Moscow State University

Nuclei at the Mass Limit: Discovery of Super Heavy Nuclei

Yuri OGANESSIAN Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research

> The seminar on Nuclear Physics of INPh (MSU) April 04, 2017, Moscow

For more than 22 centuries

```
From Democritus (460 - 371 BC...)
to Dalton (1766 - 1844)
```

it was assumed that the objects around us are made up of tiny indivisible particles - atoms interacting with each other.. - All atoms of one element are similar and have the same weight,

- Atoms of different elements have different weights,

John Dalton 1808

- The building bricks molecules are complex compositions of different atoms in certain proportions,
- The matter is neither formed nor is disappearing in chemical reactions

36 elements were known at that time

63 elements were already know by that time

ĺ	r	р у	пп	ы	э	ле	ме	ж	r o	в	
Pagest	0	1	п	ш	IV	V	VI	VII		VIII	
0	Назотовесі										
1	Коровай	Водород H 1,008	-	-	-	-	177	-			
2	Fernsk He 4,0	Лэтэй Li 7,03	Septowasi Be 9,1	Бор В 11,0	Утверод С 12,0	A307 N 14,01	Кислород О 16,00	Фтор F 19,0			
3	Heon Ne 19,9	Harpedi Na 23,05	Marrook Mg 24,36	Azociologica Al 27,1	Kpenesel Si 28,2	Фосфор Р31,0	Cepa \$ 32,06	Xnop C135,45			
4	Apron Ar 38	Kamdi K 39,15	Kamaundi Ca.40,1	Casaquedi Se 44,1	Тэлжн Ті 48,1	Ванадий V 51,2	Xpost Cr 52,1	Mapruseu Min 55,1	Желето Fe 55,9	Кобылат Со 59	Hiosens Nii 59
5		Meza Cu 63,6	Linex Zn 65,4	Farrodi Ga 70,0	Fepsuadă Ge 72,5	Manusan As 75	Centers Se 79,2	Бром Br 79,95			
6	Крижнон К r 81,8	Pythenek Rb 85,5	Crponasti Sr 87,6	Иттрий ¥ 89,0	Lingnaseadh Zir 90,6	Haofedi Nib 94,0	Mountaes Mo 96,0	-	Рутенові Ru 101,7	Pomti Rh 103,0	Петерой Pd 106,5
7		Серебро Аg 107,93	Kapož C4112,4	Horeadi In 115,0	Cutoso Sn 119,0	Сурьма 5b 120,2	Tennyp Te 127	Иод 1 127			
8	Ксенов Хе 128	Цетай Ся 132,9	Eeposk Ba 137,4	Лантан La 138,9	Llepodi Ce 140,2	-		-		-	-
9		-	-	-	-	-	-	-			
10	-		1.7	Иттербий Ув 173	-	Тактыл Та 183	Волафран W 184	1	Ocausă Oși 191	Mprezek Er 193	filmmon Pt 194,8
11											
12	-	-	Радой Ra 225	-	Topeti Th 232,5	-	Ураж U 238,5				

Dmitri Mendeleev 1869

Genuine D.I.Mendeleev's Table

Mendeleev's Table of elements (1869) showed for the first time

that the chemical properties (or the nature of the interaction) are regularly repeated with increasing the weight (or atomic number) of the elements.

It follows that:

the atoms are not "building bricks",

They themselves are complex internal structures.

Discovery of the Electron

In 1897, J.J. Thomson used a cathode ray tube to deduce the presence of a negatively charged particle.

Cathode ray tubes pass electricity through a gas that is contained at a very low pressure.

86 elements were already known by that time

In attempts to describe the properties of nuclear matter, George Gamow made a daring assumption that atomic nucleus may be similar to a drop of positively charged liquid.

George Gamow 1928

In fact, the density of nuclear liquid is 10¹⁵ times more than that of water

Charged Liquid Drop Model of the atomic nucleus.

G. Gamow, 1928.

With this beautiful macroscopic and, in this sense, classical model of nucleus that presents nuclei as drops of charged liquid of constant density:

G.A.Gamov –developed the theory of alpha-decay of the atomic nuclei (1928)

C.F. von Weizsäcker – wrote the famous formula for the binding energy of nuclei (1933)

N.Bohr and J.Wheeler – developed the theory of nuclear fission (1939)

We will be discussing today the problem of synthesis and properties of extremely heavy nuclei to get answers to questions about:

- How big the nuclei can be?
- What of proton and neutron number they may have?
- Where is the mass limit of the nuclei?
- How many chemical elements can be and what are their properties?

