Photoneutron cross section measurements with laser Compton-scattering γ-ray beams Hiroaki Utsunomiya

(Konan University, CNS University of Tokyo)

Content

1. γ -ray sources

Positron annihilation in flight vs laser inverse Compton

scattering

2.Photoneutron measurements

- a. E1 (pygmy dipole resonance) and M1 cross sections
- b. Applications of the reciprocity theorem
- c. p-process nucleosynthesis
- d. γ-ray strength function for (n,g) c.s. for radioactive nuclei September 15 & 16, 2014

Lomonosov Moscow State University (MSU)

Skobeltsyn Institute of Nuclear Physics (SINP)

Department of Electromagnetic Processes and Atomic Nuclei Interactions (DEPANI)

γ -ray sources: Positron annihilation in flight

Saclay (France)

γ-ray sources: Inverse Compton scattering

Compton scattering vs Inverse Compton scattering

Laser Compton scattering γ -ray beam

NewSUBARU (Japan)

$$\begin{split} E_{\gamma} = 0.5 - 76 \text{ MeV} \\ I_{\gamma} = 10^6 - 10^7 \text{ s}^{-1} \\ (3 - 6 \text{ mm dia.}) \\ \Delta E/E > 2\% \end{split}$$

0.55 – 1.5 GeV storage ring

CT6

Experimental Hutch GACKO (Gamma Collaboration Hutch of Konan University)

Table-top Lasers

LCS γ -ray beams and response functions of a 3.5" x 4.0" LaBr₃(Ce) detector

γ -ray strength function

6 MeV for odd-N nuclei $\leftarrow S_{n:} \rightarrow 12$ MeV for even-even nuclei

Spin and Parity Determination

Courtesy by A. Tonchev

z axis: beam direction; x axis: vector of polarization

300 vertical 200 100 Counts / 2 keV 0 00 0 00 backward **M**1 *M*1 horizontal 40 *M*1 20 0└ 7.9 8.2 8.0 8.3 8.1 E_{γ} (MeV)

N. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474

Resonances above S_n

Threshold Photoneutron Technique Bremsstrahlung + n-TOF

C.D. Berman et al., PRL25, 1302 (1970) R.J. Baglan et al., PRC3, 2475 (1971)

²⁰⁷Pb(γ,n)

(p,p') near 0° as Coulomb excitation of PDR

90Zr(p,p') at 295 MeV

C. Iwamoto et al., Phys. Rev. Lett. 108, 262501 (2012)

Multipole-decomposition analysis of the proton angular distribution

PDR in Lorentzian shape

B(E1)↑ 0.75 ± 0.08 e² fm² E=7-11 MeV TRK sum rule 2.1±0.2%

E1 and M1 photoexcitations in ²⁰⁸Pb

E1 and M1 photoexcitations in ²⁰⁷Pb

PDR in ^{207,208}Pb

T. Kondo et al., Phy. Rev. C 86, 014316 (2012)

Angular distributions and Detection efficiencies of neutrons

Detection efficiencies

MCNP Monte Carlo simulations

PDR in ^{207,208}Pb above neutron threshold

T. Kondo *et al.*, Phy. Rev. C 86, 014316 (2012)

9587 mg, 98.5%, 208Pb 3482 mg, 99.1%, 207Pb

Neutron anisotropy detector for E1 & M1 (γ ,n) cross section measurements

E1 cross sections for ^{208,207}Pb

<u>HFB+QRPA E1 strength</u> plus pygmy E1 resonance in Lorentzian shape

 $E_o = 7.5$ MeV, Γ = 0.4 MeV $\sigma_o ≈ 20$ mb for 208Pb $\sigma_o ≈ 15$ mb for 207Pb

TRK sum rule 0.42% for 208Pb 0.32% for 207Pb

$B(E1)\uparrow$

207Pb
$$B(E1) \uparrow = 0.88 \pm 0.17 \ e^2 \cdot fm^2$$

 $E = 7.02 - 8.32 \ MeV$

Comparisons

E1

Present results

B(E1) 1 = 0.82±0.09 e² fm² for 208Pb E=7.51 − 8.32 MeV

B(E1) 1 = 0.88±0.17 e² fm² for 207Pb E=7.02 − 8.11 MeV

(p,p') I. Poltoratska et al., PRC 85, 041304(R) (2012) B(E1) ①=0.982±0.206 e² fm² for 208Pb E=7.515 - 8.430 MeV M1 cross sections for ^{208,207}Pb

