МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М. В. Ломоносова Физический Факультет

Хан Дон Ен

ФОТОРАСЩЕПЛЕНИЕ ИЗОТОПОВ МОЛИБДЕНА

Специальность 01.04.16 Физика атомного ядра и элементарных частиц

ДИССЕРТАЦИЯ На соискание ученой степени Кандидата физико-математических наук

> Научный руководитель: Доктор физико-математических наук, Профессор Б.С. Ишханов

Цель работы

- Измерение выходов фотоядерных реакций на стабильных изотопах Мо
- Исследование характеристик фотоядерных реакций в зависимости от массового числа А изотопа Мо

Метод регистрации наведенной активности

- Образец естес. смеси изотопов Мо был облучен тормозным излучением с Е_{max} 67.7МэВ, 29.1МэВ и 19.5МэВ в течение 1 -4.5 часов.
- Выходы ф.я реакций были определены, анализируя пики үлиний в спектрах остаточной активности облученного образца Мо.

Теоретические расчеты TALYS и КМФР

- Проанализированы результаты теор. расчетов сечений ф.я реакций на изотопах ⁹⁰⁻¹⁰⁴Мо с помощью программы **TALYS** и комбинированной модели фотоядерных реакций (КМФР).
- Полученных результаты расчетов сравнивались с результатами выполненных экспериментов.

Оглавление

Введение

Глава 1. Основные характеристики изотопов Мо

Глава 2. Сечения фотоядерных реакций на изотопах Мо

Глава 3. Методика выходов фотоядерных реакций

- 3.1. Методика проведения эксперимента
- 3.2. Обработка экспериментальных данных

Глава 4. Результаты и обсуждение

- 4.1. Экспериментальные результаты
- 4.2. Теоретические расчеты сечений фотоядерных реакций
- 4.3. Обсуждение результатов

Глава 5.

5.1. Образование ⁹²⁻¹⁰⁰Мо в природных условиях

5.2. Образование и применение ^{99m}Tc

Заключение

Введение

- I (E_γ < B_{n,p}): поглотив фотон возбуж. ядро распадается с испусканием одного или нескольких фотонов на более низко расположенные состояния. (ЯРФ)
- II (В_{п,р или связ систем малого нуклонов} < Е_γ): преимущественно происходят реакции с вылетом нуклонов. Для тяж. ядер становится возможной реакция фотоделения. Происходят коллективные ядерные возбуждения (гигантские резонансы)
- III (ГДР < Е_γ < мезонный порог): λ_γ (поглощаемого ядром фотона) < R_{ядро}, фотоны преимущественно взаимодействуют внутри ядра с системами из малого числа нуклонов и происходит выбивание этих систем или нескольких нуклонов.
- IV (Е_ү > мезонный порог): поглощаемые ядром фотоны возбуждают отдельные нуклоны. Фотоны начинают взаимодействовать с отдельными нуклонами ядра

Основные характеристики изотопов Мо

Величины определены на основе базы данных <u>http://www.nndc.bnl.gov</u>, базы данных ЦДФЭ НИИЯФ МГУ Последовательность одночастичных состояний в сферически симметричном потенциале с учетом спинорбитального взаимодействия.

• Параметры деформации ч-ч изотопов 92,94,96,98,100 Мо

Α	β	γ
92	0.11	34°
94	0.15	31°
96	0.17	29°
98	0.18	25°
100	0.23	22°

 β – Параметр квадрупольной деформации , полученный методом измерения приведенной вероятности (данные извлечены из работы [1])

 $\beta = (4\pi/3ZR_0^2)[B(E2)\uparrow/e^2]^{1/2}$

- γ параметр, характеризующий отклонения формы ядра от аксиальной симметричной формы (данные извлечены из работы [2])
- Четно-четные изотопы ^{92,94,96,98,100}Мо мало деформированы.
- За счет увеличения массового числа А атомное ядро имеет более деформированную форму.
- В области изотопов Мо с массовым числом А=90-100 форма атомного ядра близка к форме трехосного эллипсоида.

