Лазерно-индуцированные ядерные процессы в поле сверхмощных фемтосекундных лазерных ИМПУЛЬСОВ

Савельев А.Б.

План доклада

 Шкала интенсивностей светового поля: от атомного до экстремального

Генерация сверхинтенсивных световых полей

• Ядерная физика с использованием лазера

Достижения и планы

Сверхинтенсивные световые поля: шкала интенсивностей

Ultraintense laser fields

Field ionization (mutliphoton, tunnel, etc.):

$$\gamma^{2} = \frac{2J}{E^{2} / \omega^{2}} \propto \frac{J}{\varepsilon_{osc}} \qquad I > 10^{13} \text{ W/cm}^{2}$$
$$\gamma >> 1 \text{ multiphoton}$$
$$\gamma << 1 \text{ tunnel, ATI, BSI}$$

Field strength comparable to atomic field:

$$E \sim E_a \sim \frac{e}{a^2} \sim 5 \cdot 10^9 \,\mathrm{V/cm}$$

Ultraintense laser field:

$$I_u = \frac{cE_a^2}{8\pi} \sim 3,4 \cdot 10^{16} \text{ W/cm}^2$$

Relativistic optical field

Quiver electron velocity (classical):

 $m_e \ddot{x} = qEe^{i\omega t}$

$$v_{osc} = \frac{qE}{m_e \omega} \approx c$$

Relativistic "threshold"

$$\varepsilon_{osc} \approx 0.5 \text{ MeV}$$

$$\varepsilon_{osc} = \frac{q^2 E^2}{2 m_e \omega^2} = \frac{q^2 I \lambda^2}{\pi m_e c^3}$$

$$Q = I\lambda^2$$

$$Q_R \approx 1.4 \cdot 10^{18} \text{ W/cm}^2 \mu \text{ m}^2$$

Electron motion

Ultrarelativistic or Extreme Optical Field

Relativistic ions:

$$v^{(i)}_{osc} = \frac{eE}{M_i\omega} \approx c$$

$$I^{(proton)}_{rel} \approx 10^{24} \text{ W/cm}^2 \cdot \mu m^2$$

Schwinger field (vacuum breakdown):

$$eE_{schw}\lambda_c > 2m_ec^2, \quad \lambda_c = \frac{h}{m_ec}$$

$$I_{schw} \approx 10^{29} \text{ W/cm}^2$$

SLAC – нелинейное комптоновское рассеяние электронов с энергией 46.6 ГэВ на лазерном импульсе при интенсивности 10¹⁸ Вт/см² (в СО электрона – 10²⁸ Вт/см²) и рождению пар фотонами с энергией 29.2 ГэВ, сталкивающимися с лазерным импульсом

Генерация сверхинтенсивных световых полей

$$I = \frac{W}{\tau \cdot S} \quad P = \frac{W}{\tau}$$
$$\tau \sim 10 \text{ фс} \quad S \approx 1 \text{ мкm}^2 \quad W \approx 1 \text{ Дж}$$
$$I \approx 10^{22} \text{ BT/cm}^2 \quad P \approx 100 \text{ TBT}$$

CPA concept

Strikland D., Mourou G. Optics Comm., 56, 219, (1985).

Petawatt Ti:Sa (JAERI-APRC)

Максимальная интенсивность

300 ТВт, 30 фс, 0,1 Гц 2х10²² Вт/см²

Novel approaches

Elements damaging prevents further amplification Surface breakdown Volume breakdown (self-focusing)

• Increase in size => OPCPA

Materials with higher damage threshold

 –> Plasma amplification

Advantages of OPCPA :

- broad gain bandwidth
- high aperture
- considerable decrease in thermal loading
- significantly lower level of ASE
- very high gain

Разрабатываемые лазеры

 Laser-matter interaction at the highest intensity levels (Extreme Light Infrastructure - ELI) 3-4 kJ, 10 fs, 0.2 EW (ExaWatt), I> 10²⁴ W/cm²

• Thermonuclear research

- European High Power Laser Energy Research HiPER 200 kJ in ns pulse + 70 kJ in fs pulse
- PETAL (forerunner for HiPER project) 3.5 kJ, 0.5 10 ps, 5 PW
- National Ignition Facility, NIF 1.1 MJ in ns pulse
- Fast Ignition Realization Experiment (FIREX)4 x 10 kJ, 10 ps
- РФЯЦ ВНИИЭФ «ISKRA-5» 30 kJ, 0.3- ns, «LUCH» 12 kJ, 1ns, «UFL-900» 900 kJ, 1 ns, PW OPCPA (совместно с ИПФ РАН)
- и др.