Comparisons

M1

Present results

B(M1) \hat{U} = 4.2±2.3 μ_N^2 for 208Pb E=7.51 – 8.32 MeV

B(M1) $\hat{1}$ =4.0±1.9 μ_N^2 for 207Pb E=7.02 - 7.52 MeV

207Pb+n R. Köhler et al., PRC 35, 1646 (1987) B(M1) \hat{U} =5.8 μ_N^2 for 208Pb E=7.37 – 8.0 MeV

Please formulate angular distributions for d- and f-wave neutrons.

$$W(\theta,\phi) \xrightarrow{\gamma} \gamma + {}^{A}X \rightarrow {}^{A}X^* \rightarrow {}^{A+1}X + n \quad (d, f waves)$$

s-wave
$$W^{s}(\theta,\phi) = \frac{1}{4\pi}$$

p-wave $W_{pol}^{p}(\theta,\phi) = \frac{3}{8\pi} [\sin^2 \theta (1 + \cos 2\phi)]$

Nucleosynthesis of light nuclei Reciprocity Theorem $A + a \rightarrow B + b + Q$ $B + b \rightarrow A + a - Q$ Q value $\frac{\sigma(b \rightarrow a)}{(2I_A + 1)(2i_a + 1)p_a^2} = \frac{\sigma(a \rightarrow b)}{(2I_B + 1)(2i_b + 1)p_b^2}$

Neutron Channel

a=n, b=
$$\gamma$$
 $p_{\gamma} = \hbar k = \frac{E_{\gamma}}{c}$ $p_n^2 = 2\mu E_n \quad 2j_b + 1 \rightarrow 2$

Equivalency between (n, γ) and (γ ,n)

D Big Bang Nucleosynthesis: p(n,γ)D vs D(γ,n)p

D Big Bang Nucleosynthesis: p(n,γ)D vs D(γ,n)p

K.Y. Hara et al., PRD 68, 072001 (2003)

9Be Supernova Nucleosynthesis $\alpha \alpha \rightleftharpoons {}^{8}Be(n,\gamma) {}^{9}Be vs {}^{9}Be(\gamma,n) {}^{8}Be$

Type II Supernova

Examples 9Be Supernova Nucleosynthesis $\alpha \alpha \rightleftharpoons {}^{8}Be(n,\gamma){}^{9}Be vs {}^{9}Be(\gamma,n){}^{8}Be$

H. Utsunomiya *et al.* PRC 63, 018801 (2001) K. Sumiyoshi *et al.* NPA709, 467 (2002)

Supernova Nucleosynthesis $\alpha \alpha \rightleftharpoons {}^{8}Be(n,\gamma) {}^{9}Be vs {}^{9}Be(\gamma,n) {}^{8}Be$

C.W. Arnold *et al*. PRC 85, 044605 (2012) HIGS

A new measurement has been done by Konan University and CNS, University of Tokyo etc. at the NewSUBARU synchrotron radiation facility and data reduction is in progress.

Nucleosynthesis of Heavy Elements s-process, r-process and p-process

p-process nucleosynthesis

P. Mohr et al., Phys. Lett. B 488 (2000) 127H. Utsunomiya et al., Nucl. Phys. A 777 (2006) 459

Photoreaction rates for gs

$$\lambda_{\mathcal{M}}(T) = \int_{0}^{\infty} cn_{\gamma}(E,T)\sigma_{\mathcal{M}}(E)dE$$

Planck distribution

$$n_{\gamma}(E,T)dE = \frac{1}{\pi^2} \frac{1}{(hc)^3} \frac{E^2}{\exp(E/kT) - 1} dE$$

Stellar photoreaction rate

Photoreaction rates for a state μ

$$\lambda_{\gamma m}^{\mu}(T) = \int_{0}^{\infty} cn_{\gamma}(E,T)\sigma_{\gamma m}^{\mu}(E)dE$$

Stellar photoreaction rate

$$\lambda_{\gamma m}^{*} = \frac{\sum_{\mu} (2j^{\mu} + 1)\lambda_{\gamma m}^{\mu}(T)\exp(-\varepsilon_{\mu}/kT)}{\sum_{\mu} (2j^{\mu} + 1)\exp(-\varepsilon_{\mu}/kT)}$$

$$\sigma_{\gamma n}^{\mu}(E_{\gamma}) = \pi \mathsf{D}_{\gamma}^{2} \frac{1}{2(2j^{\mu}+1)} \sum_{J^{\pi}} (2J+1) \frac{T_{\gamma}^{\mu}(E_{\gamma},J^{\pi})T_{n}(E,J^{\pi})}{T_{tot}(E,J^{\pi})}$$

