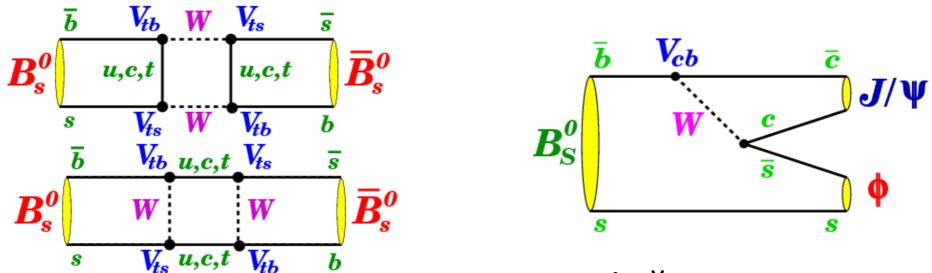
Измерение параметров СР-нарушений в распадах B(s) мезонов в эксперименте ATLAS

Мешков Олег Васильевич


Научный руководитель: профессор Смирнова Л.Н.

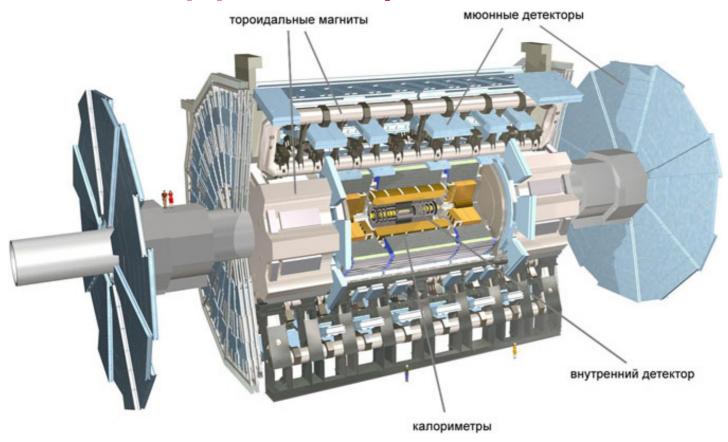
План доклада

- СР-нарушение в В_s → Ј/ψф
- Детектор ATLAS
 - Внутренний детектор
 - Триггер
 - Триггер В-физики
 - Усовершенствование оффлайн мониторинга триггера В-физики
- Программа В-физики
- Измерение параметров СР-нарушений в эксперименте ATLAS
 - Данные и отбор событий
 - Угловой анализ
 - Тагирование B_s аромата
 - Фит методом наименьшего правдоподобия
 - Результаты и систематические неопределенности
 - Статистическое объединение с Run-1 и сравнение с другими экспериментами БАК
- Заключение и Планы
 - Доклады на конференциях
 - Публикации

CP-нарушения in $B_s \rightarrow J/\psi \phi$

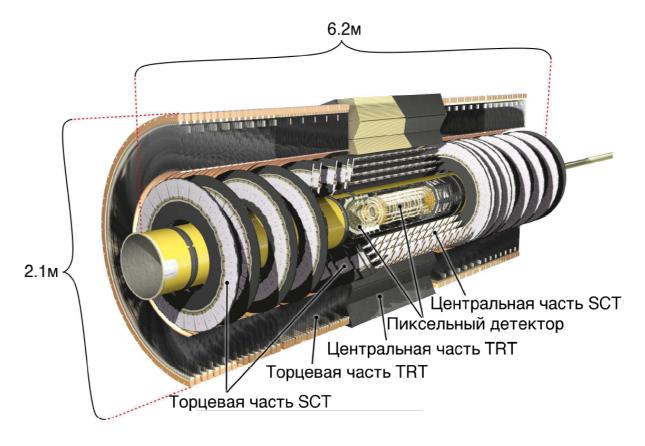
 В распаде В_s → J/ψф , СР-нарушения происходят за счет интерференции между прямыми распадами и распадами посредством В_s - В_s осцилляций

- На левом рисунке диаграммы Фейнмана низкого порядка, которые показывают B_s \overline{B}_s осцилляции
- На правом рисунке диаграмма распада В_s → J/ψф

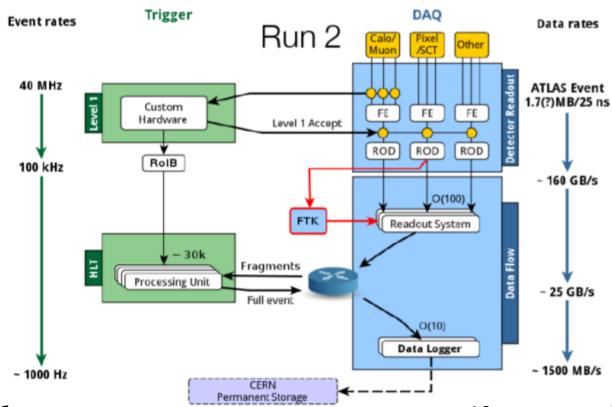

Параметры СР-нарушений

- Величина СР-нарушений ϕ_s , которая определяется как разница слабых фаз между амплитудой B_s \overline{B}_s смешивания и амплитудой распада $b \to c\overline{c}s$
- В СМ фаза ϕ_s мала, а ее значение связанно со значениями элементов Кабиббо Кобаяси Маскавы(ККМ) матрицы посредством соотношения $\phi_s \approx -2\beta_s$

