Структура протона Нуклонные резонансы

Е.Л. Исупов

Эксперименты Ферми по рассеянию пионов на протонах. Дельта-резонансы.

FIG. 1. Total cross sections of negative pions in hydrogen (sides of the rectangle represent the error) and positive pions in hydrogen (arms of the

 $\pi^+ p \to \pi^+ p$ $\pi^- p \to \pi^- p$

 $L_{2I,2J}$

 $\Delta(1232)P_{33} = N(1680)F_{15}$ $\Delta(1232)3/2^+ = N(1680)5/2^+$

Фазовый анализ

New era in electromagnetic nuclear physics

- Electrons and photons are perfect tools to explore the properties of strongly interacting systems.
- In the past ~ 20 30 years many facilities with high-quality continuous beam and large acceptance detectors were launched.

MAMI Mainz ELSA Bonn GRAAL Grenoble LEPS Osaka JLAB Newport News

Baryon Resonances and SU(6) x O(3)

|Baryon>: $\alpha |qqq>+\beta |qqq(q\overline{q})|+\gamma |qqqG>+..$

3 Flavors:
$$\{u,d,s\} \rightarrow SU(3)$$

$$\{qqq\}: 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$$

Quark spin
$$s_q = \frac{1}{2} \rightarrow SU(2)$$

 $\{\vec{q}\vec{q}\vec{q}\}: 6 \otimes 6 \otimes 6 = 56 \oplus 70 \oplus 70 \oplus 20$

SU(6) multiplets decompose into flavor multiplets:

 $56 = {}^{4}10 \bigoplus {}^{2}8$ $70 = {}^{2}10 \bigoplus {}^{4}8 \bigoplus {}^{2}8 \bigoplus {}^{2}1$ $20 = {}^{2}8 \bigoplus {}^{4}1$

Baryon spin:
$$\vec{J} = \vec{L} + \sum \vec{s_i}$$

parity: $P = (-1)^L$

O(3)

SU(6) x O(3) Classification of Baryons

"Missing" Resonances?

Problem: symmetric CQM predicts many more states than observed (in π N scattering)

Possible solutions:

1. diquark model

- fewer degrees-of-freedom
- open question: mechanism for q² formation?

2. not all states have been found

- possible reason: decouple from πN -channel
- model calculations: missing states couple to $\pi\pi N~(\pi\Delta,~\rho N),~~\omega N,~~\text{KY}$

Excited Nucleon States and Insight into Strong QCD Dynamics

Two conceptually different approaches for description of nucleon/N* structure from first QCD principles: •Lattice QCD (LQCD) •Dyson-Schwinger Equation of QCD (DSEQCD)

Dressed Quark Mass Function C.D. Roberts, Few Body Syst. 58, 5 (2017) quark-quark correlations in baryons Ch. Chen et al, Phys. Rev. D97, 034016 (2018)

N* structure studies address:

- Nature of > 98% of hadron mass
- Emergence of the ground nucleon parton distributions in 1D and 3D

Extraction of γ_vNN* Electrocouplings from Exclusive Meson Electroproduction off Nucleons

 Consistent results on γ_vpN* electrocouplings from different meson electroproduction channels are critical in order to validate reliable extraction of these quantities.

Jefferson Lab (Newport News, VA, USA)

N* Spectrum and Structure in Experiments with CLAS/CLAS12

The experimental program on the studies of N* spectrum and structure in exclusive meson photo-/electroproduction with CLAS/CLAS12 seeks to determine:

- N* spectrum with a focus on the new, so-called "missing" and hybrid resonance search
- γ_vpN* electrocouplings at photon virtualities up to 5.0 GeV² for most of the excited proton states through analyzing major meson electroproduction channels from CLAS data
- extend accessible Q² range up to 12 GeV² from the CLAS12 data and explore N* structure evolution in the transition from the strong and pQCD regimes
- explore the hadron mass emergence by mapping out dynamical quark mass in the transition from almost massless pQCD quark to fully dressed constituent quark

A unique source of information on many facets of strong QCD in generating excited nucleon states with different structural features

Review papers:

- 1. I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).
- 2. V.D. Burkert and C.D. Roberts, arXiv:1710.02549 [nucl-ex].
- 3. C.D. Roberts, Few Body Syst. 59, 72 (2018).
- 4. V.I. Mokeev, Few Body Syst. 59, 46 (2018).