 $T^{\mu}_{\nu}(E_{\nu}, J^{\pi}) = 2\pi \varepsilon^{3}_{\nu} f_{\nu}(E_{\nu}) \uparrow \text{ for E1 transition}$

Key quantity: γ -ray strength function f_{γ} (E_{γ})

Only naturally occurring isomer ¹⁸⁰Ta^m

- Odd-odd Nucleus (Z=73, N=107)
- Neutron deficient nucleus (classified as one of p-nuclei)
- Solar Abundance ; 2.48×10 ⁶(the rarest)
- Half Life > 1.2×10^{15} y

Nucleosynthesis of ¹⁸⁰Ta^m

p-process in the pre-supernova phase of massive stars or during their explosions as type- supernovae Temperature ; 1.8 T[10⁹K] 3.0 Peak photon energy ; 200[keV]
 ¹⁸¹Ta(γ,n)¹⁸⁰Ta(thermal equilibrium) ¹⁸⁰Ta^m

• S-process in the Low-mass AGB star Temperature ; 2.9 T[10⁸K] 3.3 (Zs. Nèmeth, F. Käppeler, G. Reffo; 1992) Typical neutron energy ; 25[keV] 179Hf^m(β)¹⁷⁹Ta(n, γ)¹⁸⁰Ta^m

$^{181}Ta(\gamma,n)^{180}Ta$

H. Utsunomiya et al., Phys. Rev. C 67, 015807 (2003)

Extra E1 γ-ray strength near Sn

Pygmy Dipole Resonance N. Paar, D. Vretenar, E. Khan, G. Colò *Rep. Prog. Phys.* **70 691** (2007)

Generalized Lorentzian

20

25

ORPA

15

E [MeV]

Model calculation of the p-process nucleosynthesis

H. Utsunomiya et al., Phys. Rev. C 67, 015807 (2003)

S. Goriely, ULB

Experimental Set-up

Experimental results, and comparison with theoretical models

Goko et al. Phys. Rev. Lett. 96, 192501 (2006)

Radiative neutron capture - ${}^{A}X(n,\gamma)^{A+1}X$

Hauser-Feshbach model cross section for ${}^{A}X(n,\gamma)^{A+1}X$

$$\sigma_{n\gamma}(E) = \frac{\pi}{k_n^2} \sum_{J,\pi} g_J \frac{T_{\gamma}(E,J,\pi) T_n(E,J,\pi)}{T_{tot}} \cong \frac{\pi}{k_n^2} \sum_{J,\pi} g_J T_{\gamma}(E,J,\pi) T_{tot} \approx T_n(E,J,\pi)$$

Total γ transmission coefficient

After integrating over J and π

$$T_{\gamma}(E,J,\pi) = \sum_{\nu,X,\lambda} T_{X\lambda}^{\nu}(\varepsilon_{\gamma}) + \sum_{X,\lambda} \int T_{X\lambda}(\varepsilon_{\gamma}) \rho(E-\varepsilon_{\gamma}) d\varepsilon_{\gamma}$$

$$X=E, M$$

$$\lambda=1, 2, ...$$

$$\gamma$$
-ray strength function
$$T_{X\lambda}(\varepsilon_{\gamma}) = 2\pi\varepsilon_{\gamma}^{2\lambda+1} f_{X\lambda}(\varepsilon_{\gamma}) \downarrow$$

$$nuclear level density$$

$$\rho(E-\varepsilon_{\gamma})$$

neutron resonance spacing low-lying levels

(n, γ) and (γ ,n) are interconnected through the γ -ray strength function and the nuclear level density in the Hauser-Feshbach model.

Brink Hypothesis

 $|f_{\chi\lambda}(\mathcal{E}_{\nu})\uparrow\cong f_{\chi\lambda}(\mathcal{E}_{\nu})\downarrow$

Experimental determination of γ -ray strength function

Statistical model calculation of $^{A-1}X(n, \gamma)^{A}X$ cross sections with experimental γ SF

Theoretical extrapolation of γ -ray strength function

γ-ray Strength Function Method

H. Utsunomiya et al., Phys. Rev. C 80, 055806 (2009)

Indirect determination of (n, γ) cross sections for unstable nuclei based on a unified understanding of (γ, n) and (n, γ) reactions through the γ -ray strength function

