• Б.С.Ишханов

Фотоядерные реакции и астрофизика

Photonuclear reactions and astrophysics

B. S. Ishkhanov^{*}

Department of Physics, Lomonosov Moscow State University, Moscow, 119991 Russia and Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991 Russia

V. N. Orlin, K. A. Stopani, and V. V. Varlamov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991 Russia (Dated: Compiled on February 28, 2013)

Photonuclear reactions play a prominent role in the nucleosynthesis processes in stars and in the Early Universe. Traditional and modern methods of studing photonuclear reactions are considered. Different factors which determine accuracy of photonuclear data are discussed. Cross sections of photonuclear reactions relevant to astrophysics are given.

в Солнечной системе.

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

Остовяя, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomor Observatories, Cornegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

Образование химических элементов

- 1. Горение водорода. Один из основных процессов, поддерживающих длительное выделение энергии в звездах. При горении водорода происходит слияние четырех ядер водорода с образованием ядра ⁴He. Этот процесс происходит либо в рр-цепочке ядерных реакций, либо в циклических ядерных реакциях с участием C, N, O, Ne и др., играющих роль катализатора. Сюда же относятся процессы с участием протонов, в которых образуется некоторое количество легких элементов.
- 2. *Горение гелия*. После того, как в звезде накапливается гелий, под действием сил гравитации гелиевое ядро звезды сжимается, становится горячим и в нем начинается процесс горения гелия с образованием ядер ¹²C, ¹⁶O, ²⁰Ne.
- 3. *а-процесс*. Процесс последовательного добавления α -частиц к ядру ²⁰Ne с образованием ядер ²⁴Mg, ²⁸Si, ³²S, ³⁶Ar, ⁴⁰Ca. Он описывает повышенную распространенность атомных ядер типа N α , где α ядро ⁴He, а N целое число.
- 4. *е-процесс*. Процесс, в котором в условиях термодинамического равновесия образуются атомные ядра, расположенные в районе железного максимума.
- 5. *s-процесс*. Образование ядер тяжелее железа в результате медленного последовательного захвата нейтронов. Скорость s-процесса сравнима со скоростью β -распада радиоактивных ядер, образующихся в результате захвата нейтронов. Длительность s-процесса от 10^2 до 10^5 лет. s-процесс отвечает за образование максимумов в распространенности атомных ядер с $A \sim 90$, 138 и 208.
- 6. *г-процесс*. Образование ядер тяжелее железа в результате быстрого последовательного захвата нейтронов со скоростью, существенно превышающей скорость β-распада образующихся радиоактивных ядер. Характерное время г-процесса 0,01–100 с. В результате г-процесса в кривой распространенности элементов возникают максимумы при A = 80, 130 и 195.
- 7. *р-процесс*. Образование наиболее легких изотопов химических элементов. Он включает в себя реакции $(p, \gamma), (\gamma, n)$.
- 8. *Х-процесс*. Процесс нуклеосинтеза, ответственный за образование изотопов ^{6,7}Li, ⁹Be, ^{10,11}B. Считается, что эти элементы образуются в реакциях расщепления ¹²С и ¹⁶О под действием космических лучей.

Образование химических элементов в звездах

Основные источники у-квантов в космической среде и звездах

Источниками у-квантов в звездах и космической среде являются:

- аннигиляция частиц и античастиц, образовавшихся в результате Большого взрыва;
- тормозное и магнитотормозное излучение электронов, позитронов;
- обратное комптоновское рассеяние малоэнергичных фотонов на высокоэнергичных электронах;
- распад $\pi^0 \rightarrow \gamma + \gamma$;
- радиационные переходы возбужденных состояний атомных ядер;

ускорение электронов на турбулентностях межзвездной плазмы;

у-излучение сверхновых, активных ядер галактик.

рассеяние реликтовых фотонов на атомных ядрах высокой энергии;

Основные источники у-квантов

Число фотонов в единице объема спектра равновесного излучения.

Широкий спектр диффузного внегалактического излучения от рентгеновского до гамма-диапазона по данным различных экспериментов. Кривые линии представляют теоретические оценки вкладов: 1 - сейфертовых галактик 1-го типа; 2 - Н-го типа; 3 - квазаров; 4 - сверхновых 1-го типа; 5 – блазаров для степенного спектра с показателем -1,7 при энергиях ниже 4 МэВ и -2,15 при более высоких энергиях. Утолщенная сплошная линия соответствует сумме всех вкладов.