1. Raman S., Nestor Jr. C. W.m Tikkanen P. Nucl. Phys. A., Vol. 227, no.3, P. 427-449(1974) 2. Andrejtscheff, W. and Petkov, P., Phys. Rev. C., Vol. 48, P. 2531—2533(1993)

• Низколежащие возбужденные состояния изотопов 90-100 Мо

- N=50 в изотопе ⁹²Мо является магическим числом, что отчетливо проявляется в увеличении энергии уровней J^P=2₁⁺, 4₁⁺ по сравнению соседними ядрами.
- Изотопы ^{88,90,94,96,98} Мо имеют примерно эквидистантное расстояние между низшими возбужденными состояниями, что свидетельствует о квадрупольных колебаниях вблизи равновесной сферической формы ядра.
- В тяжелых изотопах ¹⁰⁴⁻¹¹⁰ Мо расположение низших возбужденных состояний гораздо лучше описывает зависимость Е ~ J(J+1), что характерно для вращательных состояний и свидетельствует о статической деформации этих ядер

• Сечения реакции (ү,n), полученные в работах [3-6].

 Параметры сечений фотоядерных реакций на изотопах Мо, полученных в работах [3, 4]

массового числа А в работах [4,5] и результаты расчета на основе дипольного правила сумм 60·NZ/A

Толожение максимума сечения реакции (γ, sn) от массового числа А в работах [4,5] и результаты расчета уравнением 78·А^{-1/3}

Анализы данных

• На всех измеренных изотопах ярко проявляется гигантский дипольный резонанс, который в целом описываются соотношениями:

 $E_m = 78A^{-1/3}$, $\sigma_{int} = \frac{60NZ}{A}$, $\sigma(E) = \sigma_m \frac{(E\Gamma)^2}{(E^2 - E_m^2)^2 + E^2\Gamma^2}$

- Основными каналами распада ГДР являются каналы распада с испусканием нейтронов.
- Результаты экспериментально полученных авторами выходят за пределы статистических погрешностей приведенных авторами.
- Причины систематических различий фотоядерных реакций в методах прямой регистрации нейтронов в реакциях (ү,n), (ү,2n), (ү,3n) имеются систематические ошибки, обусловленные методом детектирования нейтронов.

Вывод по сечениям

- Для дальнейшего уточнения механизма фотоядерных реакций на изотопах Мо необходимы новые типы экспериментов, более надежные измерения различных каналов распада ГДР.
- Такие возможности открываются в активационных экспериментах, в которых непосредственно измеряются различные продукты распада фотоядерных реакций.

Методика измерения выходов фотоядерных реакций

• Методика проведения эксперимента

— Разрезной микротрон RTM-70

- 1 электронная пушка, 2 группирователь,
- 3 α-магнит, 4 фокусирующие линзы,
- 5, 6 180° поворотные магниты,
- 7 ускоряющая структура
- 8 устройство сдвига фазы пучка на 1-ой орбите, 9 квадрупольная линза,

10 - система коррекции положения пучка на общей орбите, 11 --- датчики тока пучка,

12 - вертикальные и горизонтальные

корректоры, 13 - квадрупольные триплеты,

- 14 магниты системы вывода пучка,
- 15 цилиндр Фарадея

Энергия на выходе ускорителя	14.9-67.7 МэВ
Прирост энергии за оборот	4.79 МэВ
Импульсный ток выведенного пучка	до 40 мА
Длительность импульса	2 20 мксек
Рабочая частота	2856 МГц
Максимальная мощность клистрона	6 МВт
Индукция поля в поворотных магнитах	0.956 Тл
Размеры разрезного микротрона	0.8x2.0x1.6m3

- Обработка экспериментальных данных
 - Измерение остаточной активности при реакции ⁹²Мо(γ,2n)⁹⁰Мо

– Идентификация спектров

Зарегистрированные спектры ү-квантов остаточной активности в течение 6 часов после облучения

- Источники пиков идентифицированы по базе данных[8] и определению периода полураспада Т_{1/2}.
- Т_{1/2} были определены и с помощью автоматической системы набора и анализа спектров и вручную.

