

РНЦ «Курчатовский институт»

М.Д. Скорохватов

Детектор Борексино. Физические результаты

НИИЯФ МГУ 2 декабря 2008 г.

К числу наиболее ярких и вместе с тем трудных страниц в истории развития физики в XX веке принадлежит открытие нейтрино, необычным путём вошла в науку эта новая частица, удивительными оказались ее свойства, и не исключено, что именно с ней связаны самые глубокие тайны природы.

Расширение Стандартной модели Окно в новую физику

Генерация энергии Солнца

99% v_e с энергиями менее 1 MeV

термоядерный процесс	энергия ν	Solar Model	
	MeV	поток, v/см²с	
$p + p \rightarrow d + e^+ + v_e$	< 0.4	5.97×10 ¹⁰	
$^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \nu_{e}$	0.86 (90%) 0.38 (10%)	5.07×10 ⁹	
$p + e^- + p \rightarrow d + v_e$	1.4	1.41×10 ⁸	
$^{8}B \rightarrow ^{8}Be + e^{+} + \nu_{e}$	< 15	5.94×10 ⁶	
³ He + p \rightarrow ⁴ He + e ⁺ + ν_{e}	< 19	7.90×10 ³	

Солнечная модель

Октябрь 2008 года

термоядерный процесс	Solar Model HM поток, v/см²с	Solar Model LM поток, v/см²с	разница
$p + p \rightarrow d + e^+ + v_e$	5.97×10 ¹⁰	6.04×10 ¹⁰	1.2%
7 Be + e ⁻ \rightarrow 7 Li + v_{e}	5.07×10 ⁹	4.55×10 ⁹	10%
$^{8}B \rightarrow ^{8}Be + e^{+} + v_{e}$	5.94×10 ⁶	4.72×10 ⁶	21%

Задачи

Экспериментальная проверка моделей

Прецизионные измерения интенсивности нейтринного излучения

Спектрометрия нейтрино низких энергий

Парадокс солнечных нейтрино

скорость образования ³⁷Ar меньше (~1/3) ожидаемого значения ! v_e + ³⁷Cl \rightarrow ³⁷Ar + e⁻ порог 0.81 MeV

Первый радиохимический эксперимент: 1964-1968 гг., шахта Хоумстейк, Северная Дакота

Р.Дэвис. Нобелевская премия, 2002 г.

 $\Delta m^2 = m_1^2 - m_2^2$ разность квадратов масс

«... поток наблюдаемых солнечных нейтрино должен быть в два раза меньше полного потока солнечных нейтрино.» «Нейтринные опыты и вопрос о сохранении лептонного заряда» ЖЭТФ, 1967, т.53, вып.5, с.1717-1725.

Стандартная модель

Усиление осцилляций в веществе (эффект MSW)

Нейтринные эксперименты

1960	1970	1980	1990	2000	2010	2020
<u>Ради</u> I-Ar (выпол AGE (выпо ALLEX/GI	<u>иохимия:</u> інен) олнен) NO (выполн	_{іен)} <u>Чере</u> <u>дете</u> Kamio SK (вы	<mark>енковские</mark> екторы: kande(выпа полнен)	олнен)		
спектрометрі информации	ической	SINO (1 высокий регистра только 81	выполнен) порог ции (5-7 Мз 3-нейтрино	B), Kai SN LEI	цинтилля eteкtopы rexino (за mLand (гот O+ (планир NS (планиру	<mark>ционные</mark> пущен, 200 овится) уется) уется)

.