The best understanding of the γ SF with PDR and M1 resonance is obtained by integrating

- (γ, n) data
- (γ , γ') NRF data
- Particle- γ coin. data , Oslo Method
- Existing (n, γ) data

Applications of the γ -ray Strength Function Method

1. Nuclear Astrophysics

s-process branch-point nuclei: unstable nuclei along the line of β-stability F. Käppeler *et al.*, Rev. Mod. Phys. **83**, 157

(2011) 63Ni, 79Se, 81Kr, 85Kr, 95Zr, 147Nd, 151Sm, 153Gd, 185W

2.Nuclear Data for Nuclear Engineering

nuclear transmutation of long-lived fission product 79Se, 93Zr, 107Pd etc.

H.U. et al., PRC88 (2013)

In collaboration with Univ. Oslo etc.

Sn isotopes

<u>HFB+QRPA E1 strength</u> supplemented with a pygmy E1 resonance in Gaussian shape

 $E_0 \approx 8.5 \text{ MeV}, \Gamma \approx 2.0 \text{ MeV}, \sigma_0 \approx 7 \text{ mb}$

1% of TRK sum rule (E1 strength)

γSF for Sn isotopes

(γ**, n) data** H. Utsunomiya et al., PRC84 (2011)

Oslo data (3He, αγ , (3He, 3He' γ Toft et al., PRC 81 (2010); PRC 83 (2011)

(n,γ) CS for Sn isotopes

Mo isotopes

(γ**, n) data** H. Utsunomiya et al., PRC 88 (2013)

Oslo data (3He, αγ , (3He, 3He'γ M. Guttormsen et al., PRC71 (2005)

(γ,γ') data G. Rusev et al., PRC77 (2008)

(n,γ) CS for Unstable Mo isotopes

(γ,n) cross sections for Nd isotopes

(n,γ) cross sections for Nd isotopes

ELI-NP (Europe)

(Extreme Light Infrastructure- Nuclear Physics)

Magurele-Bucharest, Romania

Approved by the European Commission in 2012

First Experiments in 2018

I. Physics and Experiments with a 4π Neutron Detector

Physics

Rare isotope measurements for the p-process nucleosynthesis

- Highest intensity and monochromatic γ-ray beam
- 1mg samples of rare isotopes

Production vs 181Ta(γ ,n)<u>180Ta</u> 139La(γ ,n)<u>138La</u> measured!

Rarest element Only naturallyoccurring isomer

H. Utsunomiya et al., PRC67, 015807 (2003)

Day 1 Experiment #1

¹⁸⁰Ta(γ ,n) & ¹³⁸La(γ ,n) measurement

20 ³He proportional counters embedded in polyethylene moderator Triple-ring configuration

1st ring of 4 counters
2nd ring of 8 counters
3rd ring of 8 counters

 4π Neutron Detector

Resonances above S_n

Threshold Photoneutron Technique Bremsstrahlung + n-TOF

C.D. Berman et al., PRL25, 1302 (1970) R.J. Baglan et al., PRC3, 2475 (1971)

²⁰⁷Pb(γ,n)

Day 1 Experiment #2

PDR and M1 resonance in 207 Pb - 207 Pb(γ ,n) measurement -

Liquid Scintillation and LaBr₃(Ce) Detector Array

34 LaBr₃(Ce), 3" x 3"

Day 1 Experiment #3

Exclusive neutron decays of GDR in ¹⁵⁹Tb in collaboration with Vladimir Varlamov

IAEA – TECDOC-1178 ¹⁵⁹Tb(γ ,xn) x= 1, 2, 1g/cm² 35 • S_n = 8.133 MeV 30 • S_{2n} = 14.911 MeV 3 20 E₇ (MeV) $E_{\gamma}(max)$ **σ(γ,2n)** = 19 MeV 15 2n+ ¹⁵⁷Tb σv 01 450 400 0 350 300 8 50 250 500 150 n+ ¹⁵⁸Th Cross Section (mb) ¹⁵⁹Tb

Summary

Personal view of the photonuclear reaction study

- Photonuclear reactions had a glorious days in 1950 through 1980 in the study of GDR with the γ-ray source of positron annihilation in flight. Then, they have slowly faded away toward 1990.
- Photonuclear reactions have revised with the new γ-ray source of laser inverse Compton scattering in the context of nuclear astrophysics at the turn of the 21st century.
- ELI-NP will open up a new era of photonuclear reactions in nuclear science with intense laser and γ-ray beams.