Изучение нуклонных резонансов на детекторе CLAS

Е.Исупов 13.09.2011

The studies of N* electrocouplings: motivation & objectives

Our experimental program seeks to determine

g_vNN* transition helicity amplitudes (electrocouplings) at photon virtualities 0.2< Q²<5.0 GeV² for most of the excited proton states analyzing major meson electroproduction channels combined.

This comprehensive information allows us to:

- pin-down active degrees of freedom in N* structure at various distances;
- study the non-perturbative strong interactions which are responsible for N* formation and their emergence from QCD;
- uniquely access the origin of more than 97% of dressed quark masses, their chromo- and electro- anomalous magnetic moments generated through dynamical chiral symmetry breaking, and explore the origin of confinement.

N* studies are key to the exploration of non-perturbative strong interactions and confinement.

N* parameters from analyses of exclusive electroproduction channels

- Separation of resonant and non-resonant contributions represents most challenging part, and can be achieved within the framework of reaction models.
- N* 's can couple to various exclusive channels with entirely different non-resonant amplitudes, while their electrocouplings should remain the same.
- Consistent results from the analyses of major meson electroproduction channels Npi and pi⁺pi⁻p show that model uncertainties in extracted N* electrocouplings are under control.

Ускоритель электронов непрерывного действия в Jefferson Lab – CEBAF

CEBAF Large Acceptance Spectrometer

Опубликованные данные по рождению двух пионов, полученные в коллаборации CLAS/SINP

1.31 < W < 1.56 ГэВ 120000 отобранных событий

 $0.2 < Q^2 < 0.6 \ \Gamma \Rightarrow B^2$ $\Delta Q^2 = 0.05 \ \Gamma \Rightarrow B^2$ **G.V.Fedotov-** G. Fedotov *et al.*, PRC 79,015204 (2009)

1.41 < W < 2.10 ГэВ $0.5 < Q^2 < 1.5 \Gamma_3B^2 \Delta Q^2 = 0.3 \Gamma_3B^2$ 150000 отобранных событий

E.N.Golovach - M. Ripani et al., PRL 91,022002 (2003)

> 10000 точек измеренных сечений реакции ер \rightarrow е'р $\pi^{+}\pi^{-}$

Текущий статус анализа данных

- Е. Исупов Двухпионный анализ при высоких переданных импульсах виртуального фотона.
- Е. Головач Фоторождение двух пионов
- Н. Шведунов Электорождение положительного пиона на протоне внутри дейтрона.

The CLAS data on pi⁺pi⁻p differential cross sections and description within the JM model

JLAB-MSU meson-baryon model (JM) for $\pi^+\pi^-p$ electroproduction

V.I. Mokeev, V.D. Burkert, T.-S.H. Lee et al., Phys. Rev. C80, 045212 (2009) Isobar channels included:

 $\pi^{-}\Delta^{++}$

- All well established N*s with πΔ decays and 3/2+(1720) candidate.
- Reggeized Born terms with effective FSI and ISI treatment (absorptive approximation).
- Extra $\pi\Delta$ contact term.

ρ⁰**p**

•All well established N*s with ρp decays and 3/2+(1720) candidate.

•Diffractive ansatz for non-resonant part and ρ-line shrinkage in N* region. JLAB-MSU meson-baryon model (JM) for pi⁺pi⁻p electroproduction

3-body processes:

Isobar channels included:

• $p^+D_{13}^0(1520)$, $p^+F_{15}^0(1685)$, $p^-P_{33}^{++}(1640)$ isobar channels observed for the first time in the CLAS data at W > 1.5 GeV.

