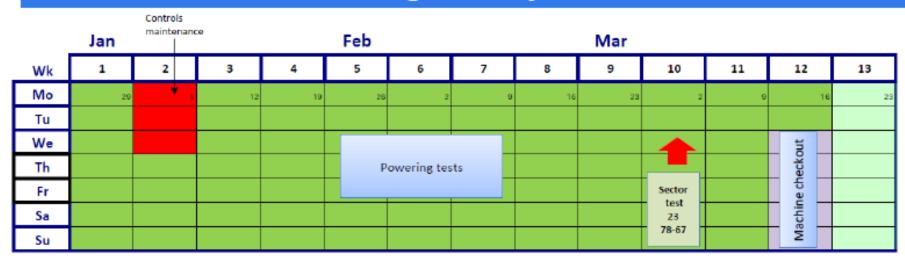

LHC – новый этап работ

Л.Н.Смирнова


Семинар 10 марта 2015г.

Содержание доклада

- Статус и планы коллайдера (БАК)
- Основные итоги первого сеанса (Run I)
- Задачи второго сеанса (Run 2)
- Планы на 2015 год
- Участие МГУ

Ход работ в 2015 - 1

LHC: Getting ready for Run 2!

	Apr	pr			May			рр соударения une				rubbing for 50 ns operation	
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	30	Easter Mon 6	13	20	27	4	11	18	Whit 25	1	8	15	ZZ
Tu											*		
We									_	TS1			
Th		Recom	missioning beam	with			Ascension		Sic run				
Fr	G. Friday		Deam		1st May				I physici				ramp-up ns beam
Sa									Special			With 50	ns bealii
Su									7,				3

Ход работ в 2015 - 2

July Aug							Sep								
	Wk	27		28	29	30	31	32	33	34	35	36	37	38	39
	Mo	29		6	13	20	27	3	10	17	24		7	14	21
	Tu		4	'								Ę			
	We	1				MD1		lahara iba			TS2		MD 2		
	Th							Intensity ra with 25 ns				l physic	Jeune G		
	Fr											Special			
	Sa						1					Sp	lower		
	Su												beta*		

		соу	⁄дар	ени								physics 06:00]	
	Oct				Nov					Dec			
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Mo	28	5	12	19	26	2	9	16	23	30	7	74	21
Tu								lons				PL I	
We							TS3	setup				Technical stop	
Th										IONS		Tecl st	
Fr						MD 3							Xmas
Sa													
Su													

Тяжелые ионы

The main 2013-14 LHC consolidations

1695 Openings and final reclosures of the interconnections

Complete reconstruction of 3000 of these splices

Consolidation of the 10170 13kA splices, installing 27 000 shunts Installation of 5000 consolidated electrical insulation systems 300 000 electrical resistance measurements

10170 orbital welding of stainless steel lines

18 000 electrical Quality Assurance tests 10170 leak tightness tests

3 quadrupole magnets to be replaced

15 dipole magnets to be replaced

Installation of 612 pressure relief devices to bring the total to 1344 Consolidation of the 13 kA circuits in the 16 main electrical feedboxes

Этапы работ в днях

LHC schedule 2015 version 1.1

Phase	Days
Initial Commissioning	56
Scrubbing (for 50 and 25 ns)	23
Early LHCf/VdM1	5
Proton physics 50 ns	9 + 19
Proton physics 25 ns – phase 1	30
Change in beta*	5
Proton physics phase 2 (including ramp-up)	48
Special physics runs (TOTEM/VdM2) Intermediate energy run - to be scheduled	7
MD	15
Technical stops	15
Technical stop recovery	6
Ion setup/Ion run	4 + 24
Total	266 (38 weeks)

LHC goal for 2015 and for Run 2 and 3

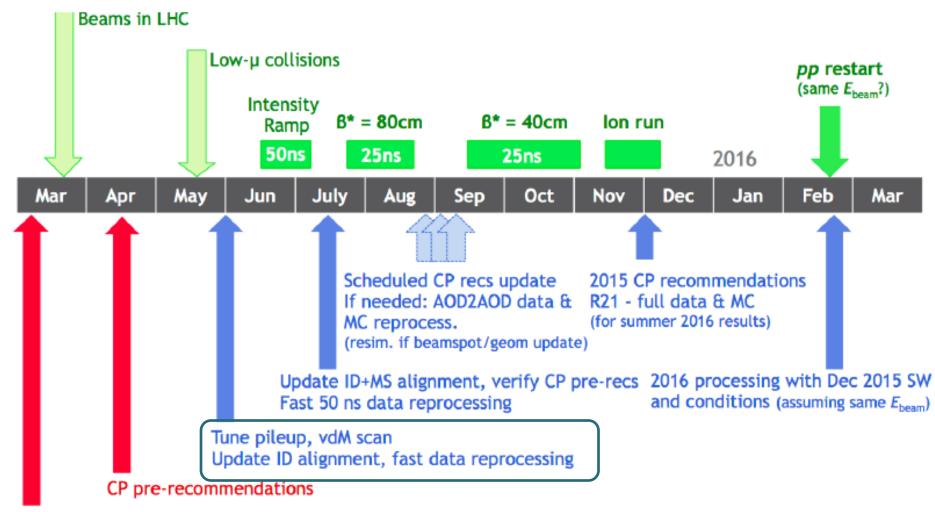
Integrated luminosity goal:

2015: 10 fb⁻¹

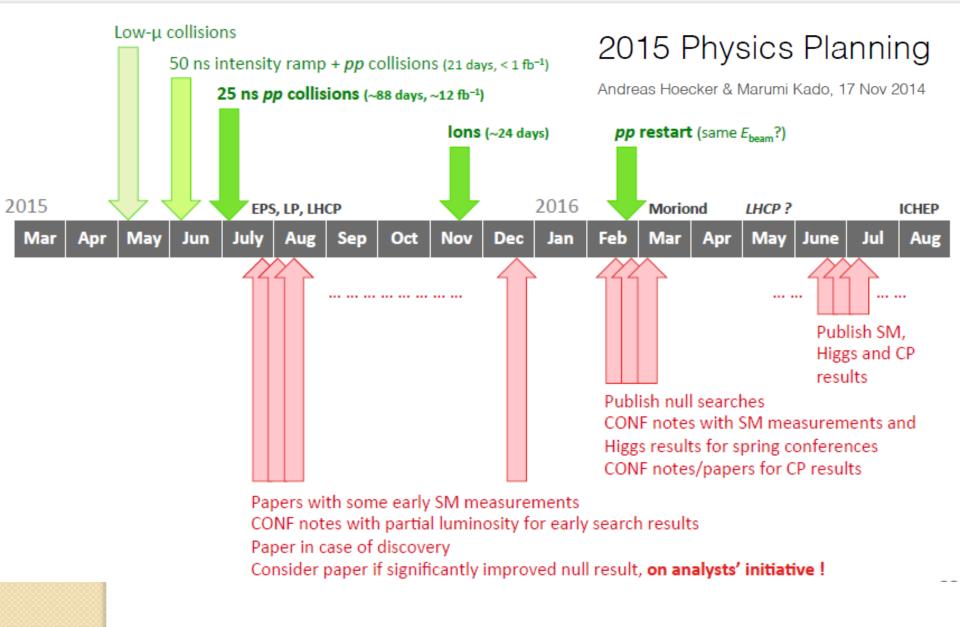
Run2: ~100-120 fb⁻¹

(better estimation by end of 2015)