Определение выходов фотоядерных реакций

Количество ядер 1 в t₁ $N_{10} = \frac{S}{k(e^{-\lambda(t_2 - t_1)} - e^{-\lambda(t_3 - t_1)})}$

Выход реакции

$$Y(E_m) = \frac{N_{10}\lambda}{1 - e^{-\lambda t_1}}$$

Результаты

• Экспериментальные результаты

– Идентифицированные пики в спектре ү-активности

с Е_{тах} = 67.7МэВ (обнаружено ≈ 100 пиков)

$E_{\gamma}(\kappa э B)$	Источник ү-квантов	Реакция	$T_{1/2}({}_{\rm MИH})$
122.7	⁹⁰ Mo	$^{92}Mo(\gamma, 2n)$	342
132.8	⁹⁰ Nb	${}^{92}\mathrm{Mo}(\gamma,2n), {}^{92}\mathrm{Mo}(\gamma,2n){}^{90}\mathrm{Mo} \xrightarrow{\varepsilon}$	876
140.8	⁹⁰ Nb	$^{92}Mo(\gamma, 2n), ^{92}Mo(\gamma, 2n)^{90}Mo \xrightarrow{\varepsilon}$	876
140.8	⁹⁹ Mo	$^{100}\mathrm{Mo}(\gamma,n)$	3960

1984.54	- IND	$^{\circ\circ}$ MO($\gamma, 2n$), $^{\circ\circ}$ MO($\gamma, 2n$) $^{\circ\circ}$ MO \rightarrow	870
2128.46	⁸⁹ Nb	$^{92}Mo(\gamma, 2np), ^{92}Mo(\gamma, 3n)^{89}Mo \xrightarrow{\varepsilon}, ^{89m}Nb \xrightarrow{IT}$	114
2186.242	⁹⁰ Nb	${}^{92}\mathrm{Mo}(\gamma,2n), {}^{92}\mathrm{Mo}(\gamma,2n)^{90}\mathrm{Mo} \xrightarrow{\varepsilon}$	876
2222.34	⁹⁰ Nb	${}^{92}\mathrm{Mo}(\gamma,2n), {}^{92}\mathrm{Mo}(\gamma,2n)^{90}\mathrm{Mo} \xrightarrow{\varepsilon}$	876
2318.968	⁹⁰ Nb	${}^{92}\mathrm{Mo}(\gamma,2n), {}^{92}\mathrm{Mo}(\gamma,2n){}^{90}\mathrm{Mo} \xrightarrow{\varepsilon}$	876
2960.1	⁸⁹ Nb	$^{92}Mo(\gamma, 2np), ^{92}Mo(\gamma, 3n)^{89}Mo \xrightarrow{\varepsilon}, ^{89m}Nb \xrightarrow{IT}$	114

— Определение выхода реакции с образованием ⁹⁶Nb

в реакциях ⁹⁷Мо(ү,р) и ⁹⁶Мо(ү,np)

Энергия ү-	Интенсивность	Выход(погрешность)				
кванта (кэВ)	(%)	19.5МэВ	29.1МэВ	67.7МэВ		
219.2	3	0.6(0.05)	4.4(0.2)	9.9(0.5)		
241.4	3.9	0.8(0.05)	4.2(0.2)	14.1(0.7)		
350.1	1.1		4.3(0.3)	9.9(0.6)		
352.6	0.8		10.2(1.0)	14.4(1.1)		
460.8	26.6	0.6(0.03)	4.0(0.2)	9.0(0.4)		
480.7	5.9	0.6(0.06)	4.0(0.2)	9.6(0.5)		
568.8	58	0.6(0.03)	3.9(0.2)	8.6(0.4)		
591.2	0.9		2.9(0.4)	7.3(0.9)		
719.9	6.9	0.7(0.06)	4.4(0.2)	10.6(0.5)		
810.8	11.1	0.5(0.03)	3.3(0.2)	7.2(0.3)		
812.6	3		5.1(0.3)	11.7(0.7)		
849.9	20.5	0.6(0.03)	4.1(0.2)	9.5(0.4)		
1091.3	48.5	0.6(0.60)	4.1(0.2)	9.2(0.4)		
1200.2	29	0.6(0.03)	4.0(0.2)	9.0(0.4)		
1497.8	3.3	0.6(0.03)	4.0(0.2)	8.6(0.5)		
Среднее		0.6(0.03)	4.0(0.2)	9.1(0.4)		

