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1 Introduction:
i) A local space-time anisotropy, what
does it mean? ii) Status and prospects
of cosmology and �eld theory based on
the idea of local space-time anisotropy

The gravitation theory, i.e.GR, was developed for and successfully applied
at the scale of planetary systems. When applied to cosmological (galactic)
scales in the way in which this is done now, it demands the introduction
of corrections that are 25 times larger than the value of mass of the
observable Universe and which are related to the existence of the new
(still unknown) substances � dark matter and dark energy, which were
not supposed to be present in the initial theory.
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For instance, important observations that make simple sense, have su�cient
value and statistical validity, but contradict classical GR, are the rotation
curves of spiral galaxies.
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Alongside with the phenomena, for explanation of which the concept
of dark matter or dark energy is commonly used, there are the data
of astrophysical observations and particle physics, indirectly indicating
the existence of a local space-time anisotropy in the Universe. In this
respect one should mention, �rst of all, the anisotropy of the acceleration
of the Universe expansion, the anisotropy of relic radiation, the baryonic
asymmetry of the Universe and a breaking of the discrete space-time
symmetries in weak interactions.
Actually, the �rst direct evidence of the existence of local space-time
anisotropy was obtained by the CMS collaboration at LHC within the
framework of the so-called Ridge/CMS-e�ect. Note in passing that the
Ridge/CMS-e�ect is characteristic only to the high multiplicity events.
Such events take place in case of the central collision of the initial
protons where the energy density at the moment of the collision is
comparable to the energy density shortly after the Big Bang, when
instead of hadrons there was quark-gluon plasma.
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Example image showing a 7 TeV proton-proton collision in CMS producing
more than 100 charged particles
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The CMS Collaboration
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In the CMS experiment, all pairs of charged particles in a collision were
selected and the di�erences ∆η,∆φ in the directions of the two particles
measured. The former is a measure of the angle between two tracks in
the longitudinal plane � shown below left. The latter is a measure of the
angle between two tracks in the transverse plane, shown below right.
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The variation of a correlation function R with ∆η and ∆φ, for proton-
proton collisions in CMS.
Left: forMinimum Bias collisions; Right: for collisions that produced

at least 110 charged particles
( Minimum Bias: events that have just the most basic selection criteria )
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The most notable di�erence between the two images is the addition of
an elongated ridge at ∆φ = 0 for all ∆η . This means that there exists
a set of selected pairs, in which case each pair of the particle tracks lies
in its own plane. However all such planes have the only (common) line
of their intersection, namely the collision axis of the initial protons. This
resembles a situation with elastic collision of a moving particle and a
particle at rest. Due to the law of momentum conservation, all possible
track planes have the only line of their intersection, namely the track
of initial moving particle. In contrast to the elastic collision, the initial
total momentum within the CMS experiment is equal to zero. Therefore,
the appearance of the preferred direction coinciding with the protons
collision axis speaks of vacuum rearrangement with the appearance of
axially-symmetric anisotropic fermion-antifermion condensate. On the
one hand, quantum-�eld vacuum, that includes the anisotropic condensate,
is the physical carrier of the local anisotropy of space-time, and it can be
regarded as an anisotropic quintessence, on the other � it imparts all the
particles the properties of quasi-particles in the crystalline environment.
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In particular, in addition to the rest energy, all emitted massive particles
acquire a rest momentum directed along the protons collision axis .
What is said above is far from ordinary speculations and based on
Finslerian ( anisotropic ) extension of relativity theory. Below we shall
discuss the speci�c features of such a generalized theory, but here (as
some general remarks) note the following.
The approach based on Finslerian extension of GR is consistent with
observations at the galactic scale, and does not require the introduction
of dark matter. In particular, Finslerian simulation of a spiral galaxy,
leads to the expression vorb∼const for the orbital velocity corresponding
to the observed �at rotation curve, and to the empirical Tully-Fisher law
vorb∼Llum

1/4 , which has no explanation in general relativity. Within
the framework of the same approach one can explain the observed
substantial excess of de�ection in some grav. lenses over the theoretical
calculations. Besides, in addition to the known convex gravitational
lenses, the theory predicts the existence concave gravitational lenses.
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Finally, the following Figures allow us to compare the speci�c structures
observed in most of spiral galaxies with the corresponding Finslerian calculations.