Фотоядерные реакции

Схематическая зависимость сечений реакций от энергии ү-квантов

Δ(1232) резонанс в ядрах

Отношение полного сечения фотопоглощения к массовому числу А для средних и тяжелых ядер по данным работы [М. MacCormick *et al.*, Phys. Rev. C **55**, 1033 (1997)]. Сплошная кривая – усреднение по имеющимся данным.

Гигантский дипольный резонанс

Положение максимума ГДР $E \approx 78 A^{-1/3} \text{ M}_{\Im} \text{B}$

Интегральное сечение ГДР $\sigma_{\text{int}} = \int_{GDR} \sigma(E) dE \approx 60 \frac{NZ}{A} \text{ MэB·мб}$

Расщепление максимума ГДР в деформированных ядрах $E_a = 78 \frac{r_0}{a}$ МэВ, $E_b = 78 \frac{r_0}{b}$ МэВ $\Delta E = E_b - E_a = 78 A^{-1/3} \beta$ МэВ

 (γ,xn) reaction cross sections in the energy range of the GDR.

Фотонейтронные сечения

 $R^{int}=\sigma_S^{int}/\sigma_L^{int},$ arb. units

Сечения фотонейтронных реакций Тормозные и квазимонохроматические эксперименты

Комбинированная модель фотоядерных реакций

Изоспиновое расщепление ГДР

$$\frac{C^2(T_{>})}{C^2(T_{<})} = \frac{1}{T_0} \left(\frac{1 - 1.5T_0 A^{-2/3}}{1 + 1.5A^{-2/3}} \right)$$
$$E(T_{>}) - E(T_{<}) = 60 \frac{T_0 + 1}{A} \text{ M} \text{ sB}.$$

Оцененные сечения ¹¹⁸Sn(γ,n), ²⁰⁸Pb(γ,n)

Comparison between our evaluated ([16] dots) and experimental (Saclay|squares,

Livermore|triangles, Utsunomiya [26]|stars) data for the 118 Sn(γ ,n) 117 Sn reaction cross section near threshold.

Comparison between our evaluated ([28] dots) and experimental (Saclay|squares, Livermore|triangles, Utsunomiya [27]|stars) data for the $^{208}Pb(\gamma,n)^{207}Pb$ reaction cross section near threshold.

Гамма-активационная методика

Гамма-активационная методика

Образование и распад радиоактивного изотопа ¹⁹⁷Hg в реакции ¹⁹⁸Hg(γ,n)¹⁹⁷Hg

Гамма-активационная методика

Первичный нуклеосинтез

Первичный нуклеосинтез

Изменение выхода легчайших ядер и барионной плотности (штриховая линия) на этапе первичного нуклеосинтеза

Сечения фотоядерных реакций на изотопах ²H, ³H, ³He E_v < 60 МэВ.

α-процесс в звездах *T* ~ 10⁸ К

Фотоядерные реакции – источники нейтронов

е-процесс

Синтез химических элементов от гелия до германия

Ядерные реакции, приводящие к синтезу элементов от гелия до германия.

Образование ядер «железного» пика

Образование ядер «железного» пика. Изоспиновые эффекты

⁵⁸Ni

⁶⁰Ni

Образование ядер «железного» пика

Интегральные сечения реакций (γ, p) , (γ, n) , $(\gamma, 2n)$ на изотопах Fe в зависимости от массового числа A.

s-и r-процессы в звёздах

Траектория s-процесса изотопов A=72-89

Экспериментальная зависимость $n\sigma$ от массового числа A для элементов Солнечной системы.