$$\bullet \ \varphi_s \equiv -2 \, \beta_s = -2 \, arg \, (\frac{-V_{ts} \, V_{*_{cb}}}{V_{cs} \, V_{*_{cb}}}) = -0.03696 \, \frac{+0.00072}{-0.00082} \, rad \quad \text{arXiv: 1501.05013}$$


- Величина фазы СР-нарушений φ_s чувствительна к проявлениям новой физики
- Другая характеристика в B_s смешивании это $\Delta \Gamma_s = \Gamma_L \Gamma_H$, где Γ_L и Γ_H ширины распадов легкого и тяжелого массовых состояний. $\Delta \Gamma_s$ не чувствительна к проявлениям новой физики, однако измерение интересно для проверки теорий

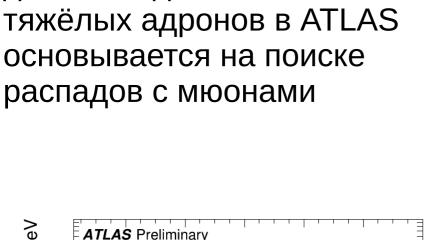
Детектор ATLAS

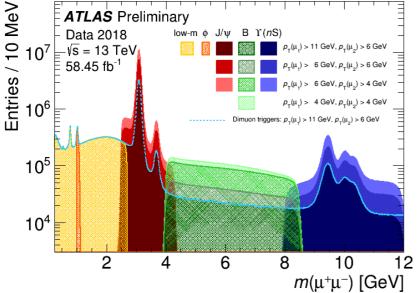

- Детектор ATLAS:
- Магнитная система
- Внутренний детектор
- Калориметры
- Мюонный детектор

Внутренний детектор

- Пиксельный детектор(pixel)
- Микростриповые кремнивые детекторы(SCT)
- Трековая система переходного излучения(TRT)

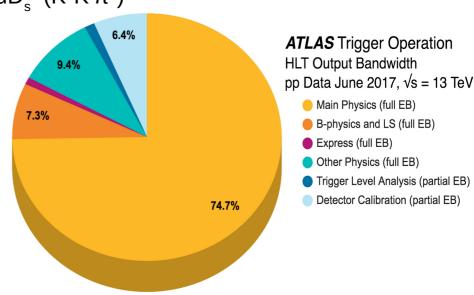
Триггер детектора ATLAS


ATLAS работает с большими потоками данных, соответствующих 10⁹ соударений протонов в секунду. Только некоторые из этих событий содержат интересную информацию, поэтому нужен триггер.


Триггер детектора ATLAS во время второго сеанса работы:

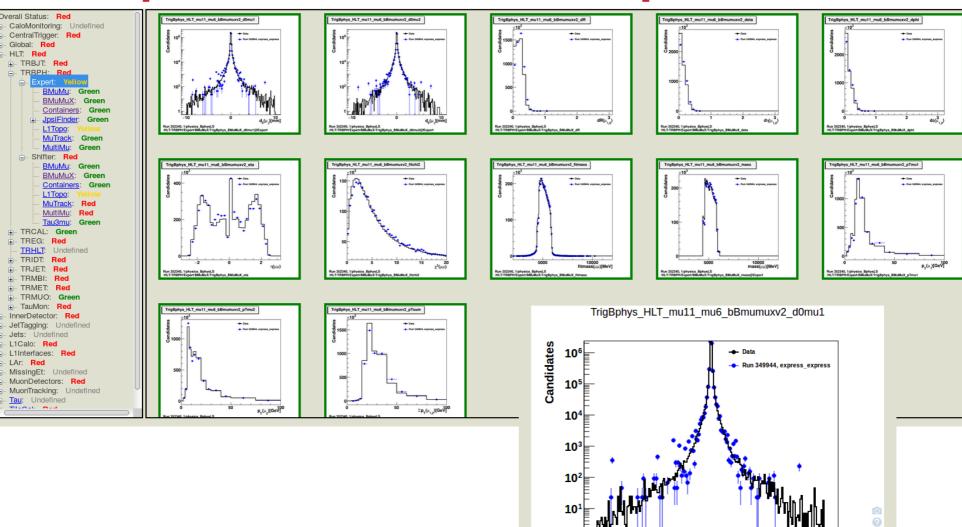
- Триггер первого уровня
- Триггер высокого уровня