Результаты экспериментов

Энергия (MeV)	Процесс регистрации	Экспер. точность	ϕ экс./ $\phi_{_{\!\mathbb{C}}}$ без осцилляций	ϕ ожид./ $\phi_{_{\odot}}$ MSW-LMA
> 0.23	⁷¹ Ga(v _e , e ⁻) ⁷¹ Ge	~5%	~0.53	0.56
> 0.81	³⁷ Cl(v _e , e ⁻) ³⁷ Ar	~9%	~0.30	0.30
> 5÷5.5	d(v _e , e⁻)pp	~9%	~0.29	0.30
> 5÷7	$v_x^+ e^- \rightarrow v_x^+ e^-$	~4%	~0.40	0.41
> 2.2	d(v _e , v _e)np	~9%	~0.93	1

Данные могут быть описаны единым образом в модели MSW при ∆m² ~ 8 × 10⁻⁵ eV² sin²θ ~ 0.3 **P**_{ee}=**1-1/2**×**sin**²2θ - для энергий < 1 MeV (pp-, ⁷Ве нейтрино)

P_{ee}= sin²θ - для энергий > 1 MeV (⁸В нейтрино)

$$P_{ee} \times \phi_{\odot} + 0.154(1 - P_{ee}) \times \phi_{\odot}$$

Рассеяние нейтрино на электроне

«Очевидны преимущества прямой регистрации каждого случая поглощения нейтрино, равно как и определения энергетического спектра. Такой путь предполагает использование детектора, с помощью которого измеряется энергия образующегося электрона».

Ф. Райнес1964-1966 гг.

ES
$$v_x + e^- \rightarrow v_x + e^-$$

Elastic Scattering
 v_x electron
 v_x electron
neutrino electron
 $\sigma=10^{-44} \text{ cm}^2$?

 $\phi_{\rm ES} = Pee \times \phi_{\odot} + 0.154(1-Pee) \times \phi_{\odot}$

1964 г. 200 л ЖС, E > 9 MeV

Фон сцинтилляционных детекторов

Скорость счета ⁷Ве-v на 100т ЖС:

 $75 \pm 4 \, \text{соб./день}$ без осцилляций $48 \pm 4 \, \text{соб./день}$ MSW-LMA

РНЦ КИ, ИЯИ РАН, 1976

3 кг ЖС, 660 мвэ

Фоновая скорость счета на 100т: ~**2**×**10**⁻² **Bq/Kg** для E>1 MeV

Для сравнения:

вода 10 Bq/Kg по ²³⁸U, ²³²Th and ⁴⁰K воздух 10 Bq/m³ по ³⁹Ar, ⁸⁵Kr, ²²²Rn

Проект BOREXINO

научные центры:

Германия	Technische Universit¨at Muenchen, Max-Planck-Institut f¨ur Kernphysik
Италия:	Universit`a degli Studi e INFN, Milano; Universit`a e INFN, Genova; Universit`a e INFN,Perugia;
	Laboratori Nazionali del Gran Sasso INFN
Польша:	M.Smoluchowski Institute of Physics, Jagiellonian University
Россия:	RRC Kurchatov Institute; Joint Institute for Nuclear Research; St. Petersburg Nuclear Physics Institute;
	Skobeltsyn Institute of Nuclear Physics of Moscow State University
США:	Princeton University; University of Massachusetts; Virginia Polytechnic Institute and State University

Украина: Kiev Institute for Nuclear Research

Франция: IN2P3, Laboratoire AstroParticule et Cosmologie,

Национальная лаборатория Гран Сассо

Ультра низкофоновый детектор

Идеи построения детектора

Путь к низкофоновым сцинтилляторам

Концентрация (²³⁸U, ²³²Th) < 10⁻¹⁶ г/г

Производство ЖС с ультра низким содержанием 238U, 232Th, 40K, 39Ar, 85Kr, 222Rn

добыча, доставка

очистка: дистилляция, водная экстракция, фильтрация, продувка очищенным азотом.

Прототип детектора Борексино

Экспериментальный комплекс Борексино

Ультра низкофоновый детектор

Experimental Hall In Gran Sasso (Hall C)

Stainless Steel Sphere (SSS)

PMTs ready to be mounted

Optical fiber istallation

PMTs installation (2001-2002)

Nylon vessels installation (2004)

Nylon vessels installed and inflated (May 2004)

Filling with pseudocumene (started Jan 2007)

Ultra-pure water

Filling with pseudocumene completed 15th May 2007

Отбор событий, регистрируемых детектором

Отбор событий - многоступенчатая процедура, основанная на использовании компьютерных методов:

-отбирались одиночные события, которые могли быть ассоциированы с сигналами от одиночных электронов в реакции

 $v + e \rightarrow v + e$

- корреляции с сигналами от регистрируемых мюонов космического излучения и продуктами распада радиоактивных примесей.
- анализ импульсов по форме

с целью отделения регистрации электронов и альфа-частиц.