Chart of the Nuclides

Yu. Oganessian. "Nuclear at the Mass Limit, Discovery of SHN" Seminar on NP of INPh April 4, 2017, MSU, Moscow

Nuclear structure

and stability of the heaviest nuclei

In this interpretation, the manifestation of the nuclear structure is similar to the effect of the electron shells closure in the atoms,-

Maybe that's why the appearance of this effect in the nucleus has been called **nuclear shells closure**

However the analogy is very conditional because of a very dense nuclear matter can not have the structure of the atom

(remember the model of atom of Rutherford - Bohr)

Shell and magic numbers

Shell effect in the nuclear ground states (mass defect)

Proton and neutron single particle energy spectra calculated for deform ²⁷⁰108 and ²⁹⁸114 doubly magic nuclei

Chart of nuclides

Nuclear shells (macro-microscopic calculations)

Map of the shell corrections (in MeV) to the liquid drop potential energy

Shell effect with increasing of nuclear deformation

Fission barriers

R. Smolańczuk, Phys. Rev. C 56 (1997) 812

15-year long assault on the "Islands of Stability" 1970-1985

Los Alamos (USA) **Berkeley (USA)** Dubna (JINR) Oak Ridge (USA) Mainz (Germany) **Darmstadt (Germany) Orsay (France)** Würenlingen (Switzerland) Tokyo (Japan) some later

The task of every laboratory was:

To find the method of producing/detecting of superheavy elements Search in nature: earth/lunar objects, cosmic rays, artificial synthesis of superheavy elements

Use and develop a setup for synthesizing SHE High-flux reactor, even nuclear explosion, powerful accelerator of heavy ions,

To develop setups and detectors for separating and registering the rarest events of formation and decay of superheavy nuclei separator/detector, spectrometer, chemical methods, etc.

To have much patience

To work for many years, being ready to rearrange on the way and improve the experimental technique

Reactions of synthesis

Reactions of synthesis

Yuri Oganessian. Discovery of SHN, Seminar of RIKEN, March 13, 2017, Tokyo, Japan

Reactions of Synthesis

A. Sobiczewski, K. Pomorski, PPNP 58, 292, 2007

expensive isotope of Ca

Experiments on the synthesis of SHE with ⁴⁸Ca-beam at FLNR (JINR)

Experiments on the synthesis of Z=116 nuclei in the reaction ²⁴⁸Cm+⁴⁸Ca

Yuri Oganessian. Discovery of SHN, Seminar of RIKEN, March 13, 2017, Tokyo, Japan

After this, an opinion arouse that the "Stability Island" may exist but this cannot be verified...

Here our opinions have diverged

We did not share this view and, since the beginning of 1990, we started preparing:

- development of a separator of superheavy nuclei in 1989
 (gas-filled separator of recoil nuclei)
- search for the target materials and manufacturing targets, 1990 (collaboration with nuclear centers of Russia and USA)
- production of intense beam of Ca-48 in 1996

(new type of ion source ECR-4M)

• getting ready to long-term experiments, 1990-97.

Ion charge distribution of Ca-48 extracted from 14 GHz ECR-ion source

Our design

Target

Dubna Gas Filled Recoil Separator /DGFRS/

Beam

High Flux Isotope Reactor (HFIR) of ORNL & Electromagnetic Mass Separator of LLNL

Experiments on the synthesis of SHE in ⁴⁸Ca induced reaction

Decay chains of the isotopes of Element 116: ²⁹¹Lv and ²⁹³Lv

Voyage to SUPERHEAVY Island

an Article from SCIENTIFIC AMERICAN

JANUARY 2000 VOL. 282 NO. 1

The synthesis of element 114 confirmed decades-old theoretical predictions of a little patch of nuclear stability in a sea of short-lived superheavy nuclei

Summary decay properties of the isotopes of elements 112, 114, 116 and 118 observed in ²³⁸U, ^{240,242, 244}Pu, ^{245, 248}Cm and ²⁴⁹Cf + ⁴⁸Ca reactions

Alpha - decay

Spontaneous fission

even-even isotopes

Odd-Z Superheavy Nuclei

Synthesis of the lsotopes with Z =113, 115 and 117

Yu. Oganessian. "Nuclear at the Mass Limit, Discovery of SHN" Seminar on NP of INPh April 4, 2017, MSU, Moscow