Экспериментально измеренные выходы фотоядерных реакций на изотопах Мо

Dearring	Конечное ядро	Выход(погрешность)				
Реакция	(J ^P)	19.5МэВ	29.1 МэВ	67.7МэВ		
¹⁰⁰ Mo(γ,n)	⁹⁹ Mo(1/2+)	100(4.6)	100(4.6)	100(4.5)		
¹⁰⁰ Mo(γ,np)	⁹⁸ mNb(2+)			0.4(0.01)		
⁹⁸ Mo(γ,p)	⁹⁷ Nb(9/2+)	0.3(0.02)	2.9(0.1)	5.4(0.2)		
⁹⁷ Mo(γ,p) ⁹⁸ Mo(γ,np)	⁹⁶ Nb(6+)	0.6(0.03)	4.0(0.2)	9.1(0.4)		
⁹⁶ Mo(γ,p) ⁹⁷ Mo(γ,np)	⁹⁵ Nb(9/2+)	0.2(0.02)	1.9(0.1)	4.4(0.2)		
⁹⁶ Mo(γ,p) ⁹⁷ Mo(γ,np)	^{95m} Nb(1/2-)	0.6(0.03)	3.0(0.2)	4.7(0.3)		
⁹⁴ Mo(γ,n) ⁹⁵ Mo(γ,2n)	^{93m} Mo(21/2+)			0.05(0.003)		
⁹⁴ Mo(γ,np)	^{92m} Nb(2+)	0.02(0.001)	0.4(0.02)	3.6(0.2)		
⁹² Mo(γ,n)	⁹¹ Mo(9/2+)	24.2(2.0)	24.4(3.4)	<109.0(8.9)		
⁹² Mo(γ,n)	^{91m} Mo(1/2-)	3.1(0.2)	23.9(2.8)			
⁹² Mo(γ,p)	^{91m} Nb(1/2-)	36.0(1.8)	45.7(5.3)	<63.2(3.1)		
⁹² Mo(γ,2n)	⁹⁰ Mo(0+)		0.5(0.04)	5.8(0.4)		
⁹² Mo(γ,np)	⁹⁰ Nb(8-)		0.9(0.06)	7.9(0.6)		
⁹² Mo(γ,2np)	⁸⁹ Nb(9/2+)			1.4(0.1)		
⁹² Mo(γ,2np)	^{89m} Nb(1/2+)			0.6(0.04)		

• Теоретические расчеты сечений фотоядерный реакций

Рассчитанные по программе TALYS сечения реакций
 (ү,n)*=(ү,n)+(ү,np) и (ү,2n)*=(ү,2n)+(ү,2np) на изотопах Мо

Рассчитанные на основе КМФР сечения реакций (ү,n)*=(ү,n)+(ү,np) и (ү,2n)*=(ү,2n)+(ү,2np) на изотопах Мо

 Параметры фотоядерных реакций (ү,sn)=(ү,n)+(ү,2n)+(ү,np) и (ү,sp)=(ү,p)+(ү,2p)+(ү,np) в изотопах ⁹⁰⁻¹⁰⁴Мо, полученные на основе TALYS и КМФР

Относительные выходы фотоядерных реакций и суммарные выходы всех реакций (γ,abs) на изотопах ⁸⁹⁻¹⁰⁴Мо, рассчитанные по программе TALYS и КМФР с тормозными спектрами фотонов с Е_{max} 19.5МэВ, 29.1МэВ и 67.7МэВ. *Выход реакции ¹⁰⁰Мо(γ,n) принят равным 100