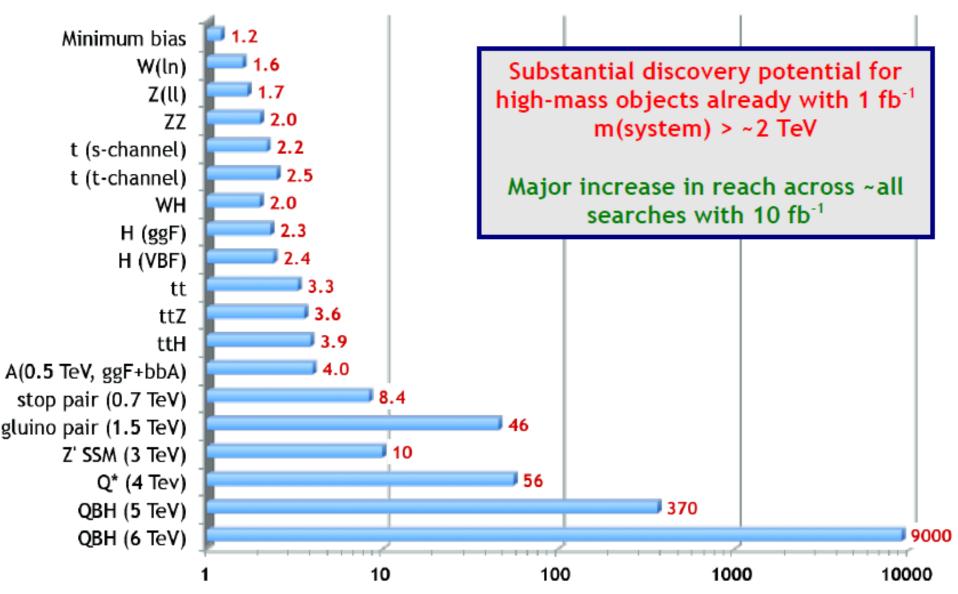
300 fb⁻¹ before LS3



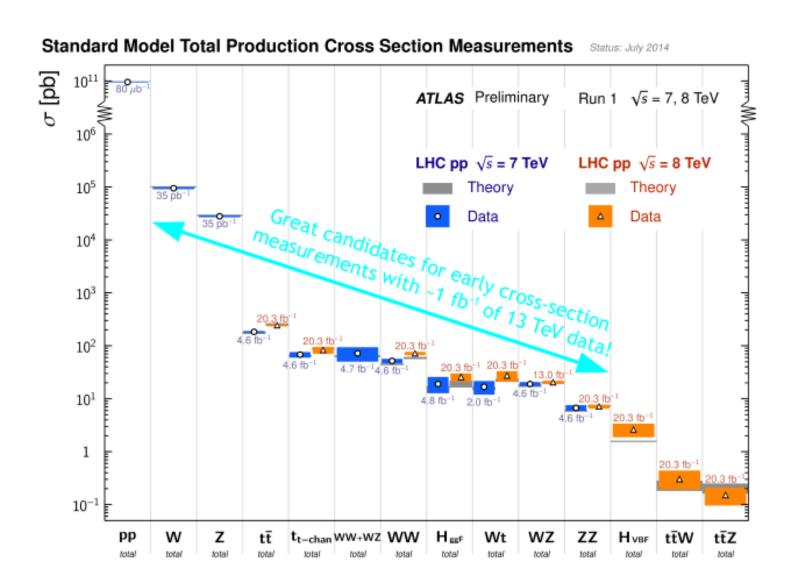
Девиз совещания ATLAS в феврале 2015:



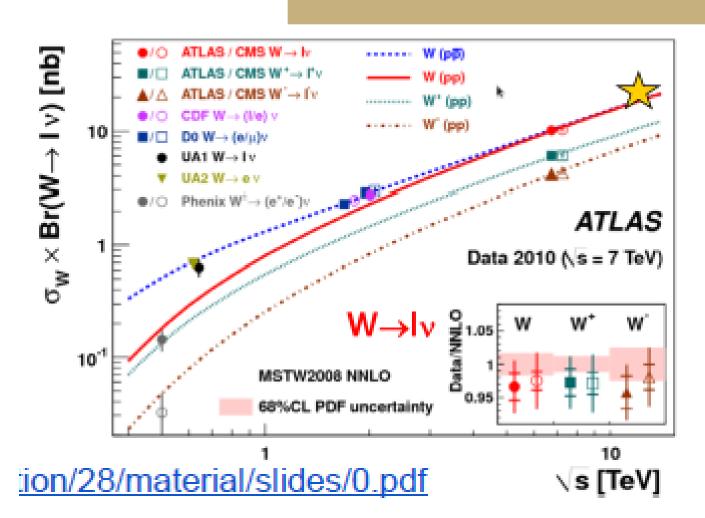
Schedule to be ready for data analysis



R20.1 validated: launch MC15a digi+reco (2 × for 25 ns & 50 ns conditions)



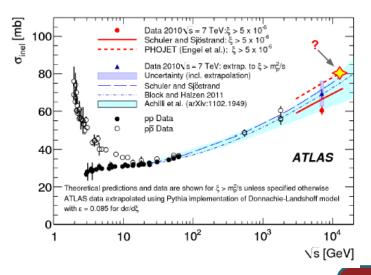
Cross-section ratio: 13 TeV / 8 TeV

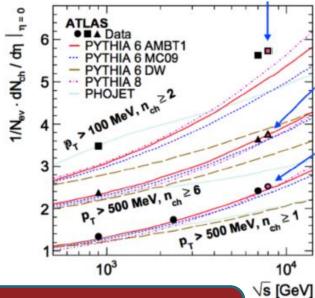


It's not just searches with the first fb-1

Проверка СМ

W, Z; ZZ; W/Z + jets – важный тест СМ





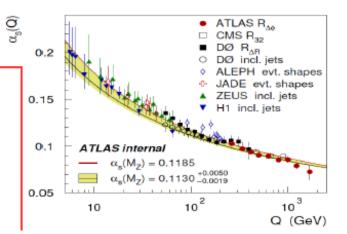
КХД и стандартная модель

Total Inelastic Cross Section

- Difficult quantity to predict
 - o Very useful to measure
- Need 10µb-1@ mu=0.01
- Follow 7 TeV strategy
 - Uses MBTS
- Also special Runs for ALFA
 - Total and Elastic cross section
 - Longer timescale with more runs in the future
- Target Paper(s) as soon as possible

Min Bias, UE, MPI, DIS
Min Bias настройка на
описывает UE, их нужно
измерить!

