Рождение каскадных гиперонов на нуклонах

Д.А. Шаров НИИЯФ МГУ

По материалам кандидатской диссертации

$SU_{f}(3)$ симметрия подразумевает существование одного Ξ в октете и в декуплете барионов: $n(\Xi^{*})=n(N^{*})+n(\Delta^{*})$						В PDG перечислено 22			22 N*	22 Δ*	
						44 ±* Обнаружено только 11 ±-состояний					
									Состояние	Jp	Г(МэВ)
								<u> </u>	1/2+		
На основе кварковой модели Кэпстик и Изгу						р -2 4 Гг	R	Ξ (1530) ****	3/2+	10	
предсказали существование 45 ± ° с массои ~					~2.713		Ξ(1620) *		~28		
State, J ^P		Predicted r	nasses (MeV	⁽)				-	Ξ(1690) ***		<30
$\Xi \frac{1}{2}^{+}$ $\Xi \frac{3}{2}^{+}$	1305 1505								Ξ(1820) ***	3/2-	24
$\Xi^{*\frac{1}{2}}$	1755	1810	1835	2225	2285	2300	2320	2380	Ξ(1950) ***		60
$\Xi^* \frac{3}{2}^-$ $\Xi^* \frac{5}{2}^-$	1785 1900	1880 2345	1895 2350	2240 2385	2305	2330	2340	2385	Ξ(2030) ***		20
$\Xi^* \frac{7}{2}^-$	2355								Ξ(2120) *		20
$\Xi^* \frac{1}{2}^+$ $\Xi^* \frac{3}{2}^+$	1840 2045	2040 2065	2100 2115	2130 2165	2150 2170	2230 2210	2345 2230	2275	Ξ(2250) **		~70
$\Xi^{*}\frac{5}{2}^{+}$ $\Xi^{*}\frac{7}{2}^{+}$	2045 2180	2165 2240	2230	2230	2240				Ξ(2230) **		80
S Capstick and N Isgur PRD 34 2809 (1986)									Ξ(2500) *		~100

S.Capstick and N. Isgur, PRD 34 2809 (1986)

Экзотика

- Ξ⁺ и Ξ⁻⁻ не могут быть qqqсостоянием.
- Ξ(1862) наблюдали только в одном эксперименте CERN NA49 [C. Alt *et al*, PRL, 92, 042003 (2004)]
- Поиски продолжаются (в том числе и коллаборацией CLAS)

Рождение каскадных гиперонов

- Каонные пучки в реакции КN→КΞ прошлое : пузырьковые камеры (1960-1970 гг) низкая интенсивность, малая статистика будущее : J-PARC p_K=1.8ГэB/с
- Фоторождение в реакции γ N→KKΞ CLAS JLab

• Пионные, протонные, гиперонные пучки

Фоторождение каскадных гиперонов

CLAS Jefferson Lab $\gamma p \rightarrow K^+ K^+ \Xi^-$ Ξ-(1321) 2500 Counts/(5 MeV/c²) 2000 MM(K⁺K⁺) (GeV/c²) 1500 M1:1.3223 ± 0.0001 σ **1:0.0067** ± **0.0001** N1: 7678 ± 173 M2:1.5378 ± 0.0009 1000 σ **2: 0.0105** ± 0.0011 N2: 658 ± 91 500 E*⁻(1530) 0 1.2 1.3 1.5 1.6 1.7 1.1 1.4 1.8 $MM(K^+K^+) (GeV/c^2)$ Спектр недостающей массы системы К+К+, полученный

в Джефферсоновской лаборатории.