Р-нуклиды

Nucleus	Anders and Grevesse	Nucleus	Anders and Grevesse
⁷⁴ Se	0.55	¹³² B a	0.00453
⁷⁸ Kr	0.153	¹³⁸ La	0.000409
⁸⁴ Sr	0.132	¹³⁶ Ce	0.00216
⁹² Mo	0.378	¹³⁸ Ce	0.00284
⁹⁴ Mo	0.236	¹⁴⁴ Sm	0.008
⁹⁶ Ru	0.103	¹⁵² Gd	0.00066
98 R u	0.035	¹⁵⁶ Dy	0.000221
¹⁰² P d	0.0142	¹⁵⁸ Dy	0.000378
¹⁰⁶ Cd	0.0201	¹⁶² Er	0.000351
¹⁰⁸ Cd	0.0143	¹⁶⁴ Er	0.00404
¹¹³ In	0.0079	¹⁶⁸ Yb	0.000322
¹¹² Sn	0.0372	174 Hf	0.000249
¹¹⁴ Sn	0.0252	¹⁸⁰ Ta	2.48e-06
115 Sn	0.0129	¹⁸⁰ W	0.000173
¹²⁰ Te	0.0043	¹⁸⁴ Os	0.000122
¹²⁴ Xe	0.00571	¹⁹⁰ Pt	0.00017
¹²⁶ Xe	0.00509	¹⁹⁶ Hg	0.00048
¹³⁰ Ba	0.00476		

Изотоп ¹⁸⁰Та

Образование р-нуклида ¹⁸⁰Та

Фоторасщепление ¹⁸¹Та

Reaction	I^P_{-}	Yield Y										
rteaction	J_F	Experiment	C.M. [33]	TALYS [40]	[35]	[36]	[42]					
181 Ta $(\gamma,n)^{180$ g.s.Ta	1^{+}	1	1	0.93	1	1	1					
181 Ta $(\gamma,n)^{180m}$ Ta	9^{-}		Ŧ	0.07	T		T					
$^{181}\mathrm{Ta}(\gamma,\!2\mathrm{n})^{179}\mathrm{Ta}$	$7/2^{-}$	0.34 ± 0.07	0.29	0.32	0.42	0.24	0.37					
$^{181}\mathrm{Ta}(\gamma,\!3\mathrm{n})^{178\mathrm{g.s.}}\mathrm{Ta}$	1 ⁺	$(1.8\pm0.4)\cdot10^{-2}$	24.10^{-2}	$2.7 \cdot 10^{-2}$		$2 \cdot 10^{-2}$						
181 Ta $(\gamma, 3n)^{178m}$ Ta	7^{-}	$(5\pm1)\cdot10^{-3}$	2.4 . 10	2.7 . 10		2.10						
$^{181}\text{Ta}(\gamma,4\text{n})^{177}\text{Ta}$	$7/2^{+}$	$(1.7\pm 0.5)\cdot 10^{-2}$	$1.0\cdot 10^{-2}$	$1.1\cdot 10^{-2}$								
$^{181}\mathrm{Ta}(\gamma,5\mathrm{n})^{176}\mathrm{Ta}$	$(1)^{-}$	$(5\pm1)\cdot10^{-3}$	$3.7\cdot 10^{-3}$	$3.7\cdot 10^{-3}$								
$^{181}\text{Ta}(\gamma,6n)^{175}\text{Ta}$	$7/2^{+}$	$(1.4\pm 0.3)\cdot 10^{-3}$	$1.2\cdot 10^{-3}$	$1.3\cdot 10^{-3}$								
$^{181}\mathrm{Ta}(\gamma,7\mathrm{n})^{175}\mathrm{Ta}$	3^{+}		$6 \cdot 10^{-5}$	$6 \cdot 10^{-5}$								
181 Ta $(\gamma, p)^{180$ g.s.Hf}	0^{+}		7.10^{-3}	$8 \cdot 10^{-4}$								
181 Ta $(\gamma, p)^{180m}$ Hf	8-	$(5 \pm 1) \cdot ^{-4}$	7.10	$3 \cdot 10^{-5}$								
$^{181}\mathrm{Ta}(\gamma,\mathrm{pn})^{179\mathrm{g.s.}}\mathrm{Hf}$	$9/2^{+}$		5.10^{-3}	1.10^{-3}								
181 Ta $(\gamma, pn)^{179m}$ Hf	$25/2^{-}$	$(4 \pm 3) \cdot^{-5}$	5,10	1.10								