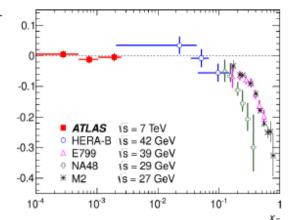
Самые первые измерения



α_s measurements

• Multiple analyses extracting α_s using different techniques

STDM-2012-19


- Azimuthal decorrelations in 8 TeV dijet events, as function of rapidity.
- Measure $\alpha_s(Q)$ up to Q=1.675 TeV

PRD 91, 032004

Λ polarization

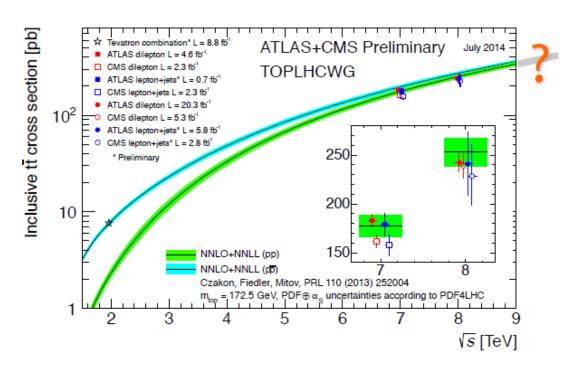
Polarization consistent with zero – in agreement with extrapolation from previous experiments

90 SM papers from Run 1 so far!

8 TeV data allowing us to go more differential, and see evidence for rare processes never seen before (Vector boson scattering, triboson production)

There's still more to come (most 8 TeV analyses not published yet)

Физика топ-кварка


2015 Physics Planning

Andreas Hoecker & Marumi Kado, 17 Nov 2014

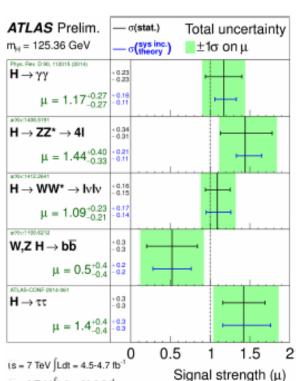
Do we understand high-energy top production?

Any surprise?

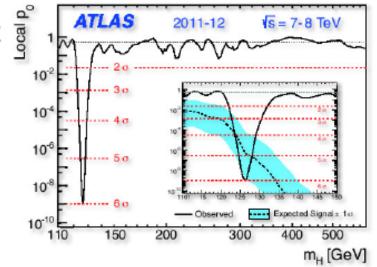
Inclusive top pair production cross section versus $p_p^{(-)}$ centre-of-mass energy

Also early fiducial cross-section measurements

Cross section ratios 13 TeV/8 TeV: tt = 3.3, $t_{t-chan} = 2.5$



- Результаты первого сеанса
- Задачи второго сеанса в 2015г.


Overview

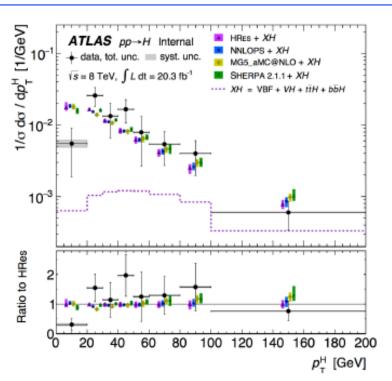
Great Achievements during Run I

- Discoveries in standalone bosonic channels $H \rightarrow \gamma \gamma$, ZZ (4I), WW (IvIv), and challenging fermionic measurements and evidence VH \rightarrow bb, H \rightarrow $\tau\tau$: Decay
- More production results (ggF, VH, VBF, ttH)
- First properties measurements (mass, coupling, spin) → See new coupling combination results today
- Many BSM analyses carried out

(s = 8 TeV Ldt = 20.3 fb.1

Status of Papers

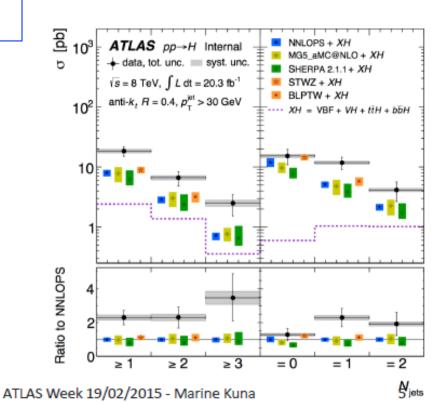
- 47 Papers out on Run I data. Of which:
 - 41 published, 1 accepted, 4 submitted
 - ♦ 18 PLB, 9 JHEP, 8 PRL, 6PRD, 4 EPJC, 1 Science
 - 17 / 21 papers on full 7 / 8 TeV dataset
- On-going: 32 planned papers of which 27 have Editorial Board, and 17 new papers for Moriond (as of today)
 - → Today focus on papers still to come and a few of the main new results for Moriond


For Moriond!

