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Supernova SN1994D in NGC4526

Shocks are not important for light in “Nobel prize” SNe la
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SN 20069y

Ofek et al. 2007, ApJL SN 2006gy

Smith et al. 2007, ApJ

Shocks are
vital for 5
explaining light =
of those Q /

superluminous

events for NGC 1260 nucleus
many -

months...
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SNR Tycho in X-rays (Chandra)

...and thousands of years in SNRs
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Supernova: order of events

#» Core collapse (CC) or explosion
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Supernova: order of events

#» Core collapse (CC) or explosion
# Neutrino/GW signal, accompanying signals
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Supernova: order of events

#» Core collapse (CC) or explosion
# Neutrino/GW signal, accompanying signals

# Shock creation if any, propagation and entropy
production inside a star
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Supernova: order of events

°

Core collapse (CC) or explosion
Neutrino/GW signal, accompanying signals

o o

Shock creation if any, propagation and entropy
production inside a star

#® Shock breakout (!)

HNNADP15y12-Prosper — p. 6



Supernova: order of events

°

Core collapse (CC) or explosion

°

Neutrino/GW signal, accompanying signals

°

Shock creation if any, propagation and entropy
production inside a star

Shock breakout (!)
Diffusion of photons and cooling of ejecta

o o
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Core-Collapse-SN (CCSN)

Standard description of Chronology

» 1 sec: Core collapse, bounce, or SASI*), or rotMHD,
shock revival

# 1 minto 1 day: shock propagates and breaks out (1st
EM signature). Fallback? NS vs. BH formation?

# Mins to days: Final ejecta acceleration to homology
(velocity u o r)

*) Standing accretion shock instability

Actually some weak EM signals are inevitably produced
before shock breakout
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Burning In center and In shells

Main-sequence star Helium-burning star

Hydrogen Burning
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Ma ny S h el IS next few slides from Raffelt (2010) and other sources
Stellar Collapse and Supernova Explosion

Onion structure Collapse (implosion)
__ -
He

"\ Degenerate iron core:
p =~10° gam3
T =100k

Mee = 1.5 My,
Ree = 8000 km
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Stellar Collapse and Supernova Explosion

Newbormn Neutron Star Explosion

Neutrino
Cooling

¥
Proto-Neutron Star
P = Pruc= 3x10 gem3
T = 30 MeV
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Stellar Collapse and Supernova Explosion

Newborn Neutron Star

Neutrino
Cooling

Gravitational binding energy

E, ~ 3x 1073 erg ~ 17%M,, c?

This shows up as
99% Neutrinos
1% Kinetic energy of explosion
(1%of this into cosmic rays)
0.01% Photons, outshine host galaxy

sl
Proto-Neutron Star
P Pryc = 3%x10* gem3
T = 30 MeV

Neutrino luminosity
L, ~ 3x 103 erg/ 3sec
=~ 3x 1091,

While it lasts, outshines the entire
visible universe
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First messengers of explosions

Neutrino?
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First messengers of explosions

Neutrino? |— | Gravitational waves?
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First messengers of explosions

Neutrino? |— | Gravitational waves? |—
Radio waves? At least in atmospheric explosions
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First messengers of explosions

Neutrino? |— | Gravitational waves? |—
Radio waves? At least in atmospheric explosions | —

Shock breakout
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SN classification

thermonuclear core collapse
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hypernovae

Turrato 2003
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Extremely bright Type lin SNe
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H-poor superluminous SNe

Quimby et al. 2011
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Still enigmatic. Most probably explained by a long living
radiative shock. No better model is suggested
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Supernova 1987A Neutrinos

Koshiba, M. et al. 1988, in “SN 1987A in the LMC" Anglo-Australian Telescope
_ (~1 month after SN)
Ee in MeV S O _ -
S0 T Detection of neutrino burst
by Kamiokande Il (filled circles)
201 (ﬂ) and IMB (open circles)
30 _: 0
Jl'_ L IMB Detection Threshold
|
10 KAMIOKANDE Detection Threshold 4 { $
I i I i i i i 1 I i i 1 = [
0|23L55?591ﬂ‘|11213
| Feb 23,07:35: 41 (£ 50 m sec.)
7:35:40
~13 seconds
first optical sighting occurred
~a few hours after time of neutrino burst
June 25, 2009 NYC Amaldi &, LIGO-G0S00582 a
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SN 1987A Neutrinos

Ten neutrino events were detected in a deep mine neutrino detection facility in Japan which
coincided with the observation of Supernova 1987A. They were detected within a time
interval of about 15 seconds against a background of lower energy neutrino events. A similar

facility, IMB in Ohio detected 8 neutrino events in 6 seconds. These observations were made

18 hours before the first optical sighting of the supernova.