Unitarized Breit-Wigner Anstaz for resonant amplitudes I.J.R.Aitchison, Nuclear Physics , A189 (1972), 417

Inverse of JM unitarized N* propagator:

$$\mathbf{S}_{\alpha\beta}^{-1} = \mathbf{M}_{N^*}^2 \boldsymbol{\delta}_{\alpha\beta} - i(\sum_{i} \sqrt{\Gamma_{\alpha i}} \sqrt{\Gamma_{\beta i}}) \sqrt{\mathbf{M}_{N^*\alpha}} \sqrt{\mathbf{M}_{N^*\beta}} - \mathbf{W}^2 \boldsymbol{\delta}_{\alpha\beta}$$

Off-diagonal transitions incorporated into JM:

 $\begin{array}{l} S_{11}(1535) \leftrightarrow S_{11}(1650) \\ D_{13}(1520) \leftrightarrow D_{13}(1700) \\ 3/2^+(1720) \leftrightarrow P_{13}(1700) \end{array}$

JLAB-MSU meson-baryon model (JM) for $\pi^+\pi^-p$ electroproduction

Resonant & non-resonant parts of Npipi cross sections as determined from the CLAS data fit within the framework of JM model

$\gamma_v NN^*$ electrocouplings from the CLAS data on $N\pi/N\pi\pi$ electroproduction

Good <u>agreement</u> between the electrocouplings obtained from the <u> $N\pi$ and $N\pi\pi$ </u> <u>channels</u>. N* electrocouplings are <u>measurable</u> and <u>model independent</u> quantities.

lionson Lob 🗧 🛛 🗸 📖

High lying resonance electrocouplings from

 $\gamma \mathbf{p} \rightarrow \pi^+ \pi^- \mathbf{p}$

Nπ Q²=0, CLAS M.Dugger, et al., PRC 79,065206 (2009).

Studies of $\pi^+\pi^-p$ electroproduction offer best opportunity for extraction of electrocouplings for N* states with masses above 1.6 GeV. Most of them decay preferably to N $\pi\pi$ final states.

Electrocouplings of S₃₁(1620), S₁₁(1650), F₃₅(1685), D₃₃(1700), and P₁₃(1720) states were obtained for the first time from the $\pi^+\pi^-p$ electroproduction data.

All CLAS results on N* electrocouplings can be found in: www.jlab.org/~mokeev/resonance_electrocouplings/

Mystery of P₁₁(1440) structure is solved

The electrocouplings are consistent with $P_{\underline{11}}(\underline{1440})$ structure as a combined contribution of: a) internal quark core as a first <u>radial</u> excitation of three dressed quarks in the ground proton state, and b) external meson-baryon dressing.

See work Phys Rev D84(2011) 014004 by I.T. Obukhovsky, A. Faessler....

Analysis of e1-6 data, E=5.7 GeV

Event Selection

- Electron ID
 - Calorimeter cuts
 - Cherenkov cut
 - Fiducial cuts
 - Zvertex cut
 - Momentum corrections
 - Zvertex corrections

EC sampling fraction before and after electron ID cuts

Example of electron fiducial cut

Charged hadrons ID

- Beta vs Momentum cuts
- Fiducial cuts
- Momentum corrections for positive pion
- Energy loss corrections for proton

Delta beta vs Momentum for charged hadrons

Elastic and missing mass of neutron peaks

Missing Mass of negative pion

3-body final state kinematics variables

3-body final state kinematics variables:

 $M_{\pi\pi}$, $M_{p\pi}$ are invariant masses of the $\pi^+\pi^-$ and $p\pi^+$ systems respectively;

 $d\Omega = d(\cos\theta)d\phi$ is solid angle for emitted π^- ;

 $\alpha_{p\pi^+}$ is the angle between two planes on the plot.

Cross-section extraction

 $\frac{d^{7}\sigma}{dWdQ^{2}d\tau} = \frac{1}{L} \cdot \frac{\Delta N}{ef f \cdot \Delta W \Delta Q^{2} \Delta \tau}$

7-dim differential cross-section

 $d\tau = dM_{\pi^{+}\pi^{-}} dM_{\pi^{+}p} d\cos(\theta_{\pi^{-}}) d\varphi_{\pi^{-}} d\alpha_{\pi^{+}p}$

L – luminosity, ΔN – number of events inside multidimensional cell, eff-efficiency determined from monte-carlo simulation. Then we obtain virtual photon cross-section

$$\frac{d^{5}\sigma}{d\tau} = \frac{1}{\Gamma_{v}} \frac{d^{7}\sigma}{dW dQ^{2} d\tau}$$

3.5<Q²<4.2 GeV² 1.5<W<1.525 GeV

N* studies in $\pi^+\pi^-p$ electroproduction with CLAS at high photon virtualities

12 GeV CEBAF

Resonance Transitions at 12 GeV

Experiment E12-09-003 will extend access to transition FF for many prominent states in the range up to $Q^2=12GeV^2$.