Differential Cross Section Combination

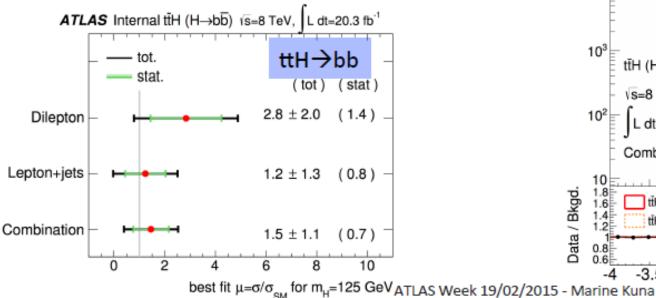
- Combination of H→γγ and H→ZZ channels: 33.0 ± 5.3(stat) ± 1.5(sys) pb →p-value for LHC-XS: ~5%
- Spectra of p_T^H , $|η^H|$, N_{jets} , $p_T^{jet,lead}$

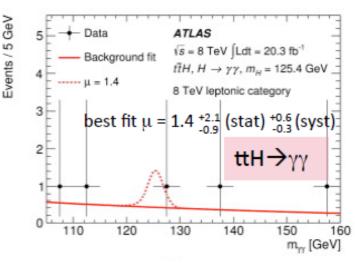
Overall, normalized shapes agree well with data

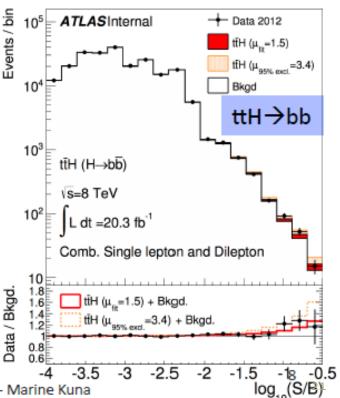

Trend: Higgs spectrum more boosted in data

 $(H \rightarrow WW \text{ still in progress})$

XS in inclusive and exclusive jet bins:

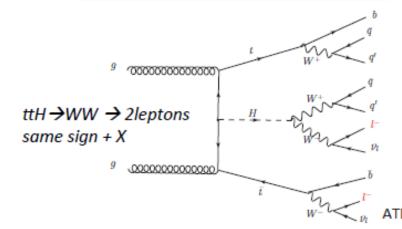

- data higher in all bins
- worst agreement in inclusive and exclusive 1-jet bins




ttH analyses

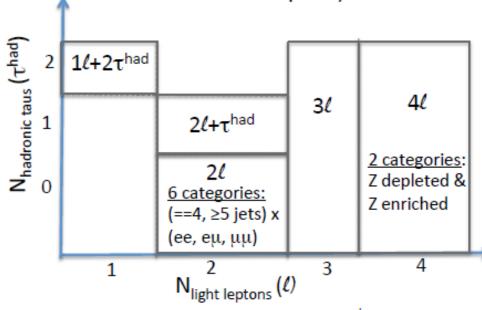
- Higgs in associated production with a pair of top quarks of allows direct measurement of the top Higgs Yukawa coupling.
- Visit Description Provided Heading Heading Provided Heading Provided
 - ttH → γγ: 2 categories: leptonic and hadronic.
 - ttH→bb: Neural Network. Improvements w.r.t last year include Matrix Element technique for I+j, improvement in the tt+bb (main background) and new b-tag calibration, out for Moriond

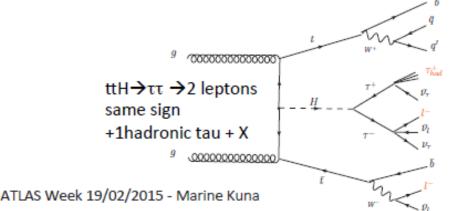
 - + Combined ttH result for Moriond



ttH→multileptons (1)

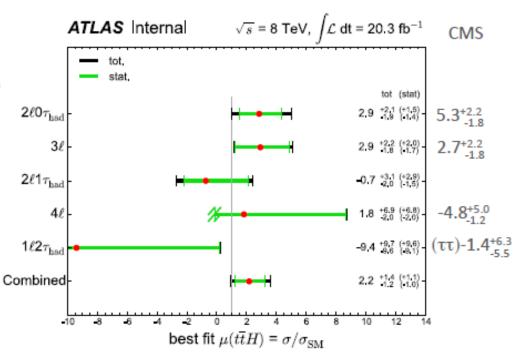
Production:


- Signal strength measure on ttH
- → tH (tHjb, tHW) is ~5% of higgs signal.
 Independent parameter in couplings analysis. Set at SM value (k_T=1) background.
- Decays: Sensitivity to H→WW, ZZ and ττ


Category	WW	ττ	ZZ	other
$2\ell 0\tau_{\rm had}$	80%	15%	3%	2%
3ℓ	74%	15%	7%	4%
$2\ell 1\tau_{\rm had}$	35%	62%	2%	1%
4ℓ	69%	14%	14%	4%
$1\ell 2 au_{ m had}$	4%	93%	0%	3%

> 5 Channels:

 orthogonal in light leptons and hadronic tau multiplicity

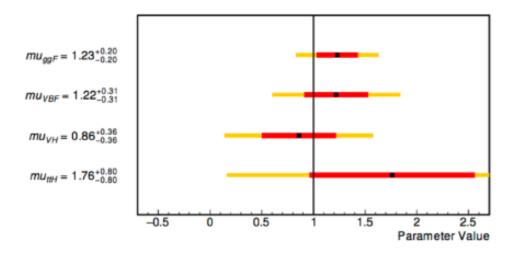


ttH->multileptons (3)

For Moriond!

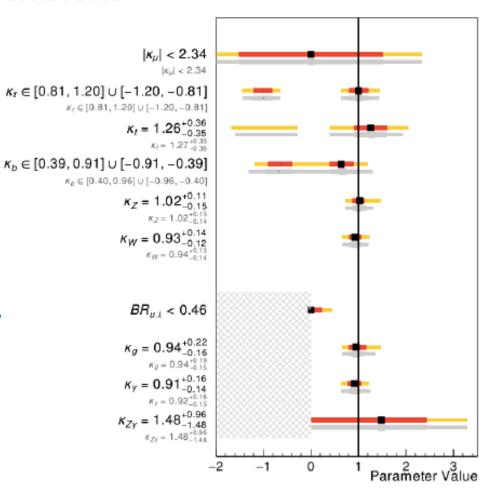
- Limits @95% CL on μ_{ttH} =σ/σ_{SM}:
 - → Observed (exp) is 4.7 (2.4)
 - → Sensitivity comparable to that o
 ttH→bb 3.4 (2.2)
- Combined p-value of excess with respect to SM hypothesis (μ =1) is ~1 σ
- Combined measured μ:
 - Excesses for leptonic only channels
 - Deficits for channels with hadronic taus
 - - \checkmark ttH→bb: μ = 1.5 ± 1.1
 - \checkmark ttH→multilep μ = 2.2 ± 1.4
 - \checkmark ttH → γγ μ = 1.5 ± 2.2

Overall ttH combination @ 8TeV: $\mu = 1.56 \pm 0.78$


→ ttH combination included in coupling combination results

Higgs Coupling combination (1)

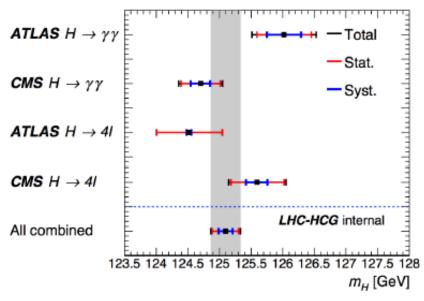
For Moriond!