Proton number

In solution

Berkelium -249 at hot cell

Bk(NO₃)₃Product

IS ASSAULT

Time (days)

Heavy Ion Accelerator, FLNR

attilizero

Summary decay properties of the isotopes of elements 113, 115, and 117 observed in ²³⁷Np, ²⁴³Am and ²⁴⁹Bk + ⁴⁸Ca reactions

Confirmations of DGFRS data 2007 - 2014

A/Z	Setup	Laboratory	Publications
²⁸³ 112	SHIP	GSI Darmstadt	Eur. Phys. J. A32, 251 (2007)
²⁸³ 112	COLD	PSI-FLNR (JINR)	NATURE 447, 72 (2007)
^{286, 287} 114	BGS	LBNL (Berkeley)	P.R. Lett. 103, 132502 (2009)
^{288, 289} 114	TASCA	GSI – Mainz	P.R. Lett. 104, 252701 (2010)
^{292, 293} 116	SHIP	GSI Darmstadt	Eur. Phys. J. A48, 62 (2012)
^{287, 288} 115	TASCA	GSI – Mainz	P.R. Lett. 111, 112502 (2013)
^{293, 294} 117	TASCA	GSI – Mainz	P.R. Lett. 112, 172501 (2014)
^{292, 293} 116	GARIS	RIKEN Tokyo	Accelerator Progress Rep. (2013)

With Z >40% larger than that of Bi, the heaviest stable element we see an impressive extension in nuclear survivability.

Although SHN are at the limits of Coulomb stability,

- shell stabilization lowers ground-state energy,
- creates a fission barrier,
- and thereby enables SHN to exist.

The fundamentals of the modern theory concerning the mass limits of nuclear matter have obtained experimental verification

Super Heavy Atoms

Chemistry of the SHE

Relativistic Contraction

Calculated by P. Dirac and V. Fock in non-relativistic approximation

R. Eichler *et al.*, Nature 447 (2007) 72

Relativistic Effect in Chemistry of the Element 112

FLNR, JINR 2007

Adsorption of Hg and Cn (Z=112) on the Gold Surface

V. Pershina, 2006 (theory)

 242 Pu(48 Ca,3n) 287 Fl $\rightarrow ^{283}$ Cn

Thermo chromatography of the SHE and its light homologies on the gold surface

Thermo chromatography of the SHE and its light homologies on the gold surface

Thermo chromatography of the SHE and its light homologies on the gold surface

Yu. Oganessian. "Nuclear at the Mass Limit, Discovery of SHN" Seminar on NP of INPh April 4, 2017, MSU, Moscow

52 neutron-rich isotopes of the 15 heaviest elements

were synthesized in ⁴⁸Ca-induced reactions

Yuri Oganessian. Discovery of SHN, Seminar of RIKEN, March 13, 2017, Tokyo, Japan

Yu. Oganessian. "Nuclear at the Mass Limit, Discovery of SHN" Seminar on NP of INPh April 4, 2017, MSU, Moscow

Outcomes and the future

SHE-Factory

is closely linked to the intellect

August 2014, Dubna

new accelerator

Yu. Oganessian. "Nuclear at the Mass Limit, Discovery of SHN" Seminar on NP of INPh April 4, 2017, MSU, Moscow

Exp. 3

EXD

	V	V
	Projec	Intensi
6 6 0	tile	ty
		lon/s
	²⁰ Ne	1.10^{14}
	⁴⁸ Ca	6·10 ¹³
	⁵⁰ Ti	3·10 ¹³
	⁷⁰ Zn	2·10¹³
	⁸⁶ Kr	3·10 ¹³
	¹⁰⁰ Mo	2·10 ¹²
	¹²⁴ Sn	2·10 ¹²
	¹³⁶ Xe	2 ·10 ¹³
	²⁰⁸ Pb	1·10 ¹²
	238U	1·10 ¹¹

- 1. Radiochemical Engineering Development Center
- 2. High-Flux Isotope Reactor
- 3. Nuclear Science and Technology Division
- 4. Chemical Sciences Division
- 5. Transportation and
- 6. Packaging Division

Target Team at Oak Ridge

More than 50 ORNL of staff contributed to the Bk-Cf production and separation

Yu. Oganessian. "Nuclear at the Mass Limit, Discovery of SHN" Seminar on NP of INPh April 4, 2017, MSU, Moscow

