Applying Heavy-Ion Storage Rings for Precision Experiments at the Intersection of Atomic and Nuclear Physics

Seminar Moscow State University 11 May 2021

HELMHOLTZ I

Why storage rings? - Versatile Capabilities

HELMHOLTZ =

Physics at Storage Rings

Storage rings stay for: Single-particle sensitivity Broad-band measurements High atomic charge states High resolving power

Photos: M. Lestinsky, A. Zschau, GSI; IMP Lanzhou; RIKEN

Physics with Storage Rings

Mass measurements Nuclear structure through transfer reactions Long-lived isomeric states Atomic effects on nuclear half-lives Nuclear effects on atomic decay rates Exotic decay modes (NEEC/NEET, unbound states, ...) Di-electronic recombination on exotic nuclei Purification of secondary beams from contaminants Nuclear magnetic moments Neutron-induced reactions Astrophysical reactions

erc

ASTRUm

Radioactive Ion Beam Facility at GSI

Experimental Storage Ring (ESR)

In operation since 1990 Circumference = 108.3 m UH Vacuum = 10^{-10} — 10^{-12} mbar Electron, stochastic cooling Energy range = 3 – 400 MeV/u Slow and fast extraction

Where and how was gold cooked?

Production Cross-Sections for Tin-Isotopes

Non-Destructive Particle Detection

Courtesy F. Nolden and M. S. Sanjari

SMS: Broad Band Frequency Spectra

Mass Measurement of ²⁰⁸Hg in the ESR (SMS)

HELMHOLTZ 🖬 🎫 🏛

L. Chen, et al., PRL 102 (2009) 122503

erc

ASTRUm

Direct Mass Measurements

Radioactive decays of highly-charged ions

Few-electron ions well-defined quantum-mechanical systems

> New decay modes (bound-pair-creation, bound-state beta decay, etc.)

Influence of electrons on radioactive decay

Astrophysical scenarios high temperature = high degree of ionization

Exotic (radioactive) nuclides in high atomic charge states stored for an extended period of time

Radioactive ion beam facilities

High kinetic energies or electron beam ion source

Ultra-high vacuum conditions

Three Parent He-Like ¹⁴²Pm lons

erc

Two-Body Beta Decay

Y. Litvinov & F. Bosch, Rep. Prog. Phys. 74, 016301 (2011)

EC Decay of Few-Electron Ions

EC Decay of Few-Electron Ions

Expectations:

 $\lambda_{\text{EC}}(\text{H-like})/\lambda_{\text{EC}}(\text{He-like}) \approx 0.5$

 $\lambda_{\text{EC}}(\text{H-like})/\lambda_{\text{EC}}(\text{He-like}) = 1.49(8)$

 λ_{EC} (H-like)/ λ_{EC} (He-like) = 1.44(6)

N. Winckler et al., Phys. Lett. B579 (2009) 36

HELMHOLTZ 💶

Y. Litvinov et al., Phys. Rev. Lett. 99 (2007) 26501

EC Decay of He-like Ions

EC Decay of Few-Electron Ions

HELMHOLTZ 💶

Two-Body Beta Decay

Y. Litvinov & F. Bosch, Rep. Prog. Phys. 74, 016301 (2011)

Bound-State β-decay

Bound-State β-decay of ¹⁶³Dy

s process: slow neutron capture and β - decay near valley of β stability at $kT = 30 \text{ keV}; \rightarrow \text{high atomic charge state} \rightarrow \text{bound-state } \beta \text{ decay}$

 $T_{1/2}$ = 48 days

branchings caused by bound-state $\boldsymbol{\beta}$ decay

HELMHOLTZ 🗔 9

51

Forschung im Focus

Experimentalphysik zwischen Abenteuer und Anwendung

EDITION

TEXTE+ THESEN Paul Kienle (1931-2013)

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

Proposal for an experiment to be conducted at FRS/ESR Measurement of the bound-state beta decay of bare ²⁰⁵Tl ions

Updated from previously accepted proposal E100

For the LOREX, NucCAR, SPARC and ILIMA Collaborations

Regarding the proposal "Measurement of the bound-state beta decay of bare ²⁰⁵TI ions" (Proposal E121), the G-PAC recommends this proposal with **highest priority** (A) and the commendation of the beallocated for this measurement.

3

Bound-State Beta Decay of ²⁰⁵TI Nuclei

HELMHOLTZ

Bound-State Beta Decay of ²⁰⁵TI Nuclei

Termination of s-process

Fate of ²⁰⁵Pb in early Solar system

Detection of Solar pp-neutrinos

Solar Neutrino Flux

HELMHOLTZ 💶

51

Courtesy R. J. Chen and R. Singh Sidhu

Lorandite TIAsS₂ Mineral

Age = 4.31(2) Ma

December 2019

EMMI Rapid Reaction Task Force on The LOREX Project

M. Pavicevic et al., NIM A895, 62 (2018)

Bound-State Beta Decay of ²⁰⁵TI Nuclei

HELMHOLTZ

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

HELMHOLTZ 💶

Experiment during the COVID19 23.03 – 01.04 – 06.04

Courtesy R. J. Chen and R. Singh Sidhu

Accumulation of ²⁰⁵TI⁸¹⁺ beam in the ESR

INFO [06 Apr 2020 09:28:36,270] (DataStorageService.java) - Save: http://clipboard.acc.gsi.de/dav/bi/data//GS09DT_ML/2020-04-06_09-28-36_tcl1032_GS09DT_ML_TrendIonSource_201803_201804_200stacks.tdf

Courtesy R. J. Chen and R. Singh Sidhu

Typical Measurement (5 Hours)