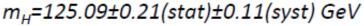

- Previously: 5-channel combination WW,ZZ,γγ,bb,ττ [Moriond 2014]
- New 9-channel combination in preparation [target: Moriond2015]
 - Uses updated results for WW,ZZ,γγ,bb,ττ (final run-1 numbers)
 - Adds μμ, Zγ, ttH(bb,nlep) and VH(WW)
- $\text{Global signal strength} \quad \mu = 1.18^{+0.10}_{-0.10}(\text{stat.})^{+0.11}_{-0.10}(\text{syst.}) = 1.18^{+0.10}_{-0.10}(\text{stat.})^{+0.07}_{-0.06}(\text{expt.})^{+0.08}_{-0.08}(\text{theo.}),$
- Signal strength per production process (assuming SM Higgs boson)

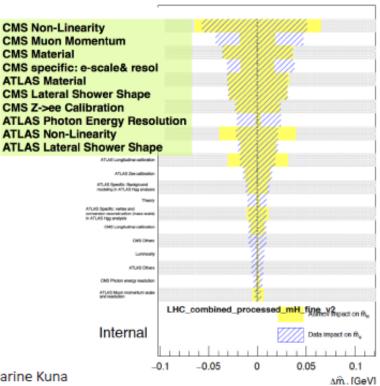
Production	S	ignal strength	Cross section (pb)				
process	7 TeV	8 TeV	combined	7 TeV	8 TeV		
ggF	1.42 ± 0.48	1.24 ± 0.21	1.23 ± 0.20	21.4 ± 7.2	23.8 ± 4.0		
VBF	-0.61 ± 0.59	1.53 ± 0.36	1.22 ± 0.31	_	2.41 ± 0.57		
VH	_	0.93 ± 0.39	0.80 ± 0.36	_	1.03 ± 0.43		
ttH	_	1.56 ± 0.78	1.76 ± 0.80	_	0.20 ± 0.10		

Conclusions

- Very successful Run 1!
 - Discovery and first property measurements
 - ♦ New results for Moriond:
 - ✓ In this talk: ttH→bb/ multileptons, A→Zh, spin/CP WW, differential cross section, couplings & mass combination
 - ✓ Many more not tackled in this presentation: high mass comb, H+ → τν, H+ → WZ, H→aa (ττμμ), ...
- For the moment Higgs boson very compatible with Standard Model.
 - A few finishing analyses on Run 1, but searches about to begin on Run 2

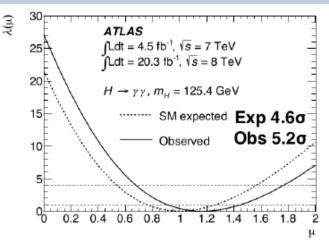

Combined fit of 6 t,b,W,Z, μ , τ Higgs couplings + effective loops k_g , k_{γ} , $k_{Z\gamma}$ (and invisible-undetected BRui with kV<1) for BSM

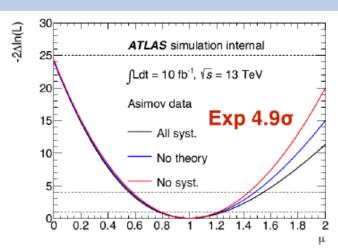

Time to pass the baton to run 2!


ATLAS-CMS Mass Combination

For Moriond!

- Compatibility of measurements tested in several ways: 7% 10% [depending if free μs, μs_{CMS}=μs_{ATLAS}]
- Noverall Compatibility with SM $(m_{H(\gamma\gamma)} = m_{H(ZZ)}, \mu s = 1)$: 85%
 - \Rightarrow Examples: $m_{H(\gamma\gamma)} m_{H(ZZ)} = -0.1 \pm 0.5 \text{ GeV}$; $m_{H, ATLAS} m_{H, CMS} = 0.4 \pm 0.5 \text{ GeV}$





Предсказания для бозона Хиггса СМ

HGamma combined signal strength

2015 expected μ:

1.00+0.22-0.21(stat)+0.09-0.06(syst)+0.10-0.07(theory)

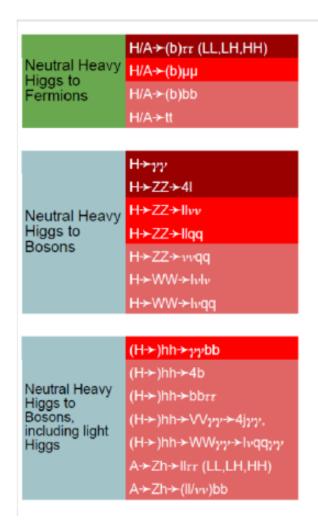
Run I, 25 fb⁻¹ expected:
 μ=1.00+0.23-0.23(stat)+0.09-0.06(syst)+0.11-0.06(theory)

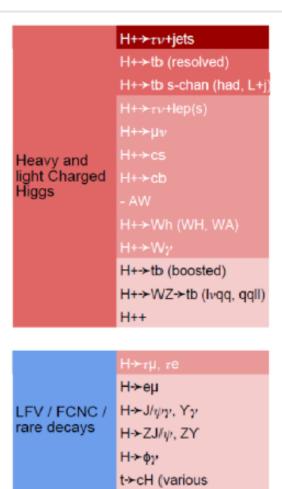
Stat uncertainty ~2.5 times larger than syst.
With 100 fb-1 @ 13 TeV, stat. uncert. reduced by sqrt(100/10) = 3.3

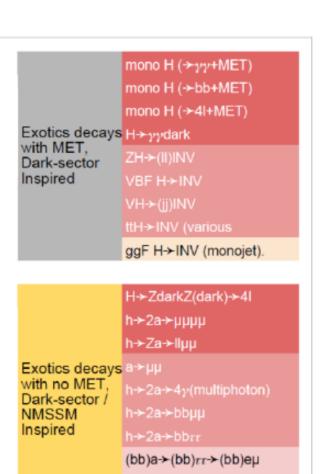
2.5 times	Xsec (pb)	ggF	VBF	WH	ZH	ttH	bbH		
TeV, ed by	8 TeV	19.27	1.578	0.7046	0.4153	0.1293	0.2106		
	13 TeV	43.92	3.748	1.380	0.8696	0.5085	0.5116		
	Ratio	2.28	2.38	1.96	2.09	3.93	2.43		
Kun II atboson Higgs precision measurements 2014-11-19 6									