Выходы фотоядерных реакций на изотопах Мо

- Суммарный выход фотоядерных реакции на изотопах ⁹³⁻¹⁰⁴Мо увеличивается с ростом массового числа А.
- При этом по мере увеличения массового числа А сечение реакции (γ,2n) растет, что приводит к уменьшение канала распада ГДР с испусканием одного нейтрона.
- Выход реакции (γ, p) уменьшается с ростом массового числа. Пороги фотопротонной реакции растут от 6.14 для ⁸⁹Мо до 19.6 МэВ для ¹⁰³Мо, что приводит к уменьшению проницаемости потенциального барьера для протонов при переходе от легких изотопов молибдена к более тяжелым.
- При уменьшении массового числа до значения А = 92 наблюдается резкое падение выхода реакции (ү,n), что сопровождается отчетливым ростом выхода реакции (ү,p).
- У всех остальных более тяжелых изотопов молибдена с числом нуклонов 93–103 нейтроны начинают заполнять одночастичные уровни следующей оболочки 1g_{7/2}2d3s1h_{11/2}, отделенной от оболочки 1f2p1g_{9/2} энергетической щелью 3–4 МэВ.

• Выходы фотоядерных реакций (67.7МэВ)

Реакция	Конечное ядро(Ј ^р)) Т _{1/2} (тип распада) Ү _{ех} (ошибн		Y _{TALYS}	Υ _{κΜΦΡ}	
¹⁰⁰ Mo(γ,n)	⁹⁹ Mo(1/2+)	66ч(β-)	100(4.5)	100	100	
¹⁰⁰ Mo(γ,np)	⁹⁸ Nb(7+)	2.86c(β-)		0.2	1	
¹⁰⁰ Mo(γ,np)	^{98m} Nb(2+)	51.3м(β-)	0.4(0.02)	0.1	1	
⁹⁸ Μο(γ,p)	⁹⁷ Nb(9/2+)	72.1м(β-)	5.4(0.2)	0.2	0.5	
⁹⁸ Μο(γ,p)	^{97m} Nb(1/2 ⁻)	58.7c(IT)		0.2	8.5	
⁹⁷ Mo(γ,p), ⁹⁸ Mo(γ,np)	⁹⁶ Nb(6+)	23.3ч(β -)	9.1(0.4)	0.7, 0.5	8.9 1.3	
⁹⁶ Mo(γ,p), ⁹⁷ Mo(γ,np)	^{96m} Nb(9/2+)	35д(IT + β-)	4.4(0.2)	0.6, 0.7	450(124(100) - 20(1000))	
⁹⁶ Mo(γ,p). ⁹⁷ Mo(γ, np)	⁹⁵ Nb(1/2⁻)	3.6д(β-)	4.7(0.3)	0.3, 0.1	15.0 (12.1(y,p) 2,9(y,np)}	
⁹⁴ Mo(γ,p) ⁹⁵ , Mo(γ, 2n)	⁹³ Mo(5/2+)	4.00Е+3л(ε)		145.6, 38.3	120.0.(114.40.m), 22.00.2m))	
⁹⁴ Mo(γ,p) ⁹⁵ Mo(γ, 2n)	^{93m} Mo(21/2+)	6.85ч(IT+ε)	0.05(0.003)	0.7, 0.2	138.U (114.4(y,n) 23.6(y,2n))	
⁹⁴ Mo(γ,np)	⁹² Nb(7+)	3.47Е+7л(ε)		0.3	2.5	
⁹⁴ Mo(γ,np)	^{92m} Nb(2+)	10.1д(ε)	3.6(0.2)	1.7	2.5	
⁹² Mo(γ,n)	^{91Mo} (9/2+)	15.4Μ(ε)	<109.0(8.9)	24.9	70.1	
⁹² Mo(γ,n)	^{91m} Mo(1/2-)	64.6c(1T+ε)		47.7	72.1	
⁹² Mo(γ,p)	⁹¹ Nb(9/2+)	6.8Е+2л(ε)		9.6	68.2	
⁹² Mo(γ,p)	^{91m} Nb(1/2-)	60.9д(IT+ɛ)	<63.2(3.1)	70.3	08.2	
⁹² Mo(γ,2n)	⁹⁰ Mo(0+)	5.7ч(ε)	5.8(0.4)	4.3	2.5	
⁹² Mo(γ,np)	⁹² Mo(γ,np) ⁹⁰ Nb(8-)		7.9(0.6)	2.2	4.5	
⁹² Mo(γ,np)	^{90m} Nb(4-)	18.8c(IT)		3.3	4.5	
⁹² Mo(γ,2np)	⁸⁹ Nb(9/2+)	2.03ч(ε)	1.4(0.1)	1.2	0.9	
⁹² Mo(γ,2np)	^{89m} Nb(1/2+)	66.0m(ɛ)	0.6(0.04)	0.4	0.8	