Summary of Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables	 dσ/dΩ-CM angular distributions A_b,A_t,A_{bt}-longitudinal beam, target, and beam-target asymmetries P⁰, P' -recoil and transferred polarization of strange baryon
π +n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	dσ/dΩ dσ/dΩ dσ/dΩ, A _b dσ/dΩ	
π ⁰ p	1.1-1.38 1.1-1.68 1.1-1.39	0.16-0.36 0.4-1.8 3.0-6.0	dσ/dΩ dσ/dΩ, A _b ,A _t ,A _{bt} dσ/dΩ	
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ	
K⁺Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ Pº, P'	Over 120,000 data points!
$K^+\Sigma^0$	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P'	
π ⁺ π ⁻ p	1.3-1.6 1.4-2.1 1.4-2.0	0.2-0.6 0.5-1.5 2.0-5.0	Nine 1-fold differential cross sections	of the final hadron phase space

The measured observables from CLAS are stored in the CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi

Polarized Structure Function σ_{LT} , from ep->ep π^0 in the resonance region

- CLAS detector data 12/2002 1/2003
- Beam energy: 2.036 GeV
- Beam polarization: ~ 80%
- Target: Liquid Hydrogen, thickness 2 cm
- Number of triggers: ~ 1.5 billions

0.4 < Q² < 1 GeV² 1.1 < W < 1.8 GeV

Exclusive $\pi^0 p$ electroproduction off protons in the resonance region at photon virtualities $0.4 \text{ GeV}^2 \leq Q^2 \leq 1 \text{ GeV}^2$

N. Markov,^{8, 36},^{*} K. Joo,⁸ V.D. Burkert,³⁶ V.I. Mokeev,³⁶ L. C. Smith,⁴¹ M. Ungaro,³⁶ S. Adhikari,¹¹

Phys. Rev. C 101, 015208 - Published 21 January 2020

Proton identification

Polarized Structure Function $\sigma_{LT'}$

$$\frac{d}{d\Omega_{\pi}^{*}} = \frac{p_{\pi}^{*}}{k_{\gamma}^{*}} [\sigma_{0} + h\sqrt{2\epsilon_{L}(1-\epsilon)} \sigma_{LT'} \sin \theta_{\pi}^{*} \sin \phi_{\pi}^{*}]$$

$$\sigma_{0} = \sigma_{T} + \epsilon_{L}\sigma_{L} + \epsilon\sigma_{TT} \sin^{2}\theta_{\pi}^{*} \cos 2\phi_{\pi}^{*}$$

$$+ \sqrt{2\epsilon_{L}(1+\epsilon)} \sigma_{LT} \sin \theta_{\pi}^{*} \cos \phi_{\pi}^{*},$$

$$A_{LT'} = \frac{d}{d}^{2} \frac{\sigma^{+} - d}{\sigma^{+} + d}^{2} \frac{\sigma^{-}}{\sigma^{-}}}{d^{2} \sigma^{+} + d^{2} \sigma^{-}} = \frac{\sqrt{2\epsilon_{L}(1-\epsilon)} \sigma_{LT'} \sin \theta_{\pi}^{*} \sin \phi_{\pi}^{*}}{\sigma_{0}}$$

 $A_{LT'} = \frac{A_m}{P_e},$

 $A_m = \frac{N_{\pi}^{+} - N_{\pi}^{-}}{N_{\pi}^{+} + N_{\pi}^{-}}$

We have unpolarized cross sections from the same data.