More on $H \rightarrow$ bosons prospects from Dag:

https://indico.cern.ch/event/301300/session/10/contribution/62/material/slides/0.pdf


HBSM early searches (2-5 fb-1)

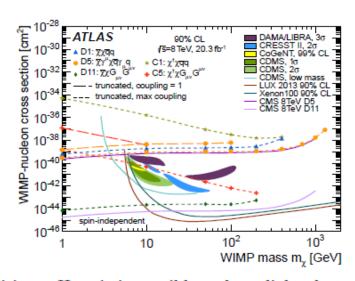

- Heavy Neutral Higgs (decaying to fermions)
- iscoveries center


- H/A→ττ → μμ, bb, tt ...
- Charged Higgs
 - H⁺→τν+jets
 - H⁺→tb (+boosted) (→cs, cb, Wh, Wγ, μν..)
- Heavy Neutral Higgs (decaying to bosons)
 - H→VV(Z/W)→4I, IIqq (IIbb,ννbb), IIνν, IνIν, Iνqq H→γγ
 - **-** X→hh→ $\gamma\gamma$ bb, 4b; bb $\tau\tau$, WW $\gamma\gamma$... X→hZ→II $\tau\tau$...
- Light Higgs NMSSM
- Dark sector, H->inv., mono-H
- Combinations and interpretations
- Exotics, rare decays
 - Details: Higgs BSM related searches in RUN-II (<u>https://indico.cern.ch/event/350320/</u>)
 - For more 1st year analyses see German's talk!

ATLAS Physics workshop Nov 2014 Higgs potential early discoveries Erez Etzion, Tel Aviv U.

... and more HBSM

h->2a->4τ


H+-≻aW

Поиски новой физики

Jets and Dark Matter searches

- Newly public
 - Mono-jet search: submitted to EPJC [1502.01518]
 - ADD Graviton, Gravitino, DM, H→inv
 - · ISR-jet, sensitive for low-mass DM
 - EFT+Simplified DM models
- Newly published/accepted
 - Mono-photon search: [PRD91(2015)012008]
 - · ISR- γ or pair-produced DM interacts with γ

metry. Specifically within the concrete framework of supergravity grand unification one finds that the Higgs boson mass is predicted to lie below ~ 130 GeV. The fact that the observed HIggs boson mass respects this bound is a significant support for SUGRA GUT. Further, the Higgs boson mass of ~ 126 GeV requires the average SUSY scale to be high, i.e., in the TeV region. This high scale explains why we have seen no significant deviation from the Standard Model prediction in FCNC processes such as $b \to s \gamma$ and $B_s \to \mu^+ \mu^-$. Further, the same high SUSY scale explains the non-observation of sparticles in $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data at RUN I of the LHC.

conditions. Here it is possible to have light electroweak gauginos and light sleptons while the squarks are heavy. In this case one can explain the Brookhaven $g_{\mu}-2$ result as well as achieve a Higgs boson mass consistent with experiment. The discovery of the Higgs boson mass is important not only because one has found the last missing piece of the Standard Model but also because it is likely the first piece of a new class of models such as supersymmetric models which require the existence of a whole new set of particles. It is hoped that LHC RUN II will reveal some of these.

Conclusion

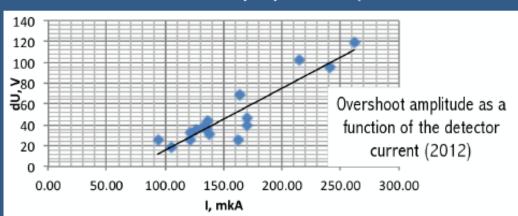
Итоги поиска новой физики в Ран 1

- The Run-1 physics program for SUSY and EXOTICS is mostly completed. Still some new results to come for both groups, including the SUSY summary papers.
- No evidence for new physics has been observed, but stringent limits have been derived on a various set of theoretical models
- Nevertheless, excesses of data have been seen in a few channels
 - → to be further investigated in Run-2
- The priority is now clearly to focus on the already very active Run-2 preparation
- For more information about last published results:
 - Exotics: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
 - Susy: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

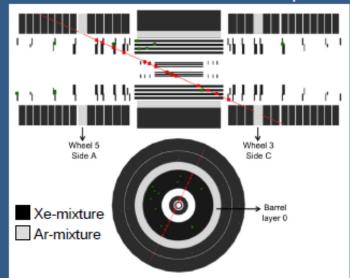
Включенность МГУ в работы

- Активное участие **Л.К.Гладилина** в подготовке публикаций коллаборации как члена **PubCom ATLAS**
- Проведение под его руководством нескольких анализов в группе В-физики
- Представление им результатов ATLAS и CMS по исследованиям физики тяжелых кварков в Морион КХД (25-27 марта)
- Тестирование газовых смесей и исследование старения детекторов TRT (В.Крамаренко)

Включенность МГУ в работы


- В 2014г. участники от МГУ сделали докладов от **ATLAS** на международных конференциях :
- Quarkonium 2014, The International Workshop on Heavy Quarkonium, 10-14 November, CERN, Geneva, Switzerland, C. Турчихин.
- ICHEP 2014. 37th International Conference on High Energy Physics, 2-7 July 2014, Valencia, Spain. Л. Гладилин.
- PANIC 2014, 20th Particles and Nuclei Interaction Conference, 20 -29 August 2014, Hamburg, Germany.Л.Смирнова.
- HSQCD 2014, Hadron Structure and QCD: from low to high energies, 30 June 4 July 2014, Gatchina, Russia. С.Сивоклоков.
- Capri 2014, Fifth Workshop on Theory, Phenomenology and Experiments in Flavour Physics, 23-25 May 2014, Villa Orlandi, Anacapri, Capri Island, Italy. А.Болдырев.
- Выиграли проект Минобрнауки через ИФВЭ по апгрейду **ATLAS** на 7.5 млн.руб. (2014-2016)
- Ведут работы по обеспечению работы детектора в подсистемах ТДПИ (TRT) и триггере В-физики, где существенен вклад молодых сотрудников (А.Болдырев, А.Маевский TRT, С.Турчихин В-триггер)

Transition Radiation Tracker


- High voltage ON in the entire detector
 - Successfully tested operation at 100 kHz with up to 50% occupancy
 - FastOR trigger in stable use during cosmic ray runs
- New active gas system
 - Leaks can lead to contamination into active gas volume
 - New system allows to remove accumulated nitrogen