Триггер В-физики


Триггерный отбор событий для исследований основывается на поиске распадов с мюонами

Основные триггерные алгоритмы триггера В-физики:

- J/ψ и ψ(2S) 2.5 4.3 ГэВ; (Jpsimumu)
- Редкие распады B (s) 4 8.5 ГэВ; (Втити)
- Y(nS) 8 12 ΓэΒ;(Upsimumu)
- B $\rightarrow \mu\mu X$ (BMuMuX) -1.5-14 ГэВ
 - 1. $B^0 \to \mu \mu K^{*0}$
 - 2. $B_s^0 \rightarrow \mu\mu\phi$
 - 3. $B^+_{c} \rightarrow \mu \mu D_{s}^{*+} (K^+ K^- \pi^+)$

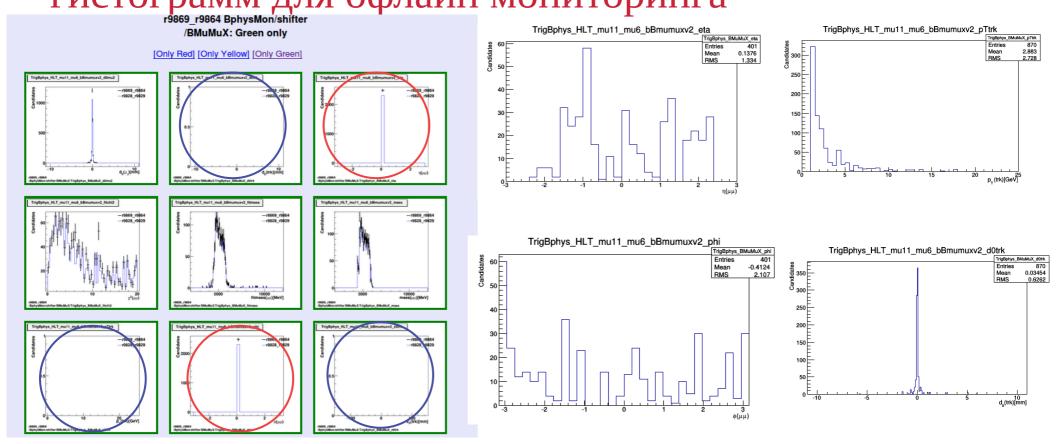

Текущие задачи триггера В-физики

- Исследования эффективности димюонных триггеров
- Учет влияния большого количества наложеных событий (pileup) на эффективность отбора событий
- Мониторинг времени жизни и массы В+-мезона
- Усовершенствования мониторинга В-триггера
- Подготовка триггера к Run-3

Системы мониторинга триггера В-физики

- Online мониторинг
 - количество ядер ЦП
 - среднее время обработки событий
 - гистограммы переменных
- Offline мониторинг
 - отслеживаются следующие переменные: прицельные параметров треков, координаты вершины рождения В-адрона, η, φ, Р_т, как для отдельного мюона, так и для всего кандидата в В-адрон и др.

Офлайн мониторинг

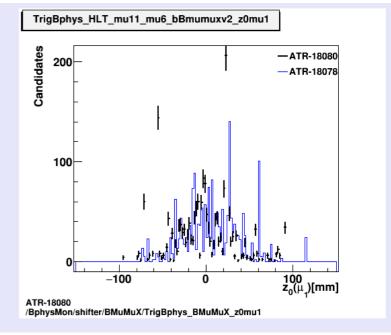

10

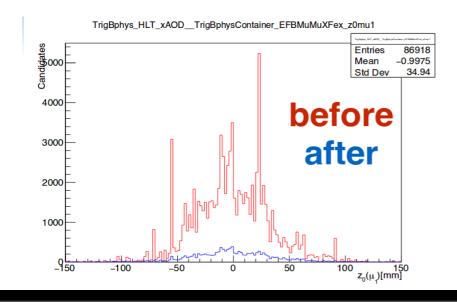
-10 -5
Run 352340, 1/physics_BphysLS

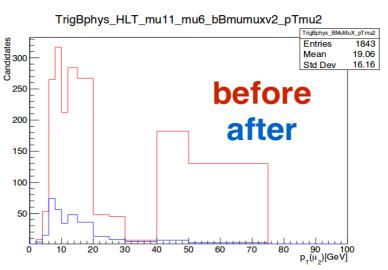
/HLT/TRBPH/Expert/BMuMuX/TrigBphys BMuMuX d0mu1@Expert