Изотопы Нд

ТI192 9.6 м	ТI193 21.6 м	ТI194 33.0 м	ТI195 1.16 ч	ТІ 196 1.84 ч	ТI197 2.84 ч	TI198 5.3 ч	TI199 7.42 ч	ТI200 26.1 ч	ТІ201 3.0421 дн	TI202 12.31 дн	TI203 29.524	ТI2 <mark>04</mark> 3.78 л	TI205 70.476	ТІ206 4.202 м
(2-)	1/2(+)	2-	1/2+	2-	1/2+	2-	1/2+	2-	1/2+	2-	1/2+	2-	1/2+	0-
m	m	m	m	m	m	m	m	m	m					m
Hg191 ^{49 м}	Hg192 4.85 ч	Нд193 ^{3.80 ч}	Hg194 444 л	Hg195 10.53 ч	Hg196 ^{0.15}	Hg197 64.14 ч	Hg198 ^{9.97}	Hg199 16.87	Hg200 23.10	Hg201 13.18	Hg202 29.86	Hg203 46.594 дн	Hg204 6.87	Нg205 5.14 м
3/2(-)	0+	3/2(-)	0+	1/2-	0+	1/2-	0+	1/2-	0+	3/2-	0+	5/2 -	0+	1/2-
т		m		m		m		m						
Аu190 42.8 м	Au191 3.18 ч	Au192 4.94 ч	Аu193 17.65 ч	Аu194 38.02 ч	Au195 186.098 дн	Аu196 6.1669 дн	Au197 100	Au198 2.69517 дн	Au199 3.139 дн	Аu200 48.4 м	Аu201 26.0 м	Au202 28.4 c	Au203 60 c	Au204 39.8 c
1-	3/2+	1-	3/2+	1-	3/2+	2-	3/2+	2-	3/2+	(1-)	3/2+	(1-)	3/2+	(2-)
m	m	m	m	m	m	m	m	m	m	m				
Pt189 10.87 ч	Pt190 0.014	Рt191 2.83 дн	Pt192 0.782	Рt193 ^{50 л}	Pt194 32.967	Pt195 33.832	Pt196 25.242	Рt197 19.8915 ч	Pt198 7.163	Рt199 30.80 м	Рţ200 12.6 ч	Рt201 2.5 м	Рt202 44 ч	Pt203 10 c
3/2-	6.5E11 л 0+	3/2-	0+	1/2-	0+	1/2-	0+	1/2-	0+	5/2-	0+	(5/2 -)	0+	(1/2-)
				m		m		m		m			m	
Ir188 41.5 ч	Ir189 13.2 дн	ir190 11.78 дн	Ir191 37.3	Ir192 73.82 <mark>7 дн</mark>	Ir193 62.7	lr194 19.28 ч	lr195 2.5 ч	lr196 _{52 c}	Ir197 5.8 м	lr198 8 د	lr199 ^{6 c}			lr202 11 c
1-	3/2+	4-	3/2+	4+	3/2+	1-	3/2+	(0-)	3/2+					(1-,2-)
		m	m	m	m	m	m	m	m					