40
Neutrino i
event

H
-
T

Energy (Me'')
]
=
|
[

3

Relative time
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Superlumnal neutrino cartoons...
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Longo PRD 36(1987)3276

Tests of relativity from SN1987A

Michael J. Longo
University of Michigan, Ann Arbor, Michigan 48109
(Received 7 July 1987)

The observation of neutrinos and light from the recent supernova in the Large Magellanic
Cloud has provided us with a wealth of new information, both about stellar collapse and about
neutrinos. [ point out that, in addition, the nearly simultaneous arrival of the photons and neutri-
nos after a journey of some 160000 yr shows that the limiting velocity of electron antineutrinos is
equal to that of light to an accuracy ~2x 10°?, which is a more stringent test of special relativity
than previous Earth-based measurements. It also provides an important new test of relativity and
probes the structure of spacetime on intergalactic scales.

Distance = 1.6 x 10%ly, At ~ 3", hence
I(c — ) /c| <3B/(1.6 x 10° x 365 x 24) =2 x 107

Where does At ~ 3" come from?
Could the constraint be improved?
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SN1987A discovery

Timing (times in Universal Time)

7:36, 23 February, neutrinos observed

9:30, 23 February
Albert Jones, amateur astronomer, observes
Tarantula Nebula in LMC
He sees nothing unusual

10:30, 23 February
Robert McNaught photographs LMC
When plate is developed, SN1987A is there.
Some 20 hours later, lan Shelton’s discovery.
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SN87A early observations

Blinnikov with K.Nomoto ea
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SN87A early observations

log T,, K
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Improvement of ¢, constraint

If the flash at shock breakout were observed we would get

(c—cy)/c| S 2 X 10— 10

Much better improvement is possible in principle!
If a precollapse suspect is monitored and its prompt quake
IS registered e.qg. in radio simultaneously with » and/or GW

signal.
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v detectors

‘ Some neutrino experiments with SN detection capability

LVD Borexino Super-K

lceCube

— -

Ausiralia) s
S 5
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Next generation v detectors

‘ Next generation neutrino mega-detectors (10-20 years)

~few to tens of events from M31

100 kton-scale
LAr detector
concepts

100 kton-scale
. scintillator
: detector
LENA, HSD concepts

Megaton-scale water
etector concepts
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Gravitational Waves from CCSNe

http://numrel.aei.mpg.de/images

These images are copyright of AEI, ZIB, LSU and SISSA
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http://numrel.aei.mpg.de/images

GW detectors

‘ Global network of GW detectors

LIGO Hanford

B o S
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v detectors

‘ Some neutrino experiments with SN detection capability

LVD Borexino Super-K

lceCube

— -

Ausiralia) s
S 5
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GW LIGO estimates

Preliminary Reach Estimates on Simulated Data

Preliminary reach estimates

Betelgeuse SN2008bk BN Initial LIGO (simulated)
== Galaxy limit \ B GEC-HF {simulated)
Fn—— B Advanced LIGO (projected)
Il ET (projected)

Burrows et al. 07}

Dimmelmeier et al, 08}
= Wirgo
Kotake et al, 09
Estimates owver the
range of the model
parameter space

Marek et al. 08}
Murphy et al. 09}
Ott 09

DOttetal 10}

Scheidegger et al. 10

Yakunin et al. 10

Piro et al, 07}

Fryer et al. 02}

10 10° 10

- Distance (pc) -
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SN 20069y

Ofek et al.
2007, ApdL,
astro-
ph/0612408)

SN 2006gy

O
)
N
(&)
P
©
QA

Smith et al. /
2007, Sep. 10
Apd, astro-

NGC 1260 nucleus
ph/0612617) E -

HNNAD15y12-Prosper — p. 30



Brightest. Supernova. Ever
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It was Most Luminous SN ever
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Extremely bright Type lin SNe
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Luminous SN: too many photons?