Прошлое: CLAS g6; CLAS g11: Число событий: Ξ_{g.s} – 7678, Ξ(1530) – 658 Энергия фотона от 2.8 до 4.7 ГэВ

Настоящее: CLAS g12: Данные в процессе обработки Энергия фотона от 3.4 до 5.4 ГэВ

Будущее:

CLAS12 и HALL D после апгрейда

L. Guo et al., PRC 76, 025208 (2008) J.W. Price et al., PRC 71, 058201 (2005),

Фоторождение каскадных гиперонов

L. Guo et al., PRC 76, 025208 (2008)

Рождение каскадных гиперонов пучками каонов

Механизмы образования каскадных гиперонов

Существует большое количество моделей рождения гиперонов Λ и Σ в реакциях $\gamma N \rightarrow K\Lambda$ и $\gamma N \rightarrow K\Sigma$, которые хорошо описывают экспериментальные данные

Реакции образования Е-гиперонов изучены плохо.

- Известно несколько теоретических работ, выполненных в 60-70 гг, в которых авторы на основе различных моделей пытались описать реакцию KN→KΞ.
- В этих работах были отмечены некоторые интересные закономерности, однако попыток единого описания всей совокупности или хотя бы значительной части экспериментальных данных до настоящего времени не предпринималось.
- Существует единственная работа, в которой данные по реакции фоторождения γN→KKΞ теоретически анализировались на основе эффективных лагранжианов с константами связи, определенными из SU_f(3) симметрии. [K. Nakayama, Y. Oh, H. Haberzettl, PRC 74, 035205 (2006)]

Механизмы образования каскадных гиперонов

Целью диссертационной работы является феноменологический анализ рождения каскадных гиперонов на нуклонах в реакциях $KN \rightarrow K\Xi$ и $\gamma p \rightarrow K^+K^+\Xi^-$ и выявление механизмов этих реакций.

- Первый этап: Построение феноменологической модели реакции KN→KΞ, учитывающей u- и s-канальные обмены различными гиперонами. Анализ всех имеющихся экспериментальных данных по реакции KN→KΞ при энергии в системе центра масс от порога до 2.8 ГэВ. Выявление роли различных механизмов и определение параметров модели, дающих наилучшее описание данных.
- Второй этап: Построение модели фоторождения каскадного гиперона в реакции $\gamma p \rightarrow K^+ K^+ \Xi^-$. Совместный анализ экспериментальных данных по реакции $\gamma p \rightarrow K^+ K^+ \Xi^-$, полученных коллаборацией CLAS, и данных по реакции $\overline{KN} \rightarrow K\Xi$.

3 зарядовых канала:

 $K^-p \to K^+\Xi^-$, $K^-p \to K^0\Xi^0$ и $K^-n \to K^0\Xi^-$ Амплитуды связаны соотношением $M(K^-n \to K^0\Xi^-) = M(K^-p \to K^+\Xi^-) + M(K^-p \to K^0\Xi^0)$

Эффективные лагранжианы

Для вершин $B(1/2^+)Y(1/2^{\pm})K(0^-)$

$$L_{BYK}^{(\pm)} = \frac{f_{BYK}}{m_{\pi}} \overline{B} \gamma_{\mu} {\binom{\gamma_5}{1}} Y \partial^{\mu} K + h.c.$$

Для вершин B(1/2⁺)Y(3/2[±])K(0⁻)

$$L = \frac{f_{BYK}}{m_{\pi}} \overline{B} \begin{pmatrix} 1\\ \gamma_5 \end{pmatrix} Y_{\mu} \partial^{\mu} K + h.c.$$

Вершинный формфактор

$$F = \exp \left(-\frac{\mathbf{q}^2}{\Lambda^2}\right)$$

Определение параметров модели

Свободными параметрами модели являются произведения констант связи $\mathbf{f}_{\mathbf{Y}} = \mathbf{f}_{\mathbf{NYK}} \ \mathbf{f}_{\Xi\mathbf{YK}}$ и параметры обрезания Λ . Они подгоняются под экспериментальные данные с помощью минимизации функции χ^2 .

Все доступные в литературе данные при энергии в системе центра масс от порога до 2.8 ГэВ мы разделили на две группы: данные, включенные в процедуру фитирования и данные, которые используются для проверки результатов фита.

Для определения параметров нашей модели мы использовали интегральные и дифференциальные сечения реакций К⁻р→К⁺Ξ⁻, К⁻р→К⁰Ξ⁰. Число экспериментальных точек, включенных в фит 396.