Fig. 1 -left : Galaxy NGC-1365 (Hubble telescope image, NASA/ESA).
Fig. 1 -right : Finslerian calculation (the exact view of the central details
depends on the step of the calculation but they remain always present).
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Fig. 2 : Details discovered by Herschel orbital observatory in the center of
Milky Way (to appear in ApJ)
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2 From Minkowski isotropic event space
to the �at anisotropic event space :
Anisotropic (Finslerian) Special Relativity

In order to arrive naturally at the �at relativistically invariant anisotropic
space-time we �rst con�ne ourselves (for the sake of simplicity) to a two-
dimensional space and show that it is possible to generalize the Lorentz
transformations




x′0 = x0 coshα− x sinhα

x′ = − x0 sinhα+ x coshα ; tanhα = v/c

so that the new linear transformations will also form a group with a
single parameter α and will keep invariance of the wave equation.

G. Yu. Bogoslovsky ? Theoretical HEP Division � SINP MSU ? 13



? THE ISHKHANOV SEMINAR-2012, April 10, SINP MSU ?

Guided by the conformal invariance of the electrodynamic equations,
we insert the additional scale transformations e−rα into the standard
Lorentz ones. As a result we obtain the generalized Lorentz transformations
in the form





x′0 = e−rα ( x0 coshα− x sinhα)

x′ = e−rα (− x0 sinhα+ x coshα) ,

where r is a dimensionless parameter of the scale transformations. Since
the relation of the group parameter α to the velocity v of the primed
frame remains unchanged, i.e. tanhα = v/c , the generalized Lorentz
transformations can be rewritten as follows





x′0 =
(

1−v/c
1+v/c

)r/2
x0−(v/c)x√

1−v2/c2

x′ =
(

1−v/c
1+v/c

)r/2
x−(v/c)x0√

1−v2/c2
.
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Obviously, in contrast to the standard Lorentz transformations, these
generalized ones do not leave invariant the Minkowski metric ds2 =
dx2

0 − dx2 but conformally modify it. Therefore, the question arises as
to what the metric of an event space invariant under such generalized
Lorentz transformations is. The rigorous solution to this problem is

ds2 =
[
(dx0 − dx)2

dx2
0 − dx2

]r

(dx2
0 − dx2) .

Not being a quadratic form but a homogeneous function of the coordinate
di�erentials of degree two, this metric falls into the category of Finslerian
metrics. It describes a �at but anisotropic event space.
Proceeding from this 2D metric and using the substitution

(dx2
0 − dx2) → (dx2

0 − dx 2) ; (dx0 − dx) → (dx0 − νdx) ,
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we arrive at the corresponding 4D metric

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx2

]r

(dx2
0 − dx2).

The unit vector ν indicates a preferred direction in 3D space while the
parameter r determines the magnitude of space anisotropy, characterizing
the degree of deviation of this metric from Minkowski one. Thus, the
�at Finslerian (anisotropic) event space

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx2

]r

(dx2
0 − dx2)

proves to be a generalization of the isotropic Minkowski space of conventional
special relativity theory. For the �rst time this metric was proposed in

G. Yu. Bogoslovsky,
�On a special relativistic theory of anisotropic space-time�,

Dokl. Akad. Nauk SSSR 213 (1973) 1055.
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As to the transformations that relate the various inertial frames to each
other, an analog of the ordinary Lorentz boosts has in our case the form

x′i = D(v,ν)Ri
j(v,ν)Lj

k(v)xk ,

where v denotes the velocities of moving (primed) inertial reference
frames, the matrices Lj

k(v) represent the ordinary Lorentz boosts, the
matrices Ri

j(v,ν) represent additional rotations of the spatial axes of
the moving frames around the vectors [vν] through the angles

ϕ = arccos

{
1− (1−

√
1− v2/c2)[vν]2

(1− vν/c)v2

}

of relativistic aberration of ν, and the diagonal matrices

D(v,ν) =

(
1− vν/c√
1− v2/c2

)r

I

stand for the additional dilatational transformations of the event coordinates.
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If r = 0 , the Finslerian metric

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx2

]r

(dx2
0 − dx2)

reduces to the Minkowski one

ds2 = dx2
0 − dx2 .