— Изоспиновые возбуждения и распады T> и T< состояний ГДР ядра (N,Z)

• Изоспиновое расщепления состояний **Т**, и **T**_<: $\Delta E = \frac{60}{4} (T_0 + 1) M \Im B$ • Вероятность возбуженй **T**_> и **T**_<: $\frac{S^2(T_>)}{S^2(T_<)} = \frac{1}{T_0} \cdot \frac{1 - 1.5T_0 A^{-2/3}}{1 + 1.5A^{-2/3}}$

В э.м и сильных взаимодействиях соблюдаются правила отбора по изоспину, и имеет место запрет распада состояния T_> ядра (A,Z) по нейтронному каналу на низколежащие состояния ядра (A-1, Z) с изоспином T₀ - 1/2, что приводит к усилению каналов распада с испусканием протонов.

Образование изотопов ⁹²⁻¹⁰⁰Мо в природных условиях

Tc92 4.25m	Tc93 2.75h	Tc94 293m	Tc95 20.0h	Tc96 4.28d	Tc97 4.21·10 ⁶ a	Tc98 4.2·10 ⁶ a	Tc99 2.1·10 ⁵ a	Tc100 →15.46s	Tc101 14.02m	Tc102 5.28s
Mo91 15.49m	Mo92 14.84%	Mo93 4·10 ³ a	Mo94 9.25%	Mo95 15.92%	Mo96 16.68%	Mo97 9.55%	Mo98	Mo99	Mo100 9.63% 7.3·10 ¹⁸ a	Mo101 14.61m
Nb90 14.60h	Nb91 680a	Nb92 3.5·10 ⁷ a	Nb93 100%	▶ Nb94 2·10 ⁴ a	Nb95 34.97d	Nb96 23.35h	Nb97 72.1m	Nb98 2.9s	Nb99 15s	Nb100 1.5s
Zr89 78.41h	Zr90 51.45%	Zr91 11.22%	Zr92 17.15	Zr93 1.53·10 ⁶ a	Zr94 17.38	→Zr95 64.0d	Zr96 2.8% 2.0·10 ¹⁹ a	Zr97 16.7h	Zr98 30.7s	Zr98 2.1s

29

Сечения (ү, n), (ү, 2n), (ү, 3n) реакций, соответственных на изотопах ⁹³Мо, ⁹⁴Мо, ⁹⁵Мо и ⁹⁵Мо, ⁹⁶Мо, ⁹⁷Мо, рассчитанные на основе КМФР

Образование и применение ^{99m}Tc

Схема образования ^{99m}Tc в фотоядерной реакций ¹⁰⁰Mo(γ, n)⁹⁹Mo

- ^{99m}Tc является наиболее используемым радиопрепаратом в ядерной медицинской диагностике.
- Ежегодно в мире выполняется около 30млн процедур, в которых используется радиофармпрепарат ^{99m}Tc.
- При β⁻-распаде ⁹⁹Мо 82.2% распадов сразу идут на изомерное состояние ^{99m}Tc, практически все остальные переходы идут через него.
- Изомерное состояние ^{99m}Tc имеет период полураспада T_{1/2} = 64.4сек и в 99% случае распадается на основное состояние ⁹⁹Tc с испусканием γ-квантов с энергией E_v =142.2кэB.
- Основное состояние ⁹⁹Тс имеет период полураспада Т_{1/2} = 2.1·10⁵ лет и распадается на стабильный изотоп ⁹⁹Ru.
- В отдельно выполненном эксперименте выло измерено образование изотопа ^{99m}Tc при тормозном спектре с максимальной энергии 55МэВ и токе 1мкА.
- В течение 1часа наработки изотопа ^{99m}Тс для мишени толщиной 0.3мм и площадью 650мм² составило 20кБк.