Polarized Structure Function $\sigma_{LT'}$

Binning:

28 W-bins from 1.1 to 1.8 GeV, width = 25 MeV 2 Q²-bins [0.4-0.6] and [0.6-1.0] GeV² 10 Cos(θ)-bins [-1,1] width = 0.2 12 Φ -bins [0,360] width = 30°

W = 1.66 GeV

 $Q^2 = 0.5 \text{ GeV}^2$

 $\cos(\theta)$ =-0.9

σ_{LT} , 0.4<Q²<0.6 GeV² green-MAID2007, black-UIM

JM Model for Analysis of $\pi^+\pi^-p$ Photo-/Electroproduction

Major objectives: extraction of $\gamma_{r,v}$ pN* photo-/electrocouplings and $\pi\Delta$, ρ p decay widths

• five channels with unstable intermediate meson/baryon and direct $\pi^+\pi^-p$ production;

• N* contribute to $\pi\Delta$ and ρp channels only;

• unitarized Breit-Wigner ansatz for resonant amplitudes;

 phenomenological parameterization of the other meson-baryon channel amplitudes (see Ref. 2)

Good description of $\pi^+\pi^-p$ photo-/electroproduction off protons cross sections at 1.4 GeV<W<2.0 GeV and 0 GeV²<Q²<5.0 GeV²

Resonance Photocouplings from the CLAS $\pi^{+}\pi^{-}p$ Photoproduction Cross Sections

In 2019 partial update of the Review of Particle Physics the entries on photocouplings and N $\pi\pi$ decay widths for many resonances with masses >1.6 GeV were revised based on the studies of $\pi^+\pi^-p$ photoproduction with CLAS. 17

Accessing resonance electrocouplings from the $\pi^+\pi^-p$ differential electroproduction off protons cross sections

Recent CLAS Data on $\pi^+\pi^-p$ Electroproduction off Protons at 0.4<Q²<1.0 GeV²

 Promising prospect to obtain 8 additional points on Q²-evolution of N'(1720)3/2⁺ electrocouplings in the range of 0.4 GeV²<Q²< 0.8 GeV²

Roper Resonance in 2002 & 2019

protons data

V. Burkert, Baryons 2002

Electrocouplings of N(1440)1/2⁺ from N π and $\pi^+\pi^-p$ **Electroproduction off Proton Data**

Consistent results on N(1440)1/2⁺ electrocouplings from the independent studies of two major N π and $\pi^+\pi^-p$ electroproduction off proton channels with different non-resonant contributions strongly support credible extraction of these quantities in a nearly model-independent way.

Electrocouplings of N(1520)3/2⁻ from N π and $\pi^+\pi^-p$ Electroproduction off Proton Data

Consistent results from N π and $\pi^+\pi^-p$ electroproduction off proton data on electrocouplings of N(1440)1/2⁺ and N(1520)3/2⁻ resonances with the biggest combined contribution into the resonant parts of both channels at W<1.55 GeV strongly support the capabilities of the developed reaction models for credible extraction of resonance electrocouplings from independent analyses of both N π and $\pi^+\pi^-p$ electroproduction.

Расчеты в рамках кварковых моделей

IGOR T. OBUKHOVSKY et al.

PHYS. REV. D 100, 094013 (2019)

From Resonance Electrocouplings to Hadron Mass Generation

DSE analyses of the CLAS data on $\Delta(1232)3/2^+$ electroexcitation demonstrated that dressed quark mass is running with momentum.

Good data description at Q²>2.0 GeV² achieved with <u>the same dressed quark mass function</u> for the ground and excited nucleon states of distinctively different structure validate the DSE results on momentum dependence of dressed quark mass. $\gamma_v pN^*$ electrocoupling data offer access to the strong QCD dynamics underlying the hadron mass generation.

One of the most important achievements in hadron physics of the last decade in synergistic efforts between experimentalists, phenomenologists and theorists.

Dressed Quark Mass Function from Electrocouplings of Radial A-Excitation

0

[nucl-th]

2

form factors from DSEQCD

3

 $x=Q^2/m_N^2$

Parameter free predictions for

 $N \rightarrow \Delta(1600)3/2 + e.m.$ transition

Ya Lu et al, arXiv:1904.03205

4

5

6

Good description of the CLAS $\pi^{+}\pi^{-}p$ electroproduction off protons data was achieved at 1.4 GeV < W < 2.0 GeV and 2.0 GeV² < Q² < 5.0 GeV² within JM19 model.