However the respective transformations of the relativisic symmetry of
the Finslerian space, i.e. transformations

x′i = D(v,ν)Ri
j(v,ν)Lj

k(v)xk ,

in which

D(v,ν) =

(
1− vν/c√
1− v2/c2

)r

I ,

do not reduce to the ordinary Lorentz boosts

x′i = Li
k(v)xk .
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At r = 0 , i.e. in the case of Minkowski space where all directions in 3D
space are equivalent, ν has no physical meaning. In this case, each of
the transformations

x′i = Ri
j(v,ν)Lj

k(v)xk

is di�ered from the respective Lorentz boost

x′i = Li
k(v)xk

by the additional rotation

x′i = Ri
k(v,ν)xk

of the spatial axes. This additional rotation is adjusted in such a way
that if a ray of light has the the direction ν in one frame, then it will
have the same direction in all the frames.
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Thus, at r = 0 , i.e. within the framework of conventional special
relativity, the transformations

x′i = Ri
j(v,ν)Lj

k(v)xk ,

represent an alternative to the Lorentz boosts, however, in contrast to
the boosts, they constitute a 3-parameter noncompact group.
Physically such noncompact transformations are realized as follows. First
choose as ν a direction towards a preselected star and then perform an
arbitrary Lorentz boost by complementing it with such a turn of the
spatial axes that in a new reference frame the direction towards the star
remains unchanged. The set of the transformations described has just
been given by the above-displayed relation.
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Let us consider an inhomogeneous group of isometries of Finslerian
space-time

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx2

]r

(dx2
0 − dx2) .

Since the respective homogeneous non-compact group of generalized
Lorentz boosts

x′i = D(v,ν)Ri
j(v,ν)Lj

k(v)xk

is 3-parameteric, with inclusion of 1-parameter group of rotations around
the preferred direction ν and 4-parameter translation group, the inhomo-
geneous group of isometries, or in other words, inhomogeneous group
of relativistic symmetry of the Finslerian space-time appears to have
8-parameters. To obtain the simplest representation for its generators,
it is enough to send the third spatial axis along ν and rewrite the
above-written homogeneous transformations in the in�nitesimal form.
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As a result, we come to the following eight generators

X1 = −(x1p0 + x0p1)− (x1p3 − x3p1) ,

X2 = −(x2p0 + x0p2) + (x3p2 − x2p3) ,

X3 = −rxipi − (x3p0 + x0p3) ,

R3 = x2p1 − x1p2 ; pi = ∂/∂xi .
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These generators satisfy the commutation relations

[X1X2] = 0 , [R3X3] = 0 ,

[X3X1] = X1 , [R3X1] = X2 ,

[X3X2] = X2 , [R3X2] = −X1 ;

[pipj ] = 0 ;

[X1p0] = p1 , [X2p0] = p2 , [X3p0] = rp0 + p3 , [R3p0] = 0 ,

[X1p1] = p0 + p3 , [X2p1] = 0 , [X3p1] = rp1 , [R3p1] = p2 ,

[X1p2] = 0 , [X2p2] = p0 + p3 , [X3p2] = rp2 , [R3p2] = −p1 ,

[X1p3] = −p1 , [X2p3] = −p2 , [X3p3] = rp3 + p0 , [R3p3] = 0 .
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It is clear that the homogeneous isometry group of the �at Finslerian
space with partially broken 3D isotropy contains four parameters ( generators
X1 , X2 , X3 and R3 ). It is a subgroup of the 11-parametric Similitude
(Weyl) group, and it is isomorphic to the corresponding 4-parametric
subgroup (with generatorsX1 , X2 , X3|r=0 and R3 ) of the homogeneous
Lorentz group. Since the 6-parametric homogeneous Lorentz group does
not have any 5-parametric subgroup, while its 4-parametric subgroup is
unique up to isomorphisms, the passage from Minkowski space to the
Finslerian space with partially broken 3D isotropy implies a minimum
possible violation of Lorentz symmetry. With this, the relativistic symmetry
represented now by generalized Lorentz boosts,