Основные результаты

- С помощью γ-активационной методики впервые измерены выходы фотоядерных реакций на стабильных изотопах ⁹²Mo, ⁹⁴Mo, ⁹⁵Mo, ⁹⁶Mo, ⁹⁷Mo, ⁹⁸Mo и ¹⁰⁰Mo под действием тормозного излучения при трех верхних границах тормозного спектра γ-квантов - 67.7МэВ, 29.1МэВ и 19.5МэВ.
- На изотопе ⁹²Мо и на более легких изотопах резко снижается выход фотонейтронных реакций и соответственно увеличивается выход фотопротонных реакций. Этот эффект интерпретируется на основе оболочечной структуры изотопов молибдена.
- Для всех изотопов показано хорошее согласие полученных данных с расчетами КМФР, в программе TALYS для фотопротонных реакций наблюдается заметное расхождения с экспериментальными данными, что обусловлено правилами отбора по изоспину.
- Впервые определена зависимость выходов различных фотоядерных реакций на изотопах Мо от массового числа А.
- Впервые проведено сравнение экспериментальных выходов с результатами расчетов, полученными по программе TALYS и КМФР.
- Рассмотрены возможные приложения фотоядерных данных для нуклеосинтеза и образования радиопрепарата ^{99m}Tc

Апробация работы

- Фоторасщепление изотопов молибдена / Б. Ишханов, И. Капитонов, А. Кузнецов ... Д.Е. Хан // Вестник Московского университета. Серия 3. Физика, астрономия. 2014. № 1. С. 35–43.
- Фотоядерные реакции на изотопах молибдена / Б. Ишханов, И. Капитонов, А. Кузнецов ... Д.Е. Хан // Ядерная физика. 2014. Т. 77, № 11. С. 1427–1435.
- Ядерная спектроскопия изотопов молибдена / Б. Ишханов, И. Капитонов, А. Кузнецов ... Д.Е. Хан // Вестник Московского университета. Серия 3. Физика, астрономия. 2016. № 1 С. 3-34.
- Фоторасщепление изотопов молибдена / Б. Ишханов, А. Кузнецов, Д. Е. Хан // Труды XIV
 Межвузовской научной школы молодых специалистов Концентрированные потоки энергии в космической технике, электронике, экологии и медицине. 26-27ноября 2013 г
- Фотоядерные реакции на изотопах молибдена / Б. Ишханов, А. Кузнецов, В. Орлин, Д. Е. Хан // Труды XV межвузовской научной школы молодых специалистов. Концентрированные потоки энергии в космической технике, электронике, экологии медицине, 25-26 ноября 2014.
- Спектроскопия изотопов молибдена / Б. Ишханов, А. Кузнецов, Д. Е. Хан // Труды XVI Межвузовской научной школы молодых специалистов. Концентрированные потоки энергии в космической технике, электронике, экологии медицине, 24-25 ноября 2015
- Photonuclear Reaction on molybdenum isotopes / Б. Ишханов, А. Кузнецов, Д.Е. Хан // XIV Международный Семинар по электромагнитным взаимодействиям ядер EMIN-2015, 2015.
- Photonuclear reaction on molybdenum isotopes / Б. Ишханов, А. Кузнецов, Д.Е. Хан // Korean Physical Society 2015 fall meeting, 2015.
- Giant dipole resonance on molybdenum isotopes / Б. Ишханов, А. Кузнецов, Д.Е. Хан // Korean Physical Society 2016 spring meeting, 2016.

Спасибо за внимание!