Web Display офлайн мониторинга

Исправление заполнения нулевых и пустых гистограмм для офлайн мониторинга

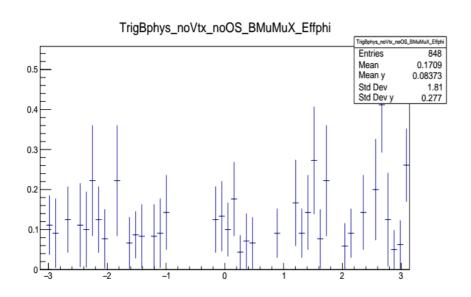


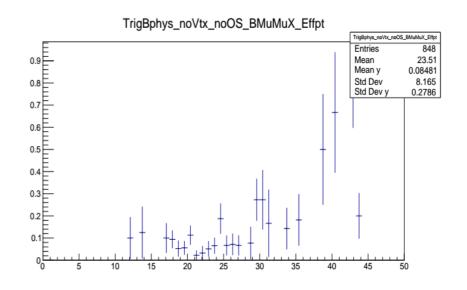

Красные круги — заполненные нулем, а синие круги — пустые гистограммы


Гистограммы для η и ϕ — нулевые, а гистограммы для p_{τ} , d_{0} , z_{0} для треков пустые

Улучшение для регистрации пары мюонов в офлайн мониторинге

В ВМиМиХ и MultiMu алгоритмах офлайн мониторинга построения кандидатов в В-адрон одни и те же самые пары мюонов записывались несколько раз, что порождало путаницу и странные выбросы количества событий

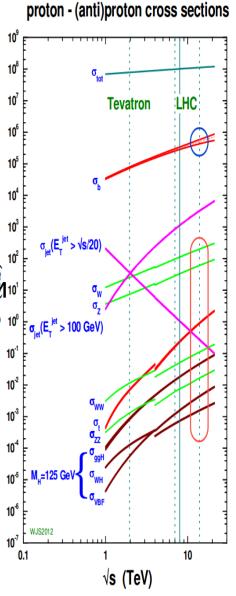




Исправление графиков эффективности для офлайн мониторинга

Графики эффективности не были заполнены должным образом - их было необходимо исправить

Также существующие гистограммы эффективности являлись не аддитивными.



Программа В-физики в эксперименте

ATLAS

- Проверка предсказаний на основе КХД:
 - измерение сечений,
 - спектроскопия, кварконий,
 - экзотические адроны(тетракварк и пентакварк),
 - исследования поляризации, асимметрии распада
- Проверка электрослабой физики и поиск новой физики and это области, где СМ предсказывает редкие процессы или небольшие эффекты:
 - ► редкие распады $B_{s,d} \rightarrow \mu\mu$,
 - $\phi_S B B_S \rightarrow J/\psi \phi$
 - ▶ Нарушение лептонного аромата (R(K*))
 - $~~ \tau ~\rightarrow ~3\mu$

Данные для анализа

Данные:

- Использованы данные 80.5 фб⁻¹ из 2015-17, 13 ТэВ
- Статистическое объединение с Run1 результатами ATLAS :
 - 4.9 фб⁻¹ (7 ТэВ, pp 2011)
 - 14.3 фб⁻¹(8 ТэВ, pp 2012) статическое объединение с 7 ТеV
- Триггерные алгоритмы основаны на идентификации распадов Ј/ψ
 → µµ с порогами на поперечные импульсы мюонов 4 или 6 ГэВ
 - Использовались Монте-Карло (МК) наборы для $B_s \to J/\psi \varphi$ и $B_d \to J/\psi K^*$, $B_d \to J/\psi K \pi$ и $\Lambda_b \to J/\psi p K$ для оценки фоновых процессов
- Нет отбора по времени жизни разделение фона и сигнала проводилось с помощью фитирования

arXiv:2001.07115

Реконструкция и отбор событий

arXiv:2001.07115

Отбор событий

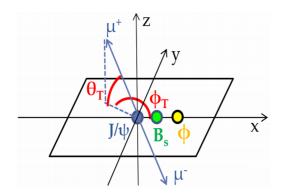
- Хотя бы одна первичная вершина, образованная по меньшей мере четырьмя треками во внутреннем детекторе
- Не менее одной пары μ⁺μ⁻, реконструированных с использованием внутреннего детектора и мюонного спектрометра

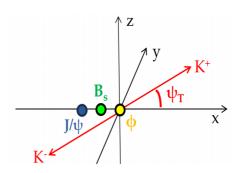
$J/\psi \to \mu^+ \mu^-$

- Двухмюонный вершинный фит $\chi^2/d.o.f. < 10$
- Три двухмюонных массовых окна для BB/BE/EE (центральная часть(Barrel),торцевая часть(Endcap) детектора)

$\varphi \to K^+K^-$

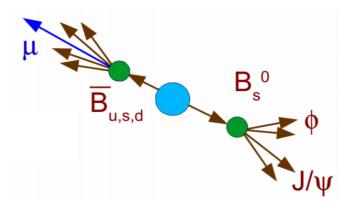
- p_⊤(K) > 1 ΓэВ
- 1008.5 M₃B < m(KK) < 1030.5 M₃B


$B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$


- р_т(В_s) > 10 ГэВ
- Четверка треков объединялась в один фит с χ²/d.o.f. < 3
- Использовался кандидат с наименьшим χ²/d.o.f. в событии
- 5150 MeV < $m(B_s)$ < 5650 MeV \rightarrow всего отобранно 3 210 429 B_s кандидатов