Now we know a few other SNe with peak luminosity even
higher than SN 2006gy.

Total light 10°! ergs: 2 orders of
mag higher than normal core
collapsing SN and 1 order more
than brightest thermonuclear SN

To explain this light we inevitably involve large stellar
masses.
| will try to explain why the evolution of stars with M/ > 10M,
IS quite different from low mass stars, and what happens at
M ~ 100M¢
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STELLAR EVBLUTION: A JOURNEY WITH BHANDR
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Stellar evolution

HR (L — T.g) diagram needed for comparison with

observations

! | ! ! ! ! | ! ! ! ! |
6 - M = 100 -
7~ M =20 —/
4 |
'__|®
—
3 M=5
2 _
0 M= 1 -
l l I l
4.0 4 3.0
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Compression in center

even if Ry, Qrows

massive than about 2.25M ¢ approach a common path, as is shown in Figure 4
(from Iben 1973a). This is a consequence of the fact that the density and pressure
distributions in the inner parts of the hydrogen-exhausted core and the rate of energy

o
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Figure 4 Tracks in the p-T plane traced out by the centers of stars of various masses
(Iben 1973a).
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Central Pressure

Omitting all coefficients of order unity, pressure and density
in the center are:

GnM? M
PCZ R4 7pc_§.

and we find

PC ~ GNMngCL/g.
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T, x Mz/gp(l:/?’ in ND stars

So if we have a classical ideal plasma with P = RpT/u,
where R is the universal gas constant, and 1 — mean
molecular mass,

1/3
o GxM*Bp
cC — R °

With u ~ 1 for H-He fully ionized plasma we get for the Sun
T.~ 10" K~ 1keV.
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Now check: T, oc M?/3pl/3

log T, K

9.5 —

8.5

7.5
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Check: T, oc M?/3pl/3

9.5 i I I I I I I I I I I I I I I I
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log T, K
o
I I I
I
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Not so for lower masses

log T, K

9.5

9
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! | ' |
M = 5
B /' _
| . | i
2 4
log p,




Degeneracy of electrons

v, degeneracy
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Degeneracy of electrons

9.5 i I I I I I I I I I I I I

log T, K
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M > 10M never degenerate

log T, K
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Compare with old Iben’s results

massive than about 2.25M o approach a common path, as is shown in Figure 4
(from Iben 1973a). This is a consequence of the fact that the density and pressure

didtributions in the inner parts of the hydrogen-exhausted core and the rate of energy
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Figure 4 Tracks in the p-T plane traced out by the centers of stars of various masses
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Check: T, Mz/?’pclz/3

log T, K

9.5 I I I

8.5

7.5
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Check: T, Mz/?’pclz/3

log T, K
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‘M

100
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If radiation dominates In P

When plasma is
radiation-dominated (for massive
stars), then, P o« T, and

T, o MY6p13,
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Compute stars yourself

Computational Astrophysics:
http://rainman.astro.uiuc.edu/ddr/

The Digital Demo Room

10000 stars evolve together — find on this site |[— click here
/ stars of masses 20M, < M < 80 evolve in a combined run

and explode as SNe — find on this site || — click here
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http://rainman.astro.uiuc.edu/ddr/

The carbon-oxygen cores of low mass stars turn out to be
degenerate at the moment when the carbon burning
begins. The temperature of their interiors is also strongly
affected by the neutrino energy losses. Should the carbon
burning only begin in degenerate conditions, it acquires a

violent, explosive nature giving rise to the explosion of Type
la supernovae.
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On hydrodynamical instability

Equilibrium requires (in Newtonian gravity):
PC ~ GNMQ/gpg/S.

This implies that adiabatic exponent
v < 4/3 may lead to a hydrodynamic
instabllity.
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Mechanical stability

lg P

5/ 3

51>SQ>S3
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Relativistic particles

leadto~v — 4/3

We have v ~ 4/3 due to high entropy S (photons and
ete™ pairs).

At low S — 0 we have v — 4/3 due to high Fermi energy
of degenerate electrons at high density p.
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Causes for a collapse: pairs

For very massive stars the radiation pressure a7*/3 must
be much larger than RpT.
Here per gram

Eth — aT4/,0

and from
TS =FEmqw+ Plp for pu=0,

we find per unit mass

HNNAD15y12-Prosper — p. b7



Photons and ...