Preliminary Results

Further Physics Cases

Nuclear reaction studies in a storage ring

in-flight fragmentation at FRS

 \rightarrow applicable to radioactive nuclei

ESR Experimental Storage Ring

beam energy: 3 - 550 MeV/u ΔΕ/Ε: 10⁻⁴

ΔE/E: rev. freq.:

> H₂ gas target: • vacuum:

250 kHz - 1 MHz 10¹⁴ atoms/cm² 10⁻¹¹mbar deceleration of beams

→Gamow window

High revolution frequency
 → high luminosity even with thin targets

Well-known atomic charge-exchange rates

 \rightarrow in-situ luminosity monitor

→ Ultra-thin windowless gas targets and electron cooling
→ excellent energy resolution

Detection of ions via in-ring particle detectors, clean beam and target \rightarrow low background, high efficiency

very efficient use of exotic beams for high resolution experiments

Proton-Capture Reactions in the ESR

In-Situ Luminosity Monitoring

In-Vacuum Particle Detectors

- Double Sided Si Strip Detector (DSSSD)
 - ✓ x & y segmentation
 - $\checkmark\,$ 500 μm thickness (ions are stopped)
 - \checkmark ultra thin dead layer of 0.3 μm

compatible to UHV conditions

- ✓ low outgassing rate
- ✓ bakeable at T > 125°C

Federal Ministry of Education and Research

¹²⁴Xe(p,g) - Results

PHYSICAL REVIEW LETTERS 122, 092701 (2019)

Approaching the Gamow Window with Stored Ions: Direct Measurement of ${}^{124}Xe(p,\gamma)$ in the ESR Storage R

J. Glorius,^{1,*} C. Langer,² Z. Slavkovská,² L. Bott,² C. Brandau,^{1,3} B. Brückner,² K. Blaum,⁴ T. Davinson,⁷ P. Erbacher,² S. Fiebiger,² T. Gaßner,¹ K. Göbel,² M. Groothuis,² A. Gumberidz R. Hess,¹ R. Hensch,² P. Hillmann,² P.-M. Hillenbrand,¹ O. Hinrichs,² B. Jurado,⁹ T. Kaus T. Kisselbach,² N. Klapper,² C. Kozhuharov,¹ D. Kurtulgil,² G. Lane,¹⁰ C. Lederer-Woods,⁷ M Yu. A. Litvinov,¹ B. Löher,^{11,1} F. Nolden,¹ N. Petridis,¹ U. Popp,¹ T. Rauscher,^{12,13} M. Reed,¹⁰ R D. Savran,¹ H. Simon,¹ U. Spillmann,¹ M. Steck,¹ T. Stöhlker,^{1,14} J. Stumm,² A. Surzhykov,^{15,16} A. Taremi Zadeh,² B. Thomas,² S. Yu. Torilov,¹⁷ H. Törnqvist,^{1,11} M. Träger,¹ C. Trageser,^{1,3} M. Volknandt,² H. Weick,¹ M. Weigand,² C. Wolf,² P. J. Woods,⁷ and Y. M.

J. Glorius, et al., PRL 122, 092701 (2019)

Towards background free measurement

Courtesy J. Glorius and L. Varga

Experiment during the COVID19 17.03 – 22.03

Rutherford blocking technique clearly demonstrated with primary ¹²⁴Xe beam

HELMHOLTZ II II II

study of radioactive ¹¹⁸Te (6 days half-life)

~10⁵ ¹¹⁸Te⁵²⁺ ions available at 10 MeV/u

Courtesy J. Glorius and L. Varga

First Proton Capture Reaction on Stored Radioactive Beam

Regarding the proposal "Measurements of proton-induced reaction rates on radioactive isotopes for the astrophysical p process" (Proposal E127), the G-PAC recommends this proposal with **highest priority (A)** and that **15 shifts of main beam time** be allocated for this measurement.

HELMHOLTZ G

Storage ring facilities at 55

Experimental Storage Ring (ESR)

In operation since 1990 Circumference = 108.3 m UH Vacuum = 10^{-10} — 10^{-12} mbar Electron, stochastic cooling Energy range = 3 – 400 MeV/u Slow and fast extraction

CRYRING (transported from Stockholm University)

Start of operation (local source) – 2019 Start of operation (beams from ESR) – 2020 Circumference = 54.15 m XH Vacuum = 10^{-11} — 10^{-12} mbar Electron cooling Energy range = ~0.1 - 15 MeV/u Slow and fast extraction

erc

ASTRUm

Photos: M. Lestinsky, A. Zschau, GSI

The CRYRING@ESR facility

M. Lestinsky, GSI, Darmstadt

M. Lestinsky et al., EPJ ST 225, 797 (2016)

FAIR - Facility for Antiproton and Ion Research

Ion Beam Facilities / Trapping & Storage

BigRIPS + R3 Setup in RIKEN

HIAF – High Intensity Heavy Ion Accelerator Facility

erc

Outlook 2: Storage ring at ISOLDE

A new compact storage ring for light and heavy ions

Outlook 3: Neutron-induced reactions

Reifarth & Litvinov, Phys. Rev ST Accelerator and Beams, 17 (2014) 014701 Reifarth et al., Phys. Rev ST Accelerator and Beams, 20 (2017) 044701

Courtesy R. Reifarth

The DERICA Project

L. Grigorenko, et al., Phys. Uspechi 189 (2019) 721

North American Storage Rings and Neutron Captures Workshop

28-30 June, 2021 Virtual Meeting hosted through Zoom and Gather.Town

Many thanks to our collaborators from all over the world !!!

erc

We are supported by:

European Research Council

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

Bundesministerium für Bildung und Forschung