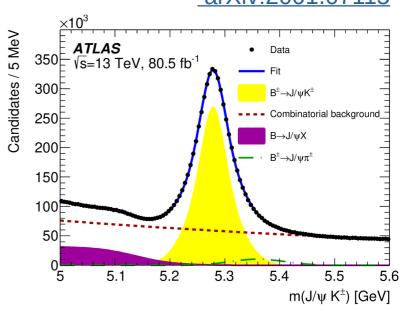
Угловой анализ

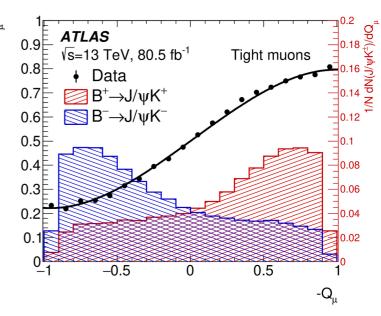
arXiv:2001.07115


- Распад псевдоскалярного нейтрального B_s → J/ψ(μμ)φ(KK) на конечное состояние с двумя векторными мезонами
- Конечное состояние: суперпозиция из CP-нечетных (L = 1) and CP-четных (L = 0, 2) состояний
- Статистическое разделение всех этих состояний возможно благодаря угловому анализу продуктов распада
- Не резонансный S-волновой распад В_s → J/ψКК включен в конечное состояние

В тагирование (мечение) аромата (1)

- Начальный аромат нейтрального В-мезона может быть восстановлен с использованием информации от противоположного b-адрона, содержащего парный к исходному b-кварк (opposite-side tagging, OST)
- Методы тагирования:
 - Тагирование электрона
 - Тагирование мюона
 - Тагирование струи b-адрона (если отсутствует лептон)


В тагирование аромата(2)


Переходы b → I разбавляются в результаты процессов, которые могут изменить заряд наблюдаемого лептона, например в результате осцилляций нейтрального В-мезона или в результате каскадных распадов b → c → I

• Для выбранного мюона, электрона или струи строится зарядовая переменная:

$$Q_{x} = \frac{\sum_{i}^{N \text{ tracks}} q_{i} \cdot (p_{\text{T}i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{\text{T}i})^{\kappa}} \longrightarrow P(Q|B^{\pm}) Q \in <-1,1>$$

• Распад В[±] → Ј/ψК[±] использовался для калибровки тагирования аромата

Качество работы тагирования

<u>arXiv:2001.07115</u>

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

- Эффективность ϵ : отношение числа B-кандидатов тагированных данным методом, к полному числу кандидатов: $\epsilon = \frac{N_{tagged}}{N_{Bcand}}$
- Коэффициент разбавления D (dilution) : D = (1 2w), где w вероятность ошибочного тагирования
- Мощность тагирования Т (tagging power) : показатель качества работы тагирования
 - Зависит от dilution и эффективности: $TP = \varepsilon D^2 = \varepsilon (1 2w)^2$

Фит методом наибольшего правдоподобия <u>arXiv:2001.07115</u>

$$\ln \mathcal{L} = \sum_{i=1}^{N} w_{i} \cdot \ln[f_{s}] \underbrace{\mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{m_{i}}, \sigma_{t_{i}}, \Omega_{i}, P_{i}(B|Q_{x}), p_{T_{i}})}^{\text{Сигнал}} + f_{s} \cdot f_{B^{0}} \underbrace{\mathcal{F}_{B^{0}}(m_{i}, t_{i}, \sigma_{m_{i}}, \sigma_{t_{i}}, \Omega_{i}, P_{i}(B|Q_{x}), p_{T_{i}})}^{\text{ФОН } B_{d} \rightarrow J/\psi K^{*} \text{ и } \Lambda_{b} \rightarrow J/\psi K p}$$

ФОН
$$B_d \rightarrow J/\psi K^*$$
 и $\Lambda_b \rightarrow J/\psi K p$ + $f_s \cdot f_{B^0}$ $\mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i})$ + $f_s \cdot f_{\Lambda_b}$ $\mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i})$

Вес для учета эффективности триггера

$$+ (1 - f_{\mathrm{s}} \cdot (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathrm{T}_i})],$$

Объединенные фоновые процессы

Физические параметры:

- Фаза ф_с
- Ширины распада: ΔΓ₅, Г₅
- Амплитуды распада: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp}
- S-волна: |A_s(0)|², δ_s
- Δm фиксировано (PDG)

Переменные:

- Базовые переменные: m_i , t_i , Ω_i
- Переменные для каждого кандидата:
 - Неопределенность :σ_m, σ_t
 - Вероятность тагирования и метод: P(B|Q)