Лазерно-индуцированные ядерные процессы Фотоиндуцированные ядерные реакции УРеакции под действием легких ионов Генерация позитронных пучков Наработка легких изотопов •Термоядерные реакции Низкоэнергетические ядерные процессы Гамма – лазер ???

Electron quiver energy

Лазерно-плазменные ускорители

Ускорение ионов

General scheme for plasma induced nuclear reactions

протоны, альфа и бета частицы и пр.)

Rutherford: K.W. D. Ledingham, I. Spencer, T. McCanny, et al PRI 84 899 (2000) LLLNL: T. E. Cowan, A.W. Hunt, T.W. Phillips, et al PRI 84 903 (2000)

Photoinduced reactions (γ, n) : isotope production

Isotope transmutation ¹²⁹[(γ,n)¹²⁸]

Spontaneous decay

I~10²⁰ W/cm², τ~70 fs

100 fs 25 min

F Ewald, H Schwoerer, S D.Usterer, et al, Plasma Phys. Control. Fusion 45 A83-A91 (2003)

129

Positrons

$p \rightarrow C \rightarrow \pi^+$ (threshold – 140 MeV)

Pions

Proton spectra

π^+ yield

В.Ю.Быченков и др., Письма ЖЭТФ, 74, 664 (2001)

Влияние потоков космических частиц на

работоспособность бортовой

электроники в режиме «одного события»

Сравнение спектров частиц в области радиационных поясов ван_Аллена и при лазерном воздействии на мишень

Hidding B. et al, NIM A, 636 31 (2011)

Ti:Sapphire Laser МЛЦ МГУ

- Energy per pulse 1-50 mJ
- Energy stability 3% rms within 1 hour
- Pulse duration 50 fs
- Intensity up to 10¹⁹ W/cm²
- Central wavelength 805 nm
- Spectral bandwidth 23 nm
- Repetition rate 10 Hz
- M² =1.7
- Nanosecond contrast 4x10⁶
- Picosecond contrast better than 10⁵

Генерация релятивистских электронов и гамма-квантов в плазме

Наши ближайшие планы (интенсивность до 10¹⁹ Вт/см²)

 Изучение процессов под действием пучков быстрых заряженных частиц и энергетичных фотонов, формируемых при воздействии излучения релятивистской интенсивности на плотные мишени: исследование индуцированных ядерных реакций и процессов, остаточной радиоактивности материалов, разработка новых методик активационной диагностики корпускулярных и фотонных пучков с большой энергией частиц, применимых, в том числе, при регистрации ультрелятивистских частиц.

Исследование релаксации возбужденных ядер по каналам внутренней электронной конверсии и гамма-распада при их возбуждении электронами и фотонами плазмы. Исследование будет проводиться как при возбуждении из стабильного основного состояния изотопов, так и для случая возбуждения из метастабильного состояния, также создаваемого излучением плазмы.

Перспектива развития (интенсивность 10²¹ Вт/см² и выше)

- Короткоживущие изотопы легких элементов для позитронной эмиссионной томографии (реакции типа "В (p,n) "С.
- Трансмутация гамма-излучением метастабильных долгоживущих изотопов (⁹⁹Тс и ¹²⁹I), характерных для ядерных отходов атомной промышленности.
- Источник позитронов для позитронной спектроскопии и позитронной физики.
- Создание сильновозбужденных ядер в реакциях столкновения двух тяжелых ионов.
- Фотовозбуждение ядер, создании метастабильных состояний, исследования возбуждения из таких состояний.
- Рассеяние релятивистских ионов и исследование многофотонных обменов и нелинейных эффектов, которые проявляются в сильных электромагнитных полях.
 - Измерение неизвестных сечений ядерных реакций ((γ ,n) и (γ ,p)) для одного и того же изотопа, например, ²⁵Mg, ^{48,49}Ti, ⁶⁸Zn и др.

Современные фемтосекундные лазерные системы, генерирующие поля экстремальной интенсивности, становятся новым мощным физическим инструментом в самых различных областях экспериментальной ядерной физики, физики частиц, астрофизики и др.

Достижение поставленных целей возможно лишь при объединении усилий лазерных физиков, ядерщиков, специалистов по физике плазмы и другим направлениям из институтов РАН, МГУ и других учреждений.

Необходимо создание Лазерного центра физики высоких энергий с лазерной установкой пиковой мощностью не менее 200 ТВт как ядра для такого объединения.