Для проверки использовались интегральные и дифференциальные сечения реакции К¬п→К⁰Ξ¬ и поляризация Ξ-гиперона в реакциях К¬р→К⁺Ξ¬, К¬р→К⁰Ξ⁰.

Первый этап:

и- и s-канальные обмены 4 подпороговыми гиперонами $\Lambda(1/2^+), \Sigma(1/2^+), \Sigma(1385,3/2^+), \Lambda(1520, 3/2^-)$ 5 свободных параметров: 4 произведения констант связи f_y и один параметр обрезания Λ

Результаты фита: х²=1121 (396 точек)

с параметрами $f_{\Lambda} = 0.4502, f_{\Sigma} = 0.1766, f_{\Sigma(1385)} = 0.0340, f_{\Lambda(1520)} = -0.6462, \Lambda = 773$ МэВ

18

Результаты реакции К⁻п→К⁰Ξ⁻

Интегральное сечение в зависимости

от энергии в СЦМ

Надпороговые гиперонные резонансы

Состояние	Jp	Г(МэВ)	Br(KΞ)
Λ(1890)****	3/2+	60-200	
Λ(2100)****	7/2-	100-250	< 3%
Λ(2110)***	5/2+	150-250	
Λ(2350)***	9/2+	100-250	
Σ(1915)****	5/2+	80-160	
Σ(1940)***	3/2-	150-300	
Σ(2030)****	7/2+	150-200	< 2%
Σ(2250)***	?	60-150	
	5/2- или 9/2-		

20

Эффективные лагранжианы

Для вершин B(1/2⁺)Y(5/2[±])K(0⁻)
$$L = \frac{f_{BYK}}{m_{\pi}^2} \overline{B} \begin{pmatrix} \gamma_5 \\ 1 \end{pmatrix} Y_{\mu\nu} \partial^{\mu} \partial^{\nu} K + h.c.$$

Для вершин B(1/2⁺)Y(7/2[±])K(0⁻)
$$L = \frac{f_{BYK}}{m_{\pi}^3} \overline{B} \begin{pmatrix} 1 \\ \gamma_5 \end{pmatrix} Y_{\mu\nu\rho} \partial^{\mu} \partial^{\nu} \partial^{\rho} K + h.c.$$

Для вершин B(1/2⁺)Y(9/2[±])K(0⁻)
$$L = \frac{f_{BYK}}{m_{\pi}^4} \overline{B} \begin{pmatrix} \gamma_5 \\ 1 \end{pmatrix} Y_{\mu\nu\rho\sigma} \partial^{\mu} \partial^{\nu} \partial^{\rho} \partial^{\sigma} K + h.c.$$

Пропагатор бариона со спином 5/2 $S_{\mu\mu',\nu\nu'}^{5/2}(q) = \frac{\hat{q} + \sqrt{q^2}}{(q^2 - M^2 + iM\Gamma)} P_{\mu\mu',\nu\nu'}^{5/2}$ $P_{\mu\mu',\nu\nu'}^{5/2}(q) = \frac{1}{2} P_{\mu\nu} P_{\mu'\nu'} - \frac{1}{5} P_{\mu\mu'} P_{\nu\nu'} + \frac{1}{2} P_{\mu\nu'} P_{\mu'\nu} + \frac{1}{10} P_{\mu\rho} \gamma^{\rho} \gamma^{\sigma} P_{\sigma\nu} P_{\mu'\nu'}$ $+ \frac{1}{10} P_{\mu'\rho} \gamma^{\rho} \gamma^{\sigma} P_{\sigma\nu'} P_{\mu\nu} + \frac{1}{10} P_{\mu\rho} \gamma^{\rho} \gamma^{\sigma} P_{\sigma\nu'} P_{\mu'\nu} + \frac{1}{10} P_{\mu'\rho} \gamma^{\rho} \gamma^{\sigma} P_{\sigma\nu} P_{\mu\nu'}, \quad P_{\mu\nu}(q) = -g^{\mu\nu} + \frac{q^{\mu} q^{\nu}}{q^2} 21$