А. Болдырев, А. Маевский

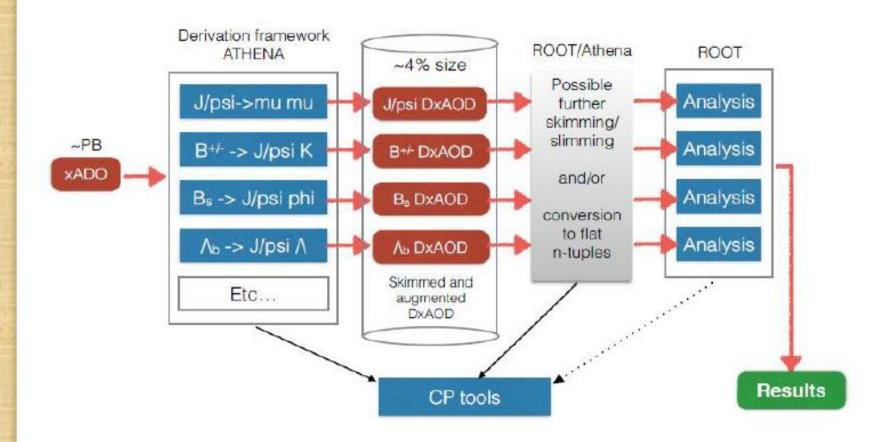
- Baseline for 2015: operating part of the detector with Argon mixture instead of Xenon
- Impact on e/γ-identification small after algorithm updates
- HV overshoot at beam dump in run-1
 - Amplitude depends linearly on detector current
 - Solution found: under preparation (for summer 2015)

Baseline scenario for 2015 operation

Trigger status and commissioning plans for Run-2

James Walder¹, <u>Semen Turchikhin</u>² on behalf of the B-trigger community

¹Lancaster University


²Skobeltsyn Institute of Nuclear Physics Moscow State University

> B Physics Group meeting 28 January 2015

B-physics analysis model

From D.Scheirich

B-physics model

Заключение презентации

С. Турчихина: задачи МГУ

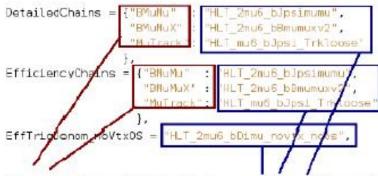
Conclusion

- Moving towards the data-taking start
 - Trigger code: all migration etc. finished, a couple of issues in progress, validation on-going
 - Monitoring: minimum for the offline part mostly done, just need to add more histograms; some more work needed for online; the Express stream composition to be iterated
 - Menu: everything is principally ready, more validation needed
- SampleT is crucial for all validation hope to have it soon

Operational man-power

- B-physics&Muon Signature On-call shifts
 - Class-2 OTP, booked for 1 week, duties are documented in TWiki (to be updated)
 - Many people from muon side will contribute, but our contribution is much desirable
 - Special training to be organized
- B-trigger software validation shifts
 - Class-3 OTP check RTT tests, manage JIRA issues etc. (TWiki)
 - 1 or 2 week rotation of the shifters
 - More people are welcome in order to reduce the average workload
- If you want to contribute to any of these please contact myself and James!

Trigger Menu Status


- All items are now in the main menu MC_pp_v5
 - Counts on tt and J/ΨΦ samples now available (except for L1Topo items where L1 seeds are defined but the chain definitions are not working yet)
 - Barrel and BarrelOnly options available
 - Optimised thresholds for mass and ΔR almost finalised
- HLT code should not be changed for L1Topo seeds
 - Only fixes in menu side are needed
 - Missing only the python implementation in Trigger menu to enable the chains in MC_pp_v5
- Tracking for Bmumuxv2, mu+track chains is now in the menu (to be used in B+ monitoring)
 - Fast algorithm to identify the muons, then look to additional tracks (in full resolution) in a wider RoI (±0.75)
 - Appropriate validation still to be completed

Offline monitoring

□-@BphysMon; 1

- TrigBphysMonitoring is now completely menu-aware
 - ► Tag added to 20.1.0.Y
- Need to add more chains to monitor (L1Topo)
- Web display configuration (han) to be finalized by M8
- Little progress on B⁺ lifetime monitoring yet
 - Require offline development

Menu-independend Chains can be configured labels, enter the hist from the DB names

⇒ ≪shifter: 1 🗈 🦲 JosiFinder; L BMuNu;1 * metadata;1 MoralgBphys BNuMu eta; 1 TrigBphys BNuMu phi; 1 ▲ TrigBphys BNuMu pTmul;1 ▲ TrigBphys BNuMu pTmu2;1 TrigBphys BNuMu z0mu1;1 ▲ TriqBphys BNuMu z0mu2;1 I TrigBphys BNuMu dOmu1;1 I<u>⊾</u> TrigBphys BNuMu d0mu2;1 TrigBphys BNuMu nass:1 TrigBphys BNuMu dphi; 1 ▲ TrigBphys BMuMu deta; 1 TrigBphys BNuMu dR;1 ▲ TriqBphys BNuMu pTsum;1 TrigBphys BNuMu fitnass; 1 TriaBphys BNuMu fitchi2;1 BMuMuX; 1 __Mutrack;1 Containers: शे @HLT_xAOD__TrigBphysContainer_EFBMuMuFex;1 metadata;1 TrigOphys Containers size; 1 ⊟ Efficiency; L ⊕ loovtx noCS: 1 -- @ noVtx_noCS_BMuMu; 1 moVtx_noCS_BMuMu_eff;1 noVtx_noCS_BMuMuX; novtx nocs BMuMux eff;1 movtx_nocs MuTrack:1

noVtx noOS NuTrack eff; 1

JpsiFinder;L
 BMuNu;L

BMuNuX: 1

MuTrack;1

From J. Walder, S. Turchikin


Направления физического анализа

- В→µµ (Сивоклоков, Турчихин, Смоленков)
- В→µµф (Комина, Мухамадеев, Турчихин)
- $pp \to B_c^* + X$ (Турчихин, Гладилин)
- В→Ј/Чф (Маевский, Сенов) + ИФВЭ
- pp \to J/ $\Psi\eta_c$ + X (Маевский, Гладилин, Сенов)
- АА, рА (Болдырев, Короткова)+МИФИ
- Адронные распады. Резонансы (Гладилин+ОИЯИ)

В том числе, с участием студентов кафедры общей ядерной физики (4-6 курсы)

Заключение

- Первый сеанс LHC принес множество результатов и поставил на новый уровень понимание природы фундаментальных взаимодействий
- Новый сеанс работы при 13 ТэВ может позволить не только провести поиск новых явлений, но и сделать открытия
- Будем надеяться на открытия!!!