1/3 4/3
T — §& 7 pzlaT‘l:g §@ 7
4 a 3 3\4 a
i.e. P o p*/3 for constant S, and v = 4/3. When T 2, 0.1m.c?
for small ;1 in non-degenerate gas the pairs (e"e~) are born

intensively, so for T > m.c? the total thermal energy

(7a/8) Is added per each polarization of fermions.
Exact formulae see, e.g., SB,Dunina-Barkovskaya,DKN,
1996, ApJS.

HNNAD15y12-Prosper — p. 58



...and eTe” pairs

pressure
11
P=—aT*
12
and entropy per gram
11 a1
S=—""
3 p

Thus for T > m.c? again P ~ p*/3, but the coefficient is

smaller
4/3
11 11
p g2 Ha350)
12 12 \11 «

so in between the slope log P — log p must be less than 4/3.
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Pair instability

A radiation
dominated star
was already at
the verge of the
loss of the stabillity
(P x p*3), and
now it is unstable if
(v < 4/3).

lgP‘
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Open evolution code

Hertzsprung-Russell and Center Temperature-Density
Tracks for Metallicity Z = 0.02. The “He” symbols show
where the net of power from nuclear reactions beyond
hydrogen burning minus neutrino losses from all sources
reaches the break-even point.

Paxton: P.Eggleton evolution code

HNNAD15y12-Prosper — p. 61


http://theory.kitp.ucsb.edu/~paxton/

Higher mass means higher T

for the same p, hence palr creation

log Center Temperature

log Center Density
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Open evolution code

Previous plot is taken from here
Paxton: P.Eggleton evolution code

Centre Temperature-Density Tracks for Metallicity Z = 0.02.
The “He” symbols show where the net of power from
nuclear reactions beyond hydrogen burning minus neutrino
losses from all sources reaches the break-even point.

bonee HarnagHble rpadoukn HMXe — Roni Waldman
arXiv:0306.3544.
Better looking plots below are from Roni Waldman’s eprint
arXiv:0806.3544.
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http://theory.kitp.ucsb.edu/~paxton/

Massive stars and their He-cores

10

99
9.g | Fe disintegration

Each line is labeled “M” for
stellar models and “He” for

9.7
9.6 |

9.5 |- Pair instability

04 He-core models, followed
5 os by the mass of the model

9.1 or of the core. Here are

stars that reach core

8.9

ol w»—1  collapse avoiding pair
36! MB0 —— instability.

8.5

. ! ! !
3 4 5 6 7 8 9 10
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3 outcomes of pair-instability

10

Here are only He-core 991

9gl Fe disintegration

models, labeled by “He” 0.7
and the mass of the core. i
They all reach pair 0.4
instability, subsequently .
experiencing 1) pulsations 91
(He48), 59

2) complete disruption 2o
(He80), or o6 Hego

3) (He160) 3 7 5 o 7 8 9 10

log(Te)

He 48
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~v < 4/3 domain in T' — p plane

Gary S. Fraley 1968. Pair-instability SNe

gm/

cm

SUPERNOVAE EXPLOSIONS INDUCED BY PAIR-PRODUCTION INSTABILITY

|

L 1 | |

1.4

1.6 2.0 2.4 2.8 3.2
(Tg)

Temperature

The area in which y becomes less than 4 due to electron-positron pair production
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Adiabatic ~ for pairs at very low density

D.K.Nadyozhin 1974, see SB,Dunina-Barkovskaya,DKN,
1996, ApJS

1.36° 1.36
1.34 F 1 1.34
Y

1.32 F d1.32

1.30 F J11.30
128 F 11.28

1.26 F 11.26

124 d1.24

122 d1.22

120" 1120
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Umeda and Nomoto 2007

10

8.5

e*e” pair
instabillity
region

Log p, (g cm™)
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Woosley et al. 2007, 103 )M/, star

log ( central temperature / K )

9.5

o
o

8.0

o
o

_______________
S

1 2 3 4 ) 6 7

log ( central density / g cm™3 )

This  gives the
Most Luminous
Supernovae (),
because, instead of
one SN explosion,
we have several
mass ejections
and collisions of
mass shells which
produce bright
radiating shocks.
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SN lIn structure, Chugai, SB ea’'04
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Shocks in SNe lIn

A long living
shock: an
example for
SN1994w of
type lIn. Density
as a function
of the radius r
iIn two models
at day 30. The
structure tends
to an isothermal
shock wave.
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Woosley, Blinnikov, Heger, s103

log ( central temperature / K )

1 2 3 4 5 6 7
log ( central density / g cm™

>ulsational pair instability may give the Most Lyminous sSupernovae!