$$\begin{aligned} & \mathcal{P}_{\mu_{1}\mu_{2}\mu_{3},\nu_{1}\nu_{2}\nu_{3}\nu_{3}}^{\tau/2} = \frac{q + \sqrt{q^{2}}}{(q^{2} - M^{2} + iM\Gamma)} \mathcal{P}_{\mu_{1}\mu_{2}\mu_{3},\nu_{1}\nu_{2}\nu_{3}\nu_{3}}^{\tau/2} \\ & \mathcal{P}_{\mu_{1}\mu_{2}\mu_{3},\nu_{1}\nu_{2}\nu_{3}\nu_{3}}^{\tau/2} = \frac{1}{6} \left(\mathcal{P}_{\mu_{1}\nu_{1}}\mathcal{P}_{\mu_{2}\nu_{2}}\mathcal{P}_{\mu_{3}\nu_{3}} + \mathcal{P}_{\mu_{1}\nu_{2}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{1}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{1}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{1}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}\nu_{3}}\mathcal{P}_{\mu_{2}\mu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu_{2}}\mathcal{P}_{\mu_{2}\mu_{3}} + \mathcal{P}_{\mu_{2}\mu_{3}}\mathcal{P}_{\mu$$

Пропагатор бариона со спином 9/2

$$S^{9/2}_{\mu_1\mu_2\mu_3\mu_4,\nu_1\nu_2\nu_3\nu_4} = \frac{\hat{q} + \sqrt{q^2}}{(q^2 - M^2 + iM\Gamma)} P^{9/2}_{\mu_1\mu_2\mu_3\mu_4,\nu_1\nu_2\nu_3\nu_4}$$

Вершинный формфактор

$$F = \exp\left(-\frac{\mathbf{q}^2}{\Lambda^2}\right)$$

Мы пробовали различные комбинации надпороговых резонансов. В окончательном варианте модели к 4 подпороговым гиперонам добавляются $\Sigma(2030,7/2^+)$ и $\Sigma(2250, 5/2^-)$.

8 свободных параметров

6 произведений констант связи $f_Y = f_{KNY} f_{K\XiY}$, 1 параметр обрезания Λ_1 для подпороговых гиперонов и 1 параметр обрезания Λ_2 для надпороговых резонансов

Результаты фита: $\chi^2 = 985 (396 \text{ точек})$

с параметрами: $f_{\Lambda} = 0.3303, f_{\Sigma} = 0.1185, f_{\Lambda 1520} = -0.4076, f_{\Sigma 1385} = -0.0057, \Lambda_1 = 839 \text{ МэВ},$ $f_{\Sigma 2030} = 0.0203, f_{\Sigma 2250} = -0.0838, \Lambda_2 = 440 \text{ МэВ}$

 $\Gamma(\Sigma(2030) \rightarrow K\Xi) = 1.2 \text{ M}_{9}\text{B}, \qquad \Gamma(\Sigma(2250) \rightarrow K\Xi) = 0.3 \text{ M}_{9}\text{B}$ BR($\Sigma(2030) \rightarrow K\Xi$) = 0.7 % BR($\Sigma(2250) \rightarrow K\Xi$) = 0.3 % ²⁴

Реакция К-п→К⁰Ξ-

Интегральное сечение в зависимости

от энергии в СЦМ

- Модель с надпороговыми резонансами.
 Модель без надпороговых
- резонансов.
- ----- Вклад Σ(2030) и Σ(2250).

