэтому для анализа углового распределения фотонов в ЯРФ должны быть выбраны угловые зависимости излучения, отвечающие проекциям *M* момента фотона на ось *z* равным +1. Для дипольного и квадрудольного излучения это

ось z, равным ± 1 . Для дипольного и квадрупольного излучения это соответственно $W_{1\pm 1}$ и $W_{2\pm 1}$ и угол рассеяния θ отсчитывается от оси z. Остальные варианты угловой зависимости дипольного и квадрупольного излучений не отвечают первичным фотонам, летящим вдоль оси z. Итак, имеем следующие подходящие для анализа ЯРФ-экспериментов угловые распределения для дипольных и квадрупольных фотонов:

Распределение интенсивности переизлучённых дипольных и квадрупольных фотонов в пространстве и в плоскости реакции

Чистая ЯРФ с переизлучением дипольного и квадрупольного фотона реализуется, например, в следующих процессах в чётно-чётных ядрах, которые мы в основном и будем рассматривать ниже:

 $0^{+} \xrightarrow{\gamma} 1 \xrightarrow{\gamma'} 0^{+},$ $0^{+} \xrightarrow{\gamma} 2 \xrightarrow{\gamma'} 0^{+}.$

Отметим следующую особенность этих процессов. Вообще говоря, энергии возбужденных состояний с J = 1 или 2 в отсутствии внешних полей не зависят от проекций момента M (0 и ± 1 для дипольного возбуждения; $0, \pm 1$ и ± 2 для квадрупольного возбуждения). Однако в процессе чистой ЯРФ, когда сохраняется не только мультипольность излучения, но и проекция момента фотона, для промежуточного возбуждения ядра остаются лишь две возможности: $M = \pm 1$. При этом, конечно, вырождение по энергии сохраняется.

Итак, ядро окажется в состояниях с J=1 и $M=\pm 1$ и затем излучит γ' -квант, которому отвечает диаграмма $W_{1\pm 1}$

Диаграммы дипольного и квадрупольного рассеяния фотонов в плоскости реакции и углы рассеяния, обеспечивающие наиболее надёжное разделение излучениий с J = 1 и 2

Как следует из этих зависимостей наибольшие отличия между $W_{1\pm 1}(\theta)$ и $W_{2\pm 1}(\theta)$ имеют место при $\theta = 90^{\circ}$ и 127°:

$$\frac{W_{1\pm1}(90^0)}{W_{1\pm1}(127^0)} = 0,734; \quad \frac{W_{2\pm1}(90^0)}{W_{2\pm1}(127^0)} = 2,28.$$

Столь сильное отличие между этими отношениями позволяет легко сделать выбор между фотонами с J = 1 и 2, ограничиваясь измерениями лишь при двух углах $\theta = 90^{\circ}$ и 127°.

Установка НИИЯФ МГУ для определения мультипольности ЯРФ-излучения

Данные по определению мультипольностей некоторых у-переходов					
в ядрах ¹² С, ⁴⁸ Ті и ⁵⁶ Fe					
Ядро	Основное	Возбуждённое	Энергия,	Процесс	W(90°)
	состояние	состояние	МэВ		$W(127^{\circ})$
¹² C	0+	2+	4,442	$0^+ \rightarrow 2^+ \rightarrow 0^+$	2,24±0,11
⁴⁸ Ti	0+	1+	3,699	$0^+ \rightarrow 1^+ \rightarrow 0^+$	0,76±0,26
⁴⁸ Ti	0+	1+	3,739	$0^+ \rightarrow 1^+ \rightarrow 0^+$	0,78±0,07
⁴⁸ Ti	0+	1+	4,312	$0^+ \rightarrow 1^+ \rightarrow 0^+$	0,74±0,14
⁴⁸ Ti	0+	1+	5,640	$0^+ \rightarrow 1^+ \rightarrow 0^+$	0,62±0,12
⁵⁶ Fe	0+	1+	3,449	$0^+ \rightarrow 1^+ \rightarrow 0^+$	1,0±0,1

Данные, полученные в ЯРФ-экспериментах НИИЯФ МГУ по определению мультипольностей некоторых γ-переходов в ядрах ¹²C, ⁴⁸Ti и ⁵⁶Fe. Указаны энергии γ-переходов в МэВ. Горизонтальные линии отвечают предсказанным отношениям для дипольных и квадрупольных переходов.

Разными цветами отмечены пики от трёх у-переходов:

1) Ядро ${}^{11}_{5}$ B: 0(3/2⁻) → 7286 кэB(5/2⁺) → 0(3/2⁻), 2) Ядро ${}^{16}_{8}$ O: 0(0⁺) → 7117 кэB(1⁻) → 0(0⁺), 3) Ядро ${}^{16}_{8}$ O: 0(0⁺) → 6917 кэB(2⁺) → 0(0⁺).

Первый и второй переходы E1, третий – E2. Величины пиков под углами 90° и 127° соотносятся именно так, как предсказываются соотношениями для вышеупомянутых переходов. Так для пика 7117 кэВ (дипольный переход) $W(90^{\circ})/(127^{\circ}) = 0.78 \pm 0.07$. Для пика 6917 кэВ (квадрупольный переход) $W(90^{\circ})/(127^{\circ}) = 2.02 \pm 0.09$.

National Institute of Advanced Industrial Science and Technology (AIST), Japan