Two mass ejections
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Light curve for SN2006gy

from Woosley, SB, Heger (2007)
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Stella: LCs for SN2006gy

New runs
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Double explosion: old idea

Grasberg & Nadyozhin (1986)

o i i

2 Type ll supernovae: two successive explosions?
R E. K. Grasberg and D. K. Nadézhin

|

; Radio Astrophysical Observatory, Latvian Academy of Sciences, Riga

i and Institute of Theoretical and Experimental Physics, Moscow

> (Submitted September 5, 1985)

4 Pis'ma Astron. Zh. 12, 168-175 (February 1986)

o

=

A type II supernovae model wherein a weak explosion precedes a much stronger one can explain the behavior
of the narrow-line systems observed in some type II spectra. For SN 1983k in NGC 4699, the two outbursts
would have been separated by 1-2 months. Core gravitational collapse generating a relatively weak shock as
the presupernova reorganizes itself might trigger the first explosion, while the second would occur when the
newborn neutron star transfers energy to the envelope that has failed to collapse.
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Hydro structure 60 d

—10

—18

s110e25kbq05

HNNAD15y12-Prosper — p. 77



60 d, mass coordinate
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‘Visible’ disk of SN 2006gy

ightness for SN2006gy 110 model
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Star formation rate = SFR

Smartt S. J., 2009, ARAA, 47, 63
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Nearby candidate:

Betelgeuse in ORION — distance 130 pc
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Neutrino warning
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Neutrino emission
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From Odrzywolek et al.

PRE-SUPERNOVA MONITORING

Maximum % of the Galactic
Detector )
observation pre-supernovae
mass .
range in the range
GADZOOKS! 32 kt 0.5 kpc 0.1%
HYPER-KAMIOKANDE || 0.5 Mt 2 kpc 2%
SINGLE DEEP .,
OCEAN BALLOON 10 Mt 10 kpc S0%
GIGATON ARRAY | Gt 100 kpc 100%
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Neutrinos: Milky Way warning

Red circle is expected range for
GADZOOKS!/Super-Kamiokande detector

Green circle is expected range for Gd-loaded 0.5 Mt water
detector (UNO, Hyper-Kamiokande, LAGUNA)

Blue circle is expected range for hypothetical 10 Mt
underwater detector (TITAN-D, underwater balloon)

Yellow circle is expected range for futuristic “Gigaton Array”
detector — for three hour warning range is much larger than

Galaxy radius
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Neutrinos: 1 day MW warning
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3 hours MW warning
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Summary

# Radiating shocks are most probable sources of light in
most luminous supernovae of type lIn like SN2006gy

# Most luminous SN lIn events may be observed at high
z [for years due to (1 + z)] and may be useful as direct,
primary, distance indicators in cosmology
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Conclusions-1

# The shock wave which runs through rather dense
matter surrounding an exploding star can produce
enough light to explain very luminous SN events. No
°6Ni is needed in this case to explain the light curve
near maximum light (some amount may be needed to
explain light curve tails).

We need the explosion energy of only 2-4 Bethe for the
shell with M = 3 — 6 Mg and R < 10'%cm. NARROW
LINES MAY NOT BE PRODUCED!
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Conclusions-2

# Questions on the latest phases of star evolution arise:

s Is it possible to form so big and dense envelopes?
And how?

o lime scale for such a formation
s How far can the envelope extend?

s Density and temperature profiles inside the
envelope right before the explosion

o Question to observations: try to find traces of such
shells for bright explosions.
(There are spectral evidence of circumstellar shells for
type lIn and lbn SNe. Is it possible to find C-O
envelopes as well?)
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Conclusions-3

# Many technical problems in light curve calculations:
s line opacities;
s dimensionality: 3D is preferable, since the envelope
can most probably be clumpy;
s NLTE spectra
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