x′i = D(v,ν)Ri
j(v,ν)Lj

k(v)xk

remains valid. Besides, in spite of a new geometry of event space, the
relativistic law of addition of 3-velocities remains unchanged.
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The 8-parameter inhomogeneous group of isometries (group of motions
of the partially anisotropic event space) and its Lie algebra were scrutinized
in G. Yu. Bogoslovsky,

�A special relativistic theory of the locally anisotropic space-time.
I. The metric and group of motions of the anisotropic space of events ;

II. Mechanics and electrodynamics in the anisotropic space� ,
Nuovo Cimento B 40 (1977) 99 ; 116.

�Subgroups of the group of generalized Lorentz transformations and
their geometric invariants� ,

SIGMA 1 (2005), 017.
Notice that the above-mentioned results are mostly reproduced with the
help of a di�erent method in

G. W. Gibbons, Joaquim Gomis, C. N. Pope,
�General very special relativity is Finsler geometry� ,

Phys. Rev. D 76 (2007), 081701(R).
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Notice also that the authors used in this paper a di�erent relevant
notation. In particular, the symbol b was used instead of the original
symbol r, while the group of motions of the �at Finslerian event space

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx2

]r

(dx2
0 − dx2)

was called DISIMb(2), i.e. Deformed Inhomogeneous SIMilitude group
that includes 2-parameter Abelian homogeneous noncompact subgroup.
Nevertheless, hereafter we shall hold on to our original symbols.
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Although in the 3D space there is a preferred direction ν , its geometry
remains Euclidean. But, what does the anisotropy physically manifest
itself in?
First of all, it a�ects the dependence of proper time of a moving clock by
including the direction of its velocity in addition to the magnitude : the
interval dτ of proper time read by the clock moving with a velocity v ,

is related to the time interval dt read by a clock at rest by the relation
dτ = (dτ/dt) dt , where

dτ

dt
=

(
1− vν/c√
1− v 2/c2

)r √
1− v 2/c2 .

Thus, in contrast to Minkowski space (for which:
r = 0 , (dτ/dt) |r=0 =

√
1− v2/c2 ≤ 1 and, hence, the moving clock

is always slow in comparison with the clock at rest), in the anisotropic
space the time dilatation factor (dτ/dt) |r>0 can take on values greater
than unity (see Figure).

G. Yu. Bogoslovsky ? Theoretical HEP Division � SINP MSU ? 27



? THE ISHKHANOV SEMINAR-2012, April 10, SINP MSU ?

-1 -0.5 0.5 1
vêc

0.5

1

dτêdt at r=0.6; α=πê2

-1 -0.5 0.5 1
vêc

0.5

1

dτêdt at r=0

-1 -0.5 0.5 1
vêc

0.5

1

dτêdt at r=0.6; α=0

-1 -0.5 0.5 1
vêc

0.5

1

dτêdt at r=0.6; α=πê4

These plots demonstrate the speci�c features of the behaviour of the
anisotropic factor of time dilatation (dτ/dt)|r>0 in comparison with the
behaviour of the isotropic (Minkowskian) factor (dτ/dt)|r=0 .
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Along with the time dilatation factor the anisotropy of space also a�ects
the Doppler shift. In place of the usual relativistic formula, now the
modi�ed relation holds:

ω = ω′
√

1− v 2/c2

1− ve/c

(
1− vν/c√
1− v 2/c2

)r

,

where r is the magnitude of space anisotropy, v the velocity of a
moving frame, ω′ the frequency of a ray with respect to it, and ω , e

and ν are the frequency, direction of the ray and the preferred direction
in an initial frame.
In connection with this relation we propose a Lab. experiment aimed
at seeking and measuring the local space anisotropy. The experiment
consists in measuring a relative frequency shift ∆ω/ω = (ωa − ωs)/ωs

between a M�ossbauer source (s) and an absorber (a) placed at equal
and diametrically opposite distances from the center of a rapidly rotating
rotor.
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For the quantity ∆ω/ω , the ordinary special relativity (SR) and the
relativistic theory of locally anisotropic space (AR), respectively, give
the following predictions to within v2/c2

(∆ω/ω)SR = 0 , (∆ω/ω)AR = 2rcνva/c
2

where va = −vs . The present day use of the radically new rotors
( n ≥ 6 × 105 turns/min ) developed by the ITEP team (Moscow), as
well as of the corresponding M�ossbauer sources has made it possible to
detect the space anisotropy at the level r ∼ 10−13 .
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3 A rest momentum in addition to the
rest energy

In order to generalize conventional relativistic point mechanics for the
�at partially anisotropic space it is su�cient in the action integral S =

−mc
b∫

a

ds to replace the Minkowski line element ds =
√
dx2

0 − dx2

with the Finslerian one ds =
(

dx0−νdx√
dx2

0−dx2

)r √
dx2

0 − dx2 . As a result,
the Lagrangian function corresponding to a free particle in the locally
anisotropic space, takes the form

L = −mc2
(

1− vν/c√
1− v 2/c2

)r √
1− v 2/c2 .
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Hence it appears that

E =
mc2√

1−v2/c2

(
1−vν/c√
1−v2/c2

)r [
1−r+r 1−v2/c2

1−vν/c

]
,

i.e the energy E of a free particle in the anisotropic space depends on
both the magnitude and the direction of its velocity v . At v = 0 the
energy reaches its absolute minimum, i.e a rest energy E0 = mc2 .
As regards the momentum

p =
m√

1−v2/c2

(
1−vν/c√
1−v2/c2

)r [
(1−r)v+rcν

1−v2/c2

1−vν/c

]
,

its direction does not coincide with the direction of the velocity v of a
massive particle. Even in the case v = 0 the momentum of a particle
does not vanish; there remains a rest momentum p0 = rmcν .

Massless particles have no such property; for them, as in conventional
special relativity, v = c and E2/c2 − p 2 = 0 .
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The rest momentum p0 = rmcν of a particle ( unequal to zero )
means that the particle resides in an anisotropic physical vacuum. Such
a vacuum is actually �lled with an anisotropic condensate or, in other
words, an anisotropic quintessence which in turn provides a �at event
space with Finslerian geometry

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx2

]r

(dx2
0 − dx2) .

In contrast to the conventional Minkowski space with its constant quintes-
sence, the �at Finslerian space together with its anisotropic quintessence
are able to change their anisotropy if r is changeable.
Rather more detailed consideration consists in the following.
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It easy to see that, at r → 1 , the Finslerian metric

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx 2

]r

(dx2
0 − dx 2)

degenerates into the total di�erential

ds = dx0 − νdx ,

in which case the notion of spatial extension disappeares and in the
space-time there remains the single physical characteristic, namely, time
duration and it should be regarded as an interval of absolute time.
Besides that, at r → 1 , in accordance with the relation

mαβ = m(1− r)(δαβ + rνα νβ) ,

there also disappeares the inertial mass of any particle.
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This suggests that absolute time, where the very notions of spatial
extension and inertial mass together with unobservable primordial quintes-
sence become meaningless, is not a stable degenerate state of space-
time. As a result of geometric phase transition, which accompanies a
spontaneous breaking of the original gauge symmetry, such a primordial
space-time may turn into anisotropic space-time whose anisotropy and,
respectively, quintessence decrease with the Universe's accelerated expan-
sion. If this scenario proves to be correct, then the question posed by
G. W. Gibbons, Joaquim Gomis, C. N. Pope,
namely, why are the observed anisotropy and Λ-term simultaneously so
small, may be answered.
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4 Towards Finslerian extension of General
Relativity and the �eld theory

Let us rewrite the �at Finslerian metric so that it is expressed through
the four-dimensional quantities :

ds =
[
(dx0 − νdx)2

dx2
0 − dx2

]r/2√
dx2

0 − dx2 =
[

(νidx
i)2

ηikdxidxk

]r/2√
ηikdxidxk .