Heavy Ions physics in ALICE

/Nuclear Physics B Proceedings Supplement 00 (2015) 1-8

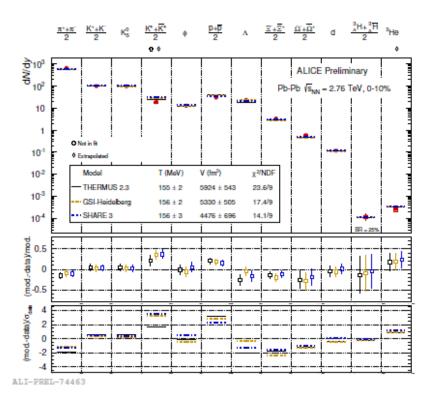
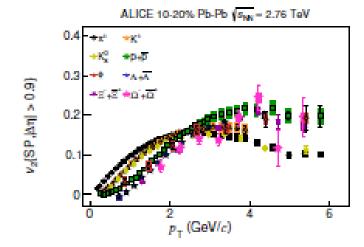
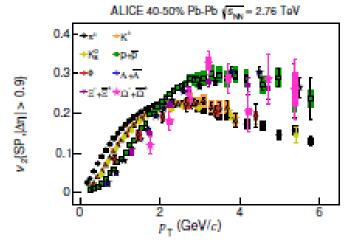




Figure 1: Thermal fits of particle yields in 0-10% Pb-Pb collisions.

ALI-PUB-92653

ALE-PER-92660

Figure 5: Elliptic flow coefficient (v_2) of identified hadrons as a function of p_T measured for central (top) and peripheral (bottom) Pb-Pb collisions.

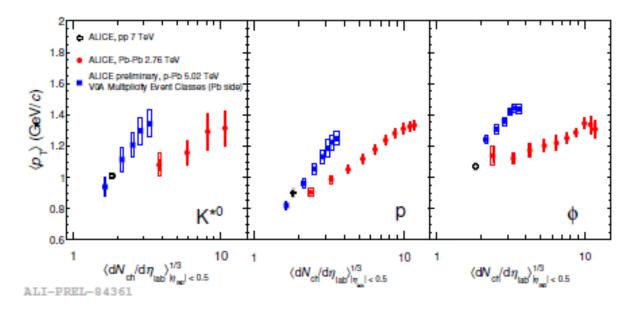
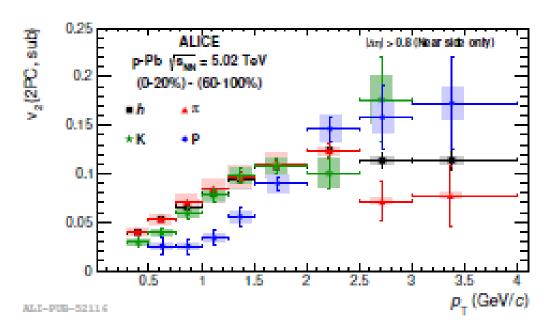



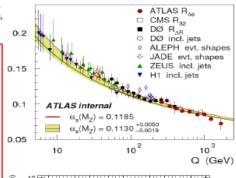
Figure 7: Mean transverse momentum of resonances compared to that of proton in the three different collision systems, as a function of the system size.

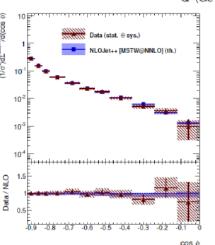
CM

α_s measurements

• Multiple analyses extracting α_s using different techniques

STDM-2012-19

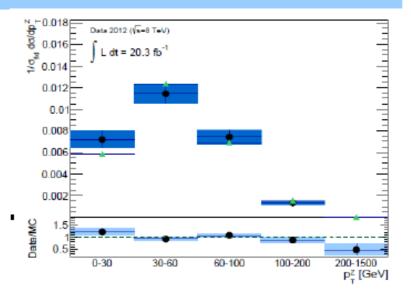

- Azimuthal decorrelations in 8 TeV dijet events, as function of rapidity.
- Measure $\alpha_s(Q)$ up to Q=1.675 TeV
- In SM approval


STDM-2014-03

- Energy-energy correlations in multijet events at 7 TeV
- Little dependence on JES, $\mu_{\text{F}},\,\mu_{\text{R}}$

$$\alpha_s(m_Z) = 0.1181 \pm 0.0025 \text{ (exp.)} \ ^{+0.0053}_{-0.0015} \text{ (scale)} \ ^{+0.0005}_{-0.0005} \text{ (PDF)} \ ^{+0.0000}_{-0.0000} \text{ (NPC)}$$

In SM approval

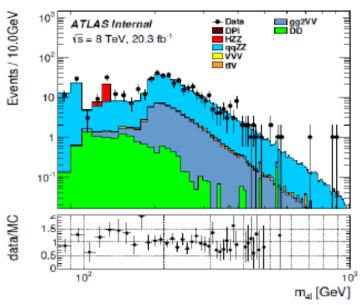


ZZ: 4l inclusive and on-shell

STDM-2014-16

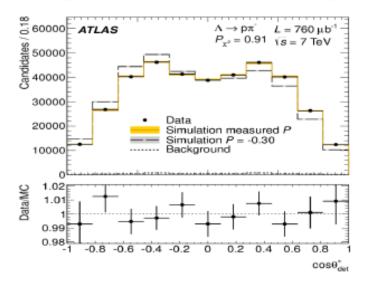
ZZ measurement at 8 TeV
Both 4l and llvv
Measure fid x-sec, unfolded
distributions, limits on neutral aTGCs.

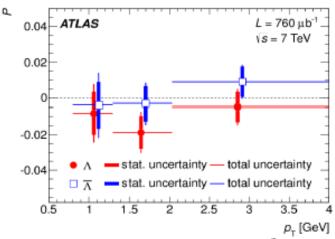
In EB stage

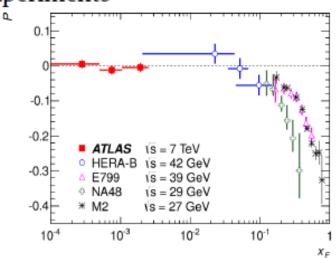


STDM-2014-15

Measure full 4-lepton inclusive mass spectrum at 8 TeV.


Includes ZZ, H->ZZ, qq->Z with additional Z radiated off of lepton.


In EB stage


Λ polarization

- 7 TeV measurement
- Previous experiments showed large Λ
 polarization, but no anti-Λ polarization.
 No successful model.
- ATLAS probes lower xF than other experiments.
- Polarization measured from fit to angular moments of decay products

Polarization consistent with zero – in agreement with extrapolation from previous experiments