Поляризация Е-гиперона

28

Сравнение констант связи

	f_{Λ}	f_{Σ}	$f_{\Sigma(1385)}$	f _{Λ(1520)}	f _{Λ(1405)}
Модель без резонансов	0.4502	0.1766	0.0340	-0.6462	-
Модель с резонансами	0.3303	0.1185	-0.0057	-0.4076	-
Rijken	-0.2675	-0.0319	-	-	-
Rijken	-0.5619	-0.0026	-	-	-
Choe	-	-0.0268	-	-	-
Choe	-	-0.0468	-	-	-
Aliev	-0.0041	-0.0133	-	-	-
Stoks	-0.3457	-0.4188	-	-	-
Nakayama	-0.1816	-0.1728	0.8243	-2.834	0.3919

Rijken: Th.A. Rijken and Y. Yamamoto, PRC 51, 2656 (1995)

Choe: S. Choe, PRC 57, 2061 (1998)

Aliev: T. Aliev, V.S. Zamiralov, S.N. Lepshokov, A. Ozpineci and S.B. Yakovlev, Yad. Fiz. 70, 958 (2007)

Stoks: V.G.J. Stoks and Th.A. Rijken, PRC 59, 3009 (1999)

Nakayama: K. Nakayama, Y. Oh, H. Haberzettl, PRC 74, 035205 (2006)

Расчеты с константами связи из Nakayama et al.

Дифференциальные сечения при различных значениях энергии в СЦМ

Фоторождение каскадных гиперонов в реакции $\gamma p \rightarrow K^+ K^+ \Xi^-$

Включим обмены 4 подпороговыми гиперонами Λ(1/2⁺), Σ(1/2⁺), Σ(1385,3/2⁺), Λ(1520, 3/2⁻)

Константы связи из модели реакции КN→КΞ

Факторизованный вершинный формфактор:

$$F(p'^2, p^2, q^2) = f_B(p'^2) f_B(p^2) f_M(q^2)$$

$$f_B(p^2, M_B^2) = \frac{\Lambda_B^4}{\Lambda_B^4 + (p^2 - M_B^2)^2} \qquad f_M(q^2, M_K^2) = \frac{\Lambda_K^2 - M_K^2}{\Lambda_K^2 - q^2}$$

В амплитуды процессов (a), (в), (е) вводится формфактор

$$F_{\mathbf{a},\mathbf{b},\mathbf{e}} = \left[1 - (1 - f_M(t, M_K^2))(1 - f_B(s, M_N^2))\right] f_B(s_1, M_Y)$$

В амплитуды процессов (б), (д), (ж) $F_{6,\mathrm{д},\mathrm{ж}} = \left[1 - (1 - f_M(t_1, M_K^2))(1 - f_B(u, M_\Xi^2))\right] f_B(t_3, M_Y)$

32

Параметры обрезания $\Lambda_{\rm B} = \Lambda_{\rm K} = 1240 \, {\rm M}$ эВ

Распределения по инвариантной массе М(КΞ) при различных энергиях налетающего фотона

Фоторождение каскадных гиперонов в реакции ур→К+К+Ξ-

Параметры обрезания $\Lambda_{\rm B} = \Lambda_{\rm K} = 1240$ МэВ

Распределения по углу вылета каона при различных энергиях налетающего фотона

Фоторождение каскадных гиперонов в реакции үр→К+К+Ξ-

Расширение модели реакции $\overline{K}N \rightarrow K\Xi$ на реакцию $\gamma p \rightarrow K^+K^+\Xi^-$

Фоторождение каскадных гиперонов в реакции үр→К+К+Ξ-

Распределения по инвариантной массе М(КΞ) при различных энергиях налетающего фотона $d\sigma/dM_{K^+\Xi^-}$, нб/ГэВ 45 E₂=2.8 ГэВ E₂=3.0 ГэВ 30 15 80 ≘- , нб/ГэВ *E*~=3.4 ГэВ Е~=3.8 ГэВ 60 40 $d\sigma/dM_{K^+2}$ 20 1.8 2.0 2.1 2.2 2.31.8 1.9 2.2 1.9 2.0 2.1 2.3 $M_{K^+ \Xi^-}$, ГэВ *М_{K⁺Ξ[−]*}, ГэВ Модель с надпороговыми резонансами. Модель без надпороговых резонансов.