- $\Delta(1600)3/2^+$ electrocouplings will be extracted soon.
- Confirmation of the DSE expectations will prove a relevance of dressed quark with running mass in the structure of $\Delta(1232)3/2^+$ and radial nucleon and Δ excitations.
- Studies of [70,1⁻] orbital excitations is the next step.

25

Evidence for the Existence of the New State N'(1720)3/2⁺ from Combined $\pi^+\pi^-p$ Analyses in both Photo- and Electroproduction

N(1720)3/2⁺ hadronic decays from the CLAS data fit with conventional resonances only

	BF(πΔ), %	BF(ρp), %
electroproduction	64-100	<5
photoproduction	14-60	19-69

The contradictory BF values for N(1720)3/2⁺ decays to the $\pi\Delta$ and ρp final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only.

N* hadronic decays from the data fit that incorporates the new N'(1720)3/2⁺ state

Resonance	ΒΕ (πΔ) %	BE(op) %
Resonance	Ы (лд), 78	
N'(1720)3/2 ⁺	47-64	3-10
photoproduction	46-62	4-13
N(1720)3/2⁺		
electroproduction	39-55	23-49
photoproduction	38-53	31-46
Δ(1700)3/2 ⁻		
electroproduction	77-95	3-5
photoproduction	78-93	3-6

The successful description of the $\pi^+\pi^-p$ photoand electroproduction data achieved by implementing new N'(1720)3/2⁺ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of the new N'(1720)3/2⁺ state.

The Parameters of the New N'(1720)3/2⁺ State from the CLAS Data Fit

The photo-/electrocouplings of the N'(1720)3/2⁺ and conventional N(1720)3/2⁺ states

• N'(1720)3/2⁺ is the only new resonance for which data on electroexcitation amplitudes have become available.

• Gaining insight into the "missing" resonance structure will shed light on their peculiar structural features that have made them so elusive, as well as on the emergence of new resonances from QCD.

Evidence for the New $N'(1720)3/2^+$ Nucleon Resonance from Combined Studies of CLAS $\pi^+\pi^-p$ Photo- and Electroproduction Data

V.I. Mokeev^{a,*}, V.D. Burkert^a, D.S. Carman^a, L. Elouadrhiri^a, E. Golovatch^b, R.W. Gothe^c, K. Hicks^d, B.S. Ishkhanov^b, E.L. Isupov^b, K. Joo^e, N. Markov^{a,e}, E. Pasyuk^a, A. Trivedi^c

^a Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ^b Skobeltsyn Institute of Nuclear Physics and Physics Department, Lomonosov Moscow State University, 119234 Moscow, Russia ^c University of South Carolina, Columbia, South Carolina 29208, USA ^d Ohio University, Athens, Ohio 45701, USA ^e University of Connecticut, Storrs, Connecticut 06269, USA

Submitted to Physics Letters B

CLAS12 N* Program at High Q²

E12-09-003

Nucleon Resonance Studies with CLAS12

Gothe, Mokeev, Burkert, Cole, Joo, Stoler

E12-06-108A

KY Electroproduction with CLAS12

Carman, Gothe, Mokeev

Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for Nπ, Nη, Nππ, KY:

 E_b = 11 GeV, Q² = 3 \rightarrow 12 GeV², W \rightarrow 3.0 GeV with nearly complete coverage of the final state phase space

Key Motivation

Study the structure of all prominent N* states in the mass range up to 2.0 GeV vs. Q^2 up to 12 GeV².

CLAS12 is the only facility to map-out the N* quark with minimal meson-baryon cloud contributions.

The experiments already started in February 2018!

Hunting for Glue in Excited Baryons with CLAS12

Can glue be a structural component to generate hybrid q³g baryon states?

Predictions of the N* spectrum from QCD show both regular q³ <u>and</u> hybrid q³g states

Search for hybrid baryons with CLAS12 in exclusive KY and $\pi^+\pi^-p$ electroproduction

LQCD and/or QM predictions on Q^2 evolution of the hybrid-baryon electroexcitation amplitudes are critical in order to establish the nature of a baryon state

12 GeV Era with the CLAS12 Detector

Physics run started successfully in February 2018.

Спасибо за внимание!