Систематические неопределенности

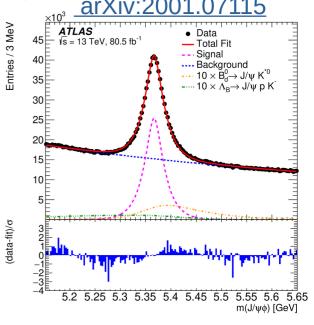
	ϕ_{S}	$\Delta\Gamma_{S}$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta$
	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3} \text{ rad}]$	[10 ⁻³ rad]	$[10^{-3} \text{ ra}]$
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
Acceptance	0.5	< 0.1	< 0.1	1.0	0.8	2.6	30	50	11
1									
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Best candidate selection	0.5	0.4	0.7	0.5	0.2	0.2	12	17	7.5
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass interval	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B_d^0	2.3	1.1	< 0.1	0.2	3.0	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.2	< 0.1	< 0.1	0.3	< 0.1	0.3	11	21	8.4
Fit bias	4.1	1.7	0.9	1.4	< 0.1	1.5	19	0.9	7.0
Total	20	2.5	1.6	2.3	3.5	4.5	50	79	18

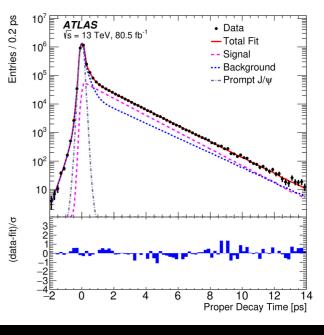
Систематическим погрешности, связанным с методикой калибровки процедуры тагирования Угловой аксептанс рассчитывается с помощью модельных сигнальных событий в бинах по углам и поперечному импульсу

Калибровка геометрии (alignment) внутреннего детектора: Неточности в определении координат элементов внутреннего детектора

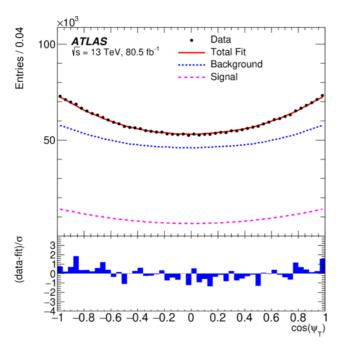
Угловые распределения для фона: выборы функции фитирования, количества бинов, интервала массы

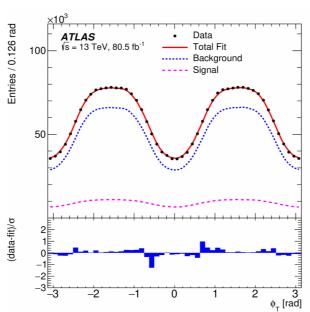
Вклад событий $B_d \to J/\psi K^*$, ошибочно реконструированных как $B_s \to J/\psi \phi$

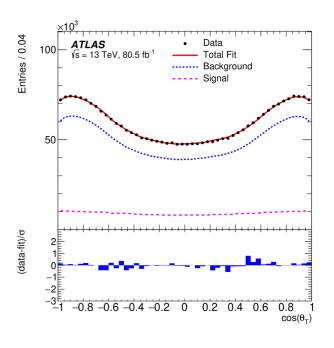

Вклад событий $\Lambda_{_{D}} \to J/\psi$ Кр, ошибочно реконструированных как $B_{_{S}} \to J/\psi \phi$

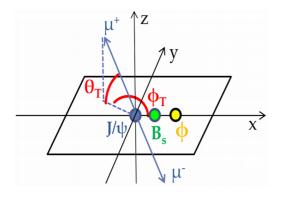

Вариации модели фита. Систематические эффекты, связанные с выбором модели фита

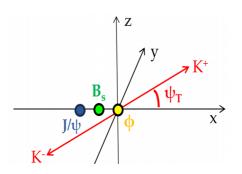
Проекции и результаты фита(1)

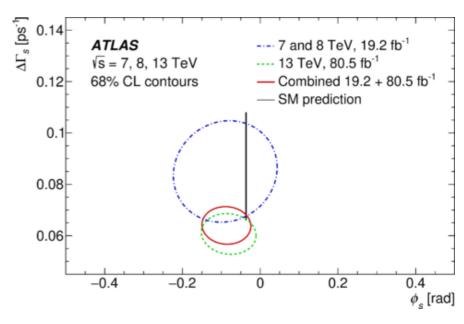

Parameter	Parameter Value		Systematic
		uncertainty	uncertainty
ϕ_s [rad]	-0.081	0.041	0.020
$\Delta\Gamma_s$ [ps ⁻¹]	0.0607	0.0046	0.0025
Γ_s [ps ⁻¹]	0.6687	0.0015	0.0017
$ A_{\parallel}(0) ^2$	0.2213	0.0020	0.0022
$ A_0(0) ^2$	0.5131	0.0013	0.0034
$ A_S(0) ^2$	0.0321	0.0034	0.0044
δ_{\perp} [rad]	3.12	0.11	0.05
δ_{\parallel} [rad]	3.35	0.05	0.06
$\delta_{\perp} - \delta_{S}$ [rad]	-0.25	0.05	0.01