Заключение

- Разработана модель реакции KN→KΞ, учитывающая u- и s-канальные обмены различными гиперонами. Впервые получено описание всех имеющихся экспериментальных данных при энергии в системе центра масс от порога до 2.8 ГэВ. Показано, что удовлетворительное согласие с экспериментом достигается уже при учете обменов 4 гиперонами Λ, Σ, Σ(1385) и Λ(1520).
- Для изучения роли надпороговых резонансов впервые в расчеты на основе диаграммной техники включены обмены промежуточными барионами со спинами 7/2 и 9/2, для чего получены формулы соответствующих пропагаторов. Показано, что s-канальный (резонансный) механизм дает значительный вклад. При этом в реакции К⁻р→К⁰Ξ⁰ резонансный механизм является основным, а в реакцию К⁻р→К⁺Ξ⁻ также существенный вклад дают u-канальные обмены Λ-гиперонами. Выявлено, что существенно отличная от нуля поляризация Ξ-гиперона появляется только за счет интерференции подпороговых гиперонов с надпороговыми резонансами.

Заключение

• Построена модель реакции $\gamma p \rightarrow K^+ K^+ \Xi^-$. Впервые в рамках единого подхода получено согласованное описание данных по реакциям $\overline{K}N \rightarrow K\Xi$ и $\gamma p \rightarrow K^+ K^+ \Xi^-$.

• Роль надпороговых резонансов в реакции $\gamma p \rightarrow K^+K^+\Xi^-$ исследована с помощью упрощенной модели, учитывающей только t-канальные обмены каонами, в которой в качестве базового элемента используется интегральное сечение реакции $K^-p \rightarrow K^+\Xi^-$. Показано, что для описания данных помимо t-канального механизма необходимо учитывать также остальные диаграммы.

Основные результаты диссертации опубликованы в следующих работах:

L. Guo, ..., D. Sharov, *et al.* Cascade production in the reactions $\gamma p \rightarrow K^+ K^+(X)$ and $\gamma p \rightarrow K^+ K^+\pi^-(X)$. // Phys. Rev. C **76**, 025208 (2007).

V.L. Korotkikh, D.E. Lanskoy, D.A. Sharov and Y. Yamamoto. Isospin-mixed Ξ hypernuclear states and (\overline{K} ,K) reactions. // Nucl. Phys. A **805**, 176-178 (2008).

В.Л. Коротких, Д.Е. Ланской, Д.А. Шаров. Динамика образования Ξ-гиперонов на нуклонах. // Изв. РАН. Серия физическая, Том **73**, №6, С. 767-770 (2009)

V.L. Korotkikh, D.E. Lanskoy and D.A. Sharov. Reaction (K⁻, K⁺) and properties of double-strangeness hypernuclei. // Nucl. Phys. A **835**, 353-356 (2010).

В.Л. Коротких, Д.Е. Ланской, Д.А. Шаров.

Реакции образования Ξ-гиперонов на нуклонах. // Труды IX межвузовской научной школы молодых специалистов "Концентрированные потоки энергии в космической технике, электронике, экологии и медицине" по редакцией Б.С. Ишханова и Л.С. Новикова, Изд. МГУ, Москва, 2008, с. 193-199.

В.Л. Коротких, Д.Е. Ланской, Д.А. Шаров.

Механизмы рождения Ξ-гиперонов антикаонами на нуклонах с учетом высокоспиновых резонансов. // Труды Х межвузовской научной школы молодых специалистов "Концентрированные потоки энергии в космической технике, электронике, экологии и медицине" по редакцией Б.С. Ишханова и Л.С. Новикова, Изд. МГУ, Москва, 2009, с. 152-157.