Since ν2 = 1 , it is clear that here we have

νi = {1,−ν} , ηik = diag{1,−1,−1,−1} , νi = {1,ν} , νiν
i = 0.
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The key point in the generalization of the �at DISIMb(2) -invariant
Finslerian metric to a Finslerian metric, which describes the corresponding
curved locally anisotropic space-time is the following. If the constant
values on which the �at metric depends, namely a scalar r , null-vector νi

and tensor ηik = diag{1,−1,−1,−1} , are replaced by the corresponding
conventional �elds de�ned on the space-time manifold, i.e. in the �at
metric the substitutions r → r(x) , νi → νi(x) , ηik → gik(x) are
performed, then the result will be the curved Finslerian metric of the
following form

ds =
[

(νidx
i)2

gikdxidxk

]r/2√
gikdxidxk ,

where : gik = gik(x) is the Riemannian metric tensor associated with
the gravitational �eld, r = r(x) is a scalar �eld, which characterizes
the magnitude of the local space-time anisotropy and νi = νi(x) is
a null-vector �eld that indicates the locally preferred directions in the
space-time.
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At any point of the curved Finslerian space, the corresponding �at
tangent Finslerian space has its own values of the parameters r and
ν . These values are nothing but the values of the �elds r(x) and ν(x)
at the point of tangency.
Obviously, the dynamics of curved Finslerian space

ds =
[

(νidx
i)2

gikdxidxk

]r/2√
gikdxidxk

is completely determined by the dynamics of the interacting �elds gik(x),
r(x), νi(x), and these �elds together with �elds of matter form a uni�ed
dynamic system. Therefore, in contrast to the existing purely geometric
approaches to the Finslerian generalization of Einstein's equations, our
approach to this problem is based on the use of methods of the conventional
theory of interacting �elds.
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The fact that during the transition from the �at DISIMb(2) -invariant
Finslerian metric to the curved Finslerian metric, we replaced tensor
ηik = diag{1,−1,−1,−1} and null-vector νi by the conventional
�elds, became the property of invariance of the curved metric with regard
to the following local transformations

gik → e2σ( x ) gik , νi → e( r−1 )σ( x ) / r νi , r → r ,

where σ(x) is an arbitrary function.
In addition to the curved metric, these local transformations leave invariant
all the observables. Therefore, in the theory of gravitation based on the
group DISIMb(2), the above-given transformations have the meaning
of local gauge transformations. For example, the action

S = −1
c

∫
µ∗

(
νi v

i

√
gik vi vk

)4r √−g d 4x

for a compressible �uid in the curved Finslerian space is gauge invariant.
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In connection with the above-mentioned local gauge invariance, the
dynamical system consisting of the �elds gik , r , νi and a compressible
�uid must be supplemented by two vector gauge �elds Ai and Bi , that
under local gauge transformations are transformed in the corresponding
gradient manner. The Ai �eld for a certain class of problems is a pure
gauge �eld, and the Bi �eld, whose gauge transformation has the form

Bi → Bi + b [ ( r − 1 )σ(x ) / r ]; i ,

where b is a constant with the dimensionality of length, interacts with
the conserved rest mass current ji , adding the term proportional to
Bij

i to the full gauge invariant Lagrangian.
Finally, let us demonstrate the DISIMb(2) -invariant generalized Dirac
Lagrangian

L =
i

2
(
ψ̄γµ∂µψ − ∂µψ̄γ

µψ
)−m

[(
νµψ̄γ

µψ

ψ̄ψ

)2
]r/2

ψ̄ψ .
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