

Status and first results of the ANTARES neutrino telescope

research goals
the detector setup
status and performance
first results
summary

Heide Costantini INFN, Genova, Italy

The Cosmic Ray (CR) Spectrum

The CR sources are still unkown

CR Origin: the Standard Scenario

The Astrophysical Beam Dump

Fermi acceleration of protons and electrons in astrophysical sources

Absorption length of protons and gammas in the Universe

Neutrinos can probe the far and violent Universe

Potential neutrino sources

Heide Costantini –INFN Genova

Principle of neutrino astronomy

Main detection channel: ν_{μ} interaction giving an ultrarelativistic μ

Reconstruction of μ trajectory (~ v) from timing and position of PMT hits

Heide Costantini –INFN Genova

MSU, 16th February 2010

H₂O Neutrino Telescope Projects

The ANTARES site

- 42°50' latitude Nord
- 6°10' longitude Est

The Galactic center is visible 75% of the day

AMANDA/IceCube (South Pole) ANTARES

Who is in ANTARES

7 countries 27 institutes 150 scientists+engineers

NIKHEF, Amsterdam KVI Groningen NIOZ Texel

IFIC, Valencia UPV, Valencia

University/INFN of Bari University/INFN of Bologna University/INFN of Catania LNS – Catania University/INFN of Pisa University/INFN of Roma University/INFN of Genova CPPM, Marseille DSM/IRFU/CEA, Saclay APC, Paris LPC, Clermont-Ferrand IPHC (IReS), Strasbourg Univ. de H.-A., Mulhouse IFREMER, Toulon/Brest C.O.M. Marseille LAM, Marseille GeoAzur Villefranche

ISS, Bucarest

University of Erlangen

The ANTARES Site infrastructures

Onshore station, Institut Michel Pacha, La Seyne s/M

FOSELEV Marine Shipyard, La Seyne s/M

The ANTARES Storey

Optical Beacon with blue LEDs: timing calibration titanium frame: support Structure (2m)

Local Control Module (in Ti cylinder): Front-end ASIC, DAQ/SC, DWDM, Clock, tilt/compass, power distribution...

Hydrophone: acoustic positioning

Heide Costantini –INFN Genova

MSU, 16th February 2010

2006 – 2008: deployments of the detector lines

- Line 1: 03 / 2006
- Line 2, 3, 4, 5: 01 / 2007
- Line 6, 7, 8, 9, 10: 12 / 2007
- Line 11, 12: 05 / 2008

The full detector on Seabed

Status of the apparatus

At end of construction

~90% of optical modules operational

Regular maintenance of in-situ infrastructure

Today

- Line 6 recovered, Line 9 planned to be recovered
- Line 12 repaired and reconnected

Optical Modules Counting Rates

The Trigger

- Front end chip digitizes charge and time of a light signal
 "ALL DATA TO SHORE" SCHEME:
- All data transmitted through multiplexed Gigabit links
 - the whole data flow can not be written to disk
- Computer farm running a software trigger:
 - look in all directions for light signals compatible with a muon track
 - when found, write a Physics Event

• Other triggers exist: cluster of storeys, Galactic Center, ...

Calibration: positioning

★ Acoustic system:

- + One emitter-receiver at the bottom of each line
- + Five receivers along each line
- + Four autonomous transponders on pyramidal basis
- ★ Additional devices provide independent sound velocity measurements

Positioning results

Time calibration with led-beacon

3 OMs

- Electronics + calibration $\rightarrow \sigma \sim 0.5$ ns
- TTS in photomultipliers $\rightarrow \sigma \sim$ 1.3 ns
- Light scattering + dispersion in sea water $\rightarrow \sigma$ ~ 2 ns

Attenuation length measurements

• The biggest challenge is to determine the separate contribution of absorption and scattering contribution

In situ calibration with Potassium-40

Expected Performance (full detector)

•For E_v <10 PeV, A_{eff} grows with energy due to the increase of the interaction cross section and the muon range. •For E_v >10 PeV the Earth becomes opaque to neutrinos.

•For $E_v < 10$ TeV, the angular resolution is dominated by the v- μ angle. •For $E_v > 10$ TeV, the resolution is limited

by track reconstruction errors.

Muons tracks: event display principle

Hits are plotted for each line: z coordinate (height) as function time Characteristic pattern in function of zenith angle and point of closest_approach between line and track 250 Trigger hit 200 Other hit Used in fit 150 100 50 z (m) 0 -50 -100 -150 -200 -250 -3000 -2000 -1000 1000 2000 3000 0 time (ns)

Muons tracks: event display principle

Characteristic pattern depending on zenith angle and distance of closest approach

Reconstruction: a downgoing muon (atmospheric)

Reconstruction: an upgoing muon (neutrino induced)

Analysis: Atmospheric muons

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

- Main sources of simulation uncertainty are:
 - optical module response
 - absorption length of light in water

satisfactory

understood

Depth intensity Relation

Depth intensity Relation without muon reconstruction

Simple method based on coincidences on adjacent storeys. No reconstruction needed.

0.02

0.01

Method allows to measure the depth-intensity relation of muons with no systematic errors from trigger or reconstruction algorithms (main uncertainty: optical module acceptance)

0 50 100 150 20 Delay between adiacent storeys [ns]

Neutrinos :comparison MC-data

-5 lines data: 37 active days- quasi-online reconstruction-No quality cuts applied

Quality cut

Analysis: Atmospheric neutrinos

good agreement with Monte Carlo: atmospheric neutrinos: 916 (30% syst. error) atmospheric muons: 40 (50% syst. error)

Neutrino Events: sky map

750 upgoing neutrinos: 2007+2008 data

Search for point-like neutrino sources

with the 2007 (5-line) data: effective live time 140 days stringent selections: low background

high reconstruction quality (ang. resolution < 0.5°)

binned, unbinned searches on data with scrambled coordinates of 94 events (equatorial coordinates):

no correlation with 25 potential v sources; no excess ($\pm 1\sigma$) in all-sky search; sensitivity competitive with multi-year exposures of previous experiments

Multi-Messenger astronomy

Triggered search method

SWIFT, INTEGRAL, Fermi alerts reception

GRB data storage during 2 minutes without filtering

Rolling search method

Principle

+2135.000 +2155.000 +2155.000 +2128.700 +015500 ID:<u>H-50.0</u> (0.4-00)

Telescope TAROT

Observation strategy:

Real time (T_0) 6 images of 3 minutes T0+1 day, +3 days, +9 days and +27 days

Supernova neutrinos in ANTARES?

- MeV neutrinos are produced in first seconds of a SN explosion
- Detect the global rate increase in the whole detector

First suggested for AMANDA: F. Halzen, et al Phys. Rev. D49(1994), 1758

- Amanda-Ice Cube is participating to SNEWS network
- ANTARES could detect global rate increase above background fluctuations due to

galactic SN if bioluminescence bursts are cut efficiently

Associated Science bioluminescent marine life

Installation of Camera + IR source —

Self triggering on bioluminescence event IR switch ON after trigger, photomultiplier read out as well

MSU, 16th February 2010

Examples of bioluminescence events

-150 bioluminescent triggers registered

- 4 different types of signals

DEEPEST ONLINE CAMERA IN THE WORLD!

Conclusions

- ANTARES today
 - Successful end of construction phase
 - Technology proven
 - Data taking ongoing
 - First physics outputs
 - Atmospheric μ and $\nu,$ cosmic neutrino sources
 - Dark matter, neutrino oscillations, magnetic monopoles, GRB
- On the road for the next step
 - KM3Net...