Образование р-нуклида ¹⁹⁶Нg

Фоторасщепление изотопов Нg

Initial Reaction nucleus		Final	Spin, pa	arity J	р	Reaction yield							
		nucleus	Initial nucleus	Final nucleus		Experime	nt	Calculation[33]					
				G. s.	Isomeric state	$E^{\max} = 19,5$ MeV	$E^{\max} = 29.1$ MeV	$E^{\max}_{MeV} = 1$	$\frac{E^{\max} = 29,1}{\text{MeV}}$				
²⁰⁴ Hg	(γ, n)	²⁰³ Hg	0+	5/2-		1.22 ± 0.24	1.16 ± 0.23	1.05	0.99				
²⁰⁰ Hg	(γ, n)	¹⁹⁹ Hg	0+	1/2-				1.06	1.10				
		^{199m} Hg			13/2+	0.087 ± 0.018	0.085 ± 0.017	-					
¹⁹⁸ Hg	(<i>γ</i> , <i>n</i>)	¹⁹⁷ Hg	0+	1/2-		1.26 ± 0.26	1.27 ± 0.29	1.02	1.01				
		^{197m} Hg			13/2+	0.10 ± 0.02	0.15 ± 0.03	-					
¹⁹⁶ Hg	(<i>γ</i> , <i>n</i>)	¹⁹⁵ Hg	0+	1/2-		0.90 ± 0.17	0.88 ± 0.20	1	1				
		^{195m} Hg			13/2+	0.10 ± 0.03	0.12 ± 0.03	-					
²⁰² Hg	(γ, p)	²⁰¹ Au	0+	3/2+		< 10 ⁻⁴	$(1.4 \pm 0.7)10^{-3}$	5 10-5	7 10-4				
²⁰¹ Hg	(γ, p)	²⁰⁰ Au	3/2-	1(-)		$(2.3 \pm 0.6)10^{-4}$	$(2.4 \pm 0.5)10^{-3}$	0.7 10-4	8.4 10-4				
		^{200m} Au			12–	< 4 10 ⁻⁶	< 10 ⁻⁵						
²⁰⁰ Hg	(y, p)	¹⁹⁹ Au	0+	3/2+		$(4.6 \pm 1)10^{-4}$	$(2.8 \pm 0.6)10^{-3}$	1.0 10-4	1.1 10 ⁻³				
¹⁹⁹ Hg	(γ, p)	¹⁹⁸ Au	1/2	2–		$(3.9 \pm 0.8)10^{-4}$	$(2.7 \pm 0.5)10^{-3}$	1.5 10-4	1.3 10 ⁻³				
		^{198m} Au			(12–)	$< 1 10^{-6}$	< 10 ⁻⁵						
¹⁹⁸ Hg	$(\gamma, n+p)$	¹⁹⁶ Au	0+	2–		< 2 10 ⁻⁶	$(6 \pm 2)10^{-5}$	10 ⁻⁹	7 10-4				