Electromagnetic form factors are sensitive to the dynamical dressed quark mass.

In this experiment we will probe the transition from "dressed quarks" to current pQCD quarks for the first time.

Nucleon Resonance Studies with CLAS12

D. Arndt⁴, H. Avakian⁶, I. Aznauryan¹¹, A. Biselli³, W.J. Briscoe⁴, <u>V. Burkert</u>⁶, V.V. Chesnokov⁷, <u>P.L. Cole</u>⁵, D.S. Dale⁵, C. Djalali¹⁰, L. Elouadrhiri⁶, G.V. Fedotov⁷, T.A. Forest⁵, E.N. Golovach⁷, <u>R.W. Gothe*¹⁰</u>, Y. Ilieva¹⁰, B.S. Ishkhanov⁷, E.L. Isupov⁷, <u>K. Joo</u>⁹, T.-S.H. Lee^{1,2}, <u>V. Mokeev*⁶</u>, M. Paris⁴, K. Park¹⁰, N.V. Shvedunov⁷, G. Stancari⁵, M. Stancari⁵, S. Stepanyan⁶, <u>P. Stoler</u>⁸, I. Strakovsky⁴, S. Strauch¹⁰, D. Tedeschi¹⁰, M. Ungaro⁹, R. Workman⁴, and the CLAS Collaboration

JLab PAC 34, January 26-30, 2009 Approved for 60 days beamtime

http://www.physics.sc.edu/~gothe/research/pub/nstar12-12-08.pdf.

Argonne National Laboratory (IL,USA)¹, Excited Baryon Analysis Center (VA,USA)², Fairfield University (CT, USA)³, George Washington University (DC, USA)⁴, Idaho State University (ID, USA)⁵, Jefferson Lab (VA, USA)⁶, Moscow State University (Russia)⁷, Rensselaer Polytechnic Institute (NY, USA)⁸, University of Connecticut (CT, USA)⁹, University of South Carolina (SC, USA)¹⁰, and Yerevan Physics Institute (Armenia)¹¹

Основные выводы

- На детекторе CLAS впервые получены детальные данные по дифференциальным и интегральным сечениям реакции ππ-рождения в области энергий возбуждения N* и при виртуальностях фотонов 0.2<Q²<5.0 ГэВ².
- Из анализа данных при 0.2<Q²<1.5 ГэВ² установлены все основные механизмы электророждения ππ-пар в резонансной области. Развита мезон-барионная модель JM, хорошо воспроизводящая все имеющиеся данные по ππ электророждению. Впервые установлены: прямое 2π электророждение, изобарные каналы D13(1520), F15(1685), P33(1640). Достигнуто надежное разделение резонансных/ нерезонансных частей сечений
- Впервые из данных по сечениям электророждения ππ-пар на протонах определены электромагнитные формфакторы большинства резонансов с массами менее 1.8 ГэВ в области 0.2<Q²<1.5 ГэВ².
- Анализ данных позволил устнановить активные степени свободы в структуре N*.
 Показано что структура низколежащих N* (M<1.6 ГэВ) формируется от внешнего мезонбарионного облака и кора 3 конституентных кварков
- Изучение двухпионного канала является эффективным способом определения электромагнитных формфакторов высоколежащих N* (M>1.6 ГэВ) большинство из которых распадается с эмиссией пар заряженных пионов
- РАС 44 одобрил эксперимент по исследованию структуры N* при больших Q². Впервые будет получена информация по электромагнитным формфакторам N* при 5<Q²<12ГэВ² обеспечивающая доступ к структуре одетых кварков и позволяющая изучать конфайнмент в барионном секторе на основе КХД.

Спасибо за внимание!