$$t = \frac{L^{xy} m^B}{p_{T_B}}$$

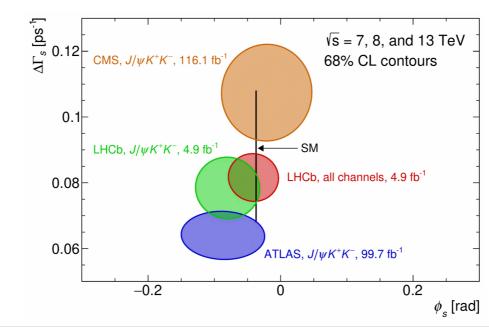





Проекции и результаты фита(2)



Статистическое объединение с результатами Run-1 arXiv:2001.07115


Объединение ATLAS Run 1 & Run 2 (19.2 фб⁻¹ + 80.5 фб⁻¹):

Parameter	Value .	Statistical	Systematic	
		uncertainty	uncertainty	
ϕ_s [rad]	-0.087	0.037	0.019	
$\Delta\Gamma_{\rm s}$ [ps ⁻¹]	0.0640	0.0042	0.0024	
Γ_s [ps ⁻¹]	0.6698	0.0014	0.0015	
$ A_{\parallel}(0) ^2$	0.2221	0.0018	0.0022	
$ A_0(0) ^2$	0.5149	0.0012	0.0031	
$ A_S ^2$	0.0343	0.0032	0.0044	
δ_{\perp} [rad]	3.21	0.10	0.05	
δ_{\parallel} [rad]	3.36	0.05	0.08	
$\delta_{\perp} - \delta_{S}$ [rad]	-0.24	0.05	0.02	

Run 1 (19.2 φ6⁻¹) & Run 2 (80.5 φ6⁻¹):

Последние результаты БАК

$B_s \rightarrow J/\psi KK$	φ _s [рад]
LHCb 4.9 fb ⁻¹ Объединение с 3 другими каналами, EUR. PHYS. J. C 79 (2019) 706	-0.042±0.025
CMS 96.4 fb ⁻¹ Run2 обьединение с Run1, CMS-PAS-BPH-20-001	-0.021±0.045
ATLAS $80.5~{ m fb^{-1}}$ Run2 объединение с Run1, arXiv: 2001.07115	-0.087 ± 0.037 (стат.) ± 0.019 (сист.)

Заключение и планы

- Триггер В-физики играет важную роль в эксперименте ATLAS
- Система мониторинга триггера В-физики выполняет важные задачи во время сбора данных
- Мною было произведено усовершенствование заполнения примерно 30% гистограмм для оффлайн мониторинга
- Анализ с использованием 2015+2016+2017 ATLAS данных представлен
- Результаты статистически объединены с Run1
- Результаты согласуются с LHCb, CMS и предсказаниями CM
- Готовится препринт для полного анализа по Run2(60 фб-1)
- Планируется полностью новый анализ по всему Run2

Доклады на конференциях

- Measurement of the weak mixing phase phi_s through time-dependent CP violation in Bs—>J/ψΦ decay in ATLAS, FPCP 2020
- Measurement of the CP violation in Bs->Jpsi+Phi decays in ATLAS at 13 TeV, MISP 2020
- Heavy quark physics at ATLAS and CMS (excluding top), QFTHEP 2019
- Исследование нарушения лептонного аромата, СР-инвариантности и R(K*) аномалии в экспериментах на БАК, «Ломоносовские чтения 2019». Секция «Физика»
- Вклад фоновых процессов в систематическую погрешность измерения параметра фазы ф в эксперименте ATLAS, VIII Межинститутская молодежная конференция "Физика элементарных частиц и космология 2019"
- Системы мониторинга триггера В-физики в эксперименте ATLAS Большого адронного коллайдера», XIX Межвузовская научная школа молодых специалистов «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине»
- Задачи модернизации детектора ATLAS, Ломоносовские чтения 2018
- Основные задачи триггера В-физики в эксперименте ATLAS, VII межинститутская молодёжная конференция "Физика элементарных частиц и космология 2018"
- Развитие средств мониторинга триггера В-физики в эксперименте ATLAS, XXV Международная конференция студентов, аспирантов и молодых учёных «Ломоносов-2018». Секция «Физика»