Изотопы Сси и Рс

	In103 65 c	In104 1.80 м	In105 5.07 м	In106 6.2 м	In107 32.4 м	In108 58.0 м	In109 4.167 ч	In110 4.9 ч	In111 2.8047 дн	In112 14.9 <mark>7 м</mark>	In113 4.29	In114 71.9 c	In115 95.71	In116 14.1 <mark>0 c</mark>	In117 43.2 м	In118 5.0 c
m m	(9/2+)	(6+)	9/2+	7+	9/2+	7+	9/2+	7+	9/2+	1+	9/2+	1+	4.41Е <mark>14 л</mark> 9/2+	1+	9/2+	1+
Cd102 Cd103 Cd104 Cd105 Cd106 Cd107 Cd108 Cd109 Cd110 Cd111 Cd112 Cd113 Cd114 Cd115 Cd116 Cd117 2.49 v 0+ 52+ 0+	m	т	т	m	т	m	m	m	m	m	m	m	m	m	m	m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cd102 5.5 м	Cd103 7.3 м	Cd104 57.7 м	Cd105 55.5 м	Cd106 1.25	Cd107 6.50 ч	Cd108 0.89	Сd109 461.4 дн	Cd110 12.49	Cd111 12.80	Cd112 24.13	Cd <mark>113</mark> 12.22	Cd114 28.73	Сd115 53.46 ч	Cd116 7.49	Сd117 2.49 ч
Mag Mag <th>0+</th> <th>5/2+</th> <th>0+</th> <th>5/2+</th> <th>0+25</th> <th>5/2+</th> <th>0+25</th> <th>5/2+</th> <th>0+</th> <th>1/2+</th> <th>0+</th> <th>/./Е15л 1/2+</th> <th>0+</th> <th>1/2+</th> <th>3.1E19 π 2β- 0+</th> <th>1/2+</th>	0+	5/2+	0+	5/2+	0+25	5/2+	0+25	5/2+	0+	1/2+	0+	/./Е15л 1/2+	0+	1/2+	3.1E19 π 2β- 0+	1/2+
Ag101 Ag102 Ag103 Ag104 Ag105 Ag105 Ag106 Ag107 Ag108 Ag109 Ag110 Ag111 Ag112 Ag113 Ag114 Ag115 Ag116 11.1 m 12.9 m 65.7 m 65.7 m 69.2 m 41.29 gH 23.96 m 51.839 2.37 m 48.161 24.6 c 7.45 gH 3.130 u 5.37 u 4.6 c 20.0 m 2.68 m 9/2+ 5+ 7/2+ 5+ 1/2- 1+ 1/2- 1+ 1/2- 1+ 1/2- 1+ 1/2- 2(-) 1/2- 1+ 1/2- 2(-) 1/2- 1+ 1/2- 2(-) 1/2- 1+ 1/2- 2(-) 1/2- 1+ 1/2- 2(-) 1/2- 1+ 1/2- 2(-) 1/2- 1+ 1/2- 2(-) 1/2- 1+ 1/2- 1/2- 1+ 1/2- 1+ 1/2- 1/2- 1+ 1/2- 1/2- 1+ 1/2- 1/2- 1+ 1/2- 1/2- 1+ 1/2- 1/2- 1+ 1/2- 1/2- 1+ 1/2- 1+ </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>m</th> <th></th> <th>m</th> <th></th> <th>m</th> <th></th> <th>m</th> <th></th> <th>m</th>								m		m		m		m		m
9/2+ 5+ 7/2+ 5+ 1/2- 1+ 1/2- 1+ 1/2- 1+ 1/2- 1+ 1/2- 1+ 1/2- 2(-) 1/2- 1/2- 1+ 1/2- (2)- m	Ад101 11.1 м	Ад102 12.9 м	Ад103 65.7 м	Ад104 ^{69.2 м}	Ag105 41.29 дн	Ад106 23.96 м	Ag107 51.839	Ад108 2.37 м	Ag109 48.161	Ag110 24.6 c	Ag111 7.45 дн	Ag112 3.130 ч	Ад113 5.37 ч	Ag114 4.6 c	Ад115 20.0 м	Ад116 2.68 м
m m	9/2+	5+	7/2+	5+	1/2-	1+	1/2-	1+	1/2-	1+	1/2-	2(-)	1/2-	1+	1/2-	(2)-
Pd100 3.63 дн Pd101 8.47 ч Pd102 1.02 Pd103 16.991 дн Pd104 11.14 Pd105 22.33 Pd106 27.33 Pd107 6.5E6 л Pd109 13.7012 ч Pd110 11.72 Pd111 23.4 M Pd112 21.03 ч Pd113 93 c Pd114 2.42 M Pd115 2.42 M 0+ 572+ <t< th=""><th>т</th><th>т</th><th>m</th><th>m</th><th>m</th><th>m</th><th>m</th><th>m</th><th>m</th><th>m</th><th>m</th><th></th><th>m</th><th></th><th>m</th><th>m</th></t<>	т	т	m	m	m	m	m	m	m	m	m		m		m	m
0+ 52+ 0+ 52+ 0+ 52+ 0+ 52+ 0+ 52+ 0+ (52+) m m m m m m m m m	Pd100 3.63 дн	Рd101 8.47 ч	Pd102 1.02	Рd103 16.991 дн	Pd104 11.14	Pd105 22.33	Pd106 27.33	Рd107 6.5E6 л	Pd108 26.46	Pd109 13.7012 ч	Pd110 11.72	Рd111 23.4 м	Рd112 21.03 ч	Pd113 93 c	Рd114 2.42 м	Pd115 25 c
	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	(5/2+)	0+	(5/2+)
								m		m		m		m		m

Изотопы Сd

Интегральные сечения реакций (γ, p) , (γ, n) , $(\gamma, 2n)$ на изотопах Cd^A

в зависимости от массового числа А.

Изотопы Pd

Интегральные сечения реакций $(\gamma, p), (\gamma, n), (\gamma, 2n)$ на изотопах Pd в зависимости от массового числа *A*.

полное поглощение

Особенности ядерных реакций в звездах

- 1. Звездная плазма
- 2. Особенности В-распада
 - e^- -3axBat $p + e^- \rightarrow n + v_e$,
 - e^+ -3axbat $n + e^+ \rightarrow p + \tilde{v}_e$
- 3. Изменение свойства атомных ядер в среде $\rho > \rho_{\rm ядерн}$

β-распад ⁹⁹Tc — ⁹⁹Ru

Период полураспада ⁹⁹Тс из основного состояния, измеренный в лабораторных условиях, составляет $T_{1/2} = 2,1 \cdot 10^5$ лет. При температуре $T > 3 \cdot 10^8$ К в результате β -распада из возбужденного состояния ⁹⁹Тс на возбужденное состояние ⁹⁹Ru период полураспада $T_{1/2}$ становится меньше 10 лет.

Благодарю за внимание