Спасибо за внимание

Дополнительные слайды

Эффективные лагранжианы

Вершины γKK :

$$L_{\gamma KK} = ie \left[\overline{K} \left(\partial_{\mu} K \right) - \left(\partial_{\mu} \overline{K} \right) K \right] A^{\mu};$$

Вершины $\gamma B(1/2^+)B(1/2^+)$:

$$L_{\gamma BB} = -\overline{B} \left[\left(e_B \gamma_\mu - \frac{ek_B}{2m_N} \sigma_{\mu\nu} \partial_\nu \right) A^\mu \right] B;$$

Вершины $\gamma B(1/2^+)Y(1/2)K$:

$$L_{\gamma BYK} = -e \frac{f_{BYK}}{m_{\pi}} \overline{Y} A^{\mu} \gamma_{\mu} \begin{pmatrix} 1\\ \gamma_5 \end{pmatrix} BK + h.c.;$$

Вершины $\gamma B(1/2^+)Y(3/2)K$:

$$L_{\gamma BYK} = -e \frac{f_{BYK}}{m_{\pi}} \overline{Y_{\mu}} A^{\mu} \begin{pmatrix} 1\\\gamma_5 \end{pmatrix} BK + h.c.$$
⁴²

Пропагатор частицы со спином 3/2

$$S_{\mu\nu}^{3/2}(q) = \frac{\hat{q} + M}{(q^2 - M^2 + iM\Gamma)} \left[g_{\mu\nu} - \frac{1}{3}\gamma_{\mu}\gamma_{\nu} - \frac{2}{3M^2}q_{\mu}q_{\nu} - \frac{1}{3M}\left(\gamma_{\mu}q_{\nu} - \gamma_{\nu}q_{\mu}\right) \right]$$

Амплитуды процессов с учетом только подпороговых гиперонов

$$M\left(K^{-}p \to K^{+}\Xi^{-}\right) = M_{u(\Lambda(1116))} + M_{s(\Lambda(1116))} + M_{u(\Sigma(1193))} + M_{s(\Sigma(1193))} + M_{u(\Lambda(1405))} + M_{s(\Lambda(1405))} + M_{u(\Lambda(1520))} + M_{s(\Lambda(1520))} + M_{u(\Sigma(1385))} + M_{s(\Sigma(1385))}$$

$$(1.82)$$

$$M\left(K^{-}p \to K^{0}\Xi^{0}\right) = -M_{s(\Lambda(1116))} - 2M_{u(\Sigma(1193))} + M_{s(\Sigma(1193))} - M_{s(\Lambda(1405))} - M_{s(\Lambda(1520))} - 2M_{u(\Sigma(1385))} + M_{s(\Sigma(1385))}$$
(1.83)

$$M\left(K^{-}n \to K^{0}\Xi^{-}\right) = M_{u(\Lambda(1116))} - M_{u(\Sigma(1193))} + 2M_{s(\Sigma(1193))} + M_{u(\Lambda(1405))} + M_{u(\Lambda(1520))} - M_{u(\Sigma(1385))} + 2M_{s(\Sigma(1385))}.$$
(1.84)

Ширины распадов резонансов

Для распада $\frac{3}{2}^{\pm} \rightarrow \frac{1}{2}^{+} + 0^{-}$ ширина определяется выражением: $\Gamma_{\frac{3}{2}^{\pm}} = \frac{f^2}{12\pi} \frac{E_B \pm M_B}{M_B} \frac{|\mathbf{q}|^3}{m_2^2}.$ Для $\frac{5^{\pm}}{2} \rightarrow \frac{1}{2}^{+} + 0^{-}$: $\Gamma_{\frac{5}{2}^{\pm}} = \frac{f^2}{30\pi} \frac{E_B \mp M_B}{M_B} \frac{|\mathbf{q}|^5}{m^4}.$ Для $\frac{7^{\pm}}{2} \rightarrow \frac{1}{2}^{+} + 0^{-}$: $\Gamma_{\frac{7}{2}^{\pm}} = \frac{f^2}{70\pi} \frac{E_B \pm M_B}{M_B} \frac{|\mathbf{q}|^7}{m^6}.$ Для $\frac{9^{\pm}}{2} \rightarrow \frac{1}{2}^{+} + 0^{-}$: $\Gamma_{\frac{9}{2}^{\pm}} = \frac{2f^2}{315\pi} \frac{E_B \mp M_B}{M_B} \frac{|\mathbf{q}|^9}{m^8}.$

Данные при энергии в СЦМ >2.8 ГэВ

Сечения фоторождения мезонов

47