Публикации

- Готовится препринт «Measurement of the CP-violation phase ϕs and other system parameters in Bs \rightarrow J/ $\psi \phi$ decays in ATLAS at 13 TeV»
- «Measurement of the CP violation phase φs in Bs → J/ψφ decays in ATLAS at 13 TeV» Отправлена на печать в «European Physical Journal C»(arXiv:2001.07115).
- Исследования нарушения лептонного аромата, СР-инвариантности и R(K*) аномалии в экспериментах на БАК, УЗФФ № 3, с. 1930404
- Системы мониторинга триггера В-физики в эксперименте ATLAS Большого адронного коллайдера, УЗФФ, № 2, с. 1920202
- Газовые детекторы для идентификации частиц при высоких энергиях, УЗФФ, № 3, с. 173204-1-173204-8

Дополнительные слайды

Временные и угловые функции

k	$O^{(k)}(t)$	$g^{(k)}(\theta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_H^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\rm H}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\pm\mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_{s}\pm\mathrm{e}^{-\Gamma_{s}t}(\sin\delta_{\perp}\cos(\Delta m_{s}t)-\cos\delta_{\perp}\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_S(0) A_{\parallel}(0) \left[\frac{1}{2} (e^{-\Gamma_L^{(s)}t} - e^{-\Gamma_H^{(s)}t}) \sin(\delta_{\parallel} - \delta_S) \sin\phi_s \pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (e^{-\Gamma_H^{(s)}t} - e^{-\Gamma_L^{(s)}t}) \sin \delta_S \sin \phi_s \pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

Расчет вклада фоновых процессов для В_а

• Для расчета вклада от $B_d \to J/\psi K^*$ и $B_d \to J/\psi K\pi$:

FrBd J/
$$\psi K^* = \frac{f_d}{f_s} \frac{Br(Bd \to J/\psi K^*) * Br(K^* \to K^* \pi^{\bar{}})}{Br(Bs \to J/\psi \phi) * Br(\phi \to K^* K^{\bar{}})} \frac{eff_{BdJpsiKstar}}{eff_{BsJpsiPhi}}$$
FrBdK $\pi = \frac{f_d}{f_s} \frac{Br(Bd \to J/\psi K^* \pi^{\bar{}}) S - wave}{Br(Bs \to J/\psi \phi) * Br(\phi \to K^* K^{\bar{}})} \frac{eff_{BdJpsiKpi}}{eff_{BsJpsiPhi}}$

- Если использовать переменные из таблицы, то получаются:
- $FrK^* = (3.68 \pm 0.42)\%$
- $FrK\pi = (0.63 \pm 0.08)\%$
- $FrB_d = 4.31 \pm 0.43\%$

Переменная	Значение
f _s /f _d	0.259±0.015 PDG 2018
Br(Bs \rightarrow J/ $\psi \phi$)	(1.08±0.08)*10 ⁻³ PDG 2018
$Br(Bd \to J/\psi K^+\pi^-)_{tot}$	(1.079±0.0011)*10 ⁻³ PDG 2018
Р-волна	0.735±0.007 PDG 2018
$Br(\phi \to K^+K^-)$	0.492±0.005 PDG 2018
S-волна	0.157±0.008 PDG 2018
eff _{BdJ/ψKstar}	0.000577±0.000035 MC 2017
$eff_{BdJ/_{\psi}Kpi}$	0.000460 ±0.000036 MC 2017
$eff_{BsJ/\psi\phi}$	0.090300±0.000704 MC 2017

Расчет вклада фоновых процессов для $\Lambda_{\rm b}$

Для расчет вклада от $\Lambda_b \to J/\psi p K$:

$$Fr \Lambda_b J / \psi p K^{-} = \frac{f_{\Lambda_b}}{f_s} \frac{Br(\Lambda_b \to J / \psi p K^{-})}{Br(Bs \to J / \psi \phi) * Br(\phi \to K^{+} K^{-})} \frac{eff_{\Lambda JpsipK}}{eff_{BsJpsiPhi}}$$

$$Fr \Lambda_b J / \psi p K = \frac{N_{\Lambda_b LHCB}}{N_{B_d LHCB}} \frac{f_d}{f_s} \frac{Br(Bd \to J / \psi K^+ \pi^-) p - wave}{Br(Bs \to J / \psi \phi) * Br(\phi \to K^+ K^-)} \frac{eff_{LbJ psipK}}{eff_{BsJ psiPhi}}$$

Если брать значения из таблицы, то получается:

$$Fr/_b = (2.13 + -0.26)\%$$

Variable	Value
f _s /f _d	0.259±0.015 PDG 2018
Br(Bs \rightarrow J/ $\psi \phi$)	(1.08±0.08)*10 ⁻³ PDG 2018
$Br(Bd \to J/\psi K^+\pi^-)_{tot}$	(1.079±0.0011)*10 ⁻³ PDG 2018
N _{/\b LHCB}	15581 LHCb
N _{bd LHCB}	97506 LHCb
S-волна	0.157±0.008 PDG 2018
$Br(\phi \to K^+K^-)$	0.492±0.005 PDG 2018
$eff_{LbJ/\psi pK}$	0.002090 +/- 0.000152 MC 2017
eff _{BsJ/ψφ}	0.090300±0.000704 MC 2017