- реконструкция событий

Общая эффективность подавления 99.99%

Реконструкция событий: энергетический и геометрический отбор

Цель – подавление внешнего фона, в основном, внешних гамма-квантов.

Выделение чувствительного объема мишени **R < 3 м** (100 т)

Энергетическое разрешение (σ):

~5% при 1 MeV

Пространственное разрешение:

~ 5 ст при 1 MeV

Ожидаемый спектр событий в низко энергетической области

Многолетние исследования с прототипом детектора:

Подавление фоновых событий от распада 11С

- Использование 3-х кратных совпадений
- Пространственный отбор вокруг положения нейтрона и мюонного трека

Измерение низко энергетической части спектра

Измерение спектра 8В-нейтрино

Энергетический порог 2.8 MeV

Измеренная скорость счета 7Ве-нейтрино:

$$49 \pm 3_{stat} \pm 4_{syst}$$
 v / день / 100 тонн

Ожидаемая скорость счета в модели без осцилляций:

 $75 \pm 4 \quad \nu / \partial / 100 m$

В модели с осцилляциями:

 $48 \pm 4 \quad v / \partial / 100 m$

Систематические погрешности [%] *

Total Scintillator Mass	0.2
Fiducial Mass Ratio	6.0
Live Time	0.1
Detector Resp. Function	6.0
Cuts Efficiency	0.3
Total	8.5

*До проведения систематических калибровок

~

Поток 7Ве-нейтрино в модели без осцилляций:

SSM BPS07(GS98) HM

$$(3.32 \pm 0.20_{stat} \pm 0.27_{syst}) \times 10^9 v / cm^2 c$$

 ϕ [©] = (5.08±0.25) ×10⁹ v/cm²c

Измеренная скорость счета 8В-нейтрино:

$$0.26 \pm 0.04_{stat} \pm 0.02_{syst}$$
 v / день / 100 тонн

Поток 8В-нейтрино

$$(2.65 \pm 0.44_{stat} \pm 0.18_{syst}) \times 10^6 v / cm^2 c$$

В модели без осцилляций:

$$\left(\Phi_{_{\mathcal{I}\mathcal{K}\mathcal{C}}}/\Phi_{_{meop.}}\right)_{>2.8\,\mathrm{MeV}}=0.45$$

В модели с осцилляциями:

$$\left(\Phi_{_{3\kappa c}} / \Phi_{_{meop.}}\right)_{> 2.8 \,\mathrm{MeV}} = 0.96 \pm 0.19$$

Результаты измерений

Впервые в одном эксперименте получены данные, подтверждающие MSW эффект

Используя SM (BPS 07) и данные измерений:

 P_{ee} (⁷Be) = 0.56 ± 0.10

 P_{ee} (⁸B) = 0.35 ± 0.10

Перспективы проекта Борексино

- * Уточнение потока 7Be (лучше 5 %, что сравнимо с предсказанием модели), наблюдение годовых вариаций потока (эксцентриситет 7%)
- * Уточнение потока 8В : проанализировать всю мищень, т.е. около 300 т., понизить порог анализа.
- * Вакуумные осцилляции антинейтрино,

регистрация антинейтрино от всех реакторов Европы

- * Геонейтрино
- * Сверхновые
- * 2-бета распад.
- * Редкие процессы проверка Стандартной модели

Генерация энергии Солнца

рр - цикл

СNО - цикл

'He

vor: ppppp ⁷Be⁸Bhep

99.994% of solar neutrino spectrum is NOT measured yet in real-time mode

Радиохимические эксперименты

SAGE (c 1990),

Баксанская подземная лаборатория ИЯИ РАН

GALLEX/GNO (с 1991) Подземная лаборатория Гран Сассо, Италия

Водные черенковские детекторы солнечных нейтрино

