НЕЙТРИННАЯ АСТРОФИЗИКА

Г.В.Домогацкий Институт ядерных исследований РАН

НИИЯФ МГУ, 16 декабря 2008г., Москва

Процессы нейтронизации, e⁻e⁺ – аннигиляция (SN) e⁻ + p \Rightarrow n + ν , e⁻ + e⁺ \Rightarrow ν + $\tilde{\nu}$ (E < 40M3B) Распад µ, $\tilde{\eta}$, K ... -мезонов (Высокие энергии) p + A(Z) \Rightarrow ... + $\tilde{\eta}$ (K,...) $\tilde{\eta} \Rightarrow$ μ + ν

Реакции термоядерного синтеза (Солнце,...) $p + p \implies D + e^+ + v$ (E < 10 МэВ)

Распад радиоактивных ядер (Земля) A(z) \Rightarrow A(Z+1) + e⁻ + \vec{v} (E < 6 МэВ)

Рождение нейтрино

Регистрация нейтрино

 $v + A(Z) \Rightarrow A(Z+1) + e^{-1}$ Радиохимический метод (Cl, Ga) $\tilde{v} + p \Rightarrow n + e$ Жидкие сцинтилляторы $v + e^{-} \Rightarrow v' + e^{-}$ $v + A(Z) \Rightarrow ... + \mu(e, v')$ Черенковские детекторы

Источники нейтрино

	10 ²¹ _	Сверхмассивные частицы Грейзен-Зацепин-Кузьмин	
энергия нейтрино (эВ)	10 ¹⁸ _ 10 ¹⁵ _ 10 ¹² _	Активные ядра галактик Сверхновые Центр нашей галактики Гамма всплески Объекты яркой фазы	
	10 ⁹ _	Темная материя Космические лучи	Hble
	10 ⁶	Гравитационные коллапсы Солнце Земля	Подзем
	1 –		
	10 -3	Реликтовое излучение	

Методы регистрации Детекторы ШАЛ Радио (Акустика (?) Черенковские Черенковские Радиохимические Сцинтилляционные

Φ

ם

I ユ 0 Μ ュ

0

Hem

V Tel

The unified spectrum of neutrinos

нейтрино от солнца

Водородный цикл	<mark>Е</mark> ν (МэВ)	Поток (см ⁻² с ⁻¹
$p + p \Longrightarrow D + e^+ + v$	0 - 0.42	6 10 10
$p + p + e^- \Longrightarrow D + v$	1.44	1.4 10 ⁸
$p + D \Rightarrow^{3}He + \gamma$		
3 He + 3 He \Rightarrow 4 He + p + p		
³ He + ⁴ He \Rightarrow ⁷ Be + γ		
p + ⁷ Be⇒ ⁸ B⇒ ⁸ Be*+ e + v	0 - 15	5.8 10 ⁶
e [−] + ⁷ Be⇒ ⁷ Li + _v	0.83	4.7 10 ⁹
СNО цикл		
$p + {}^{12}C \Rightarrow {}^{13}N + \gamma$		
$^{13}N \Rightarrow ^{13}C + e^{+} + v$	0 - 1.199	6 10 ⁸
$p + {}^{13}C \Rightarrow {}^{14}N + \gamma$, $p + {}^{14}N \Rightarrow {}^{15}O + \gamma$		
15O ⇒ 15N + e + + v	0 - 1.732	2 5 10 ⁸
$p + {}^{15}N \Rightarrow {}^{12}C + {}^{4}He$		

Baksan Neutrino Observatory

- 1,7 Low-background Chamber
- 2 Baksan underground scintillation telescope
- 3 Laser interferometer
- 4 Acoustic gravitational antenna
- 5 Geophysics laboratory
- 6 Gallium-Germanium Neutrino Telescope (SAGE)
- for the further projects
- EAS array "Andyrchy"

LGGNT - 3,5 km from the entrance 2100 meters of rock coverage crystal schists acid magmatic rock 4700 m.w.e.

Tunnel

entrance

Neutrino village

SAGE

Global intensity of muon $-(3.03 \pm 0.19) \times 10^{-9} (\text{cm}^2/\text{s})$ Average energy of muon -381 GeVFast neutron flux (>3MeV) $-(6.28 \pm 2.20) \times 10^{-8} (\text{cm}^2\text{s})^{-1}$

Gamet ~ 50 tons **Camet** ~ 50 tons **LGGNT** 1 = 60 m w = 10 m h = 12 m **Low background** concrete - 60 cm

SAGE

Measurement of the solar neutrino capture rate with gallium metal. ${}^{71}Ga(v_e, e){}^{71}Ge, E_{th} = 233 \text{ keV}$

- 168 runs for 18 year period (Jan 1990 Dec 2007) give the result : 65.4^{+4.0}_4.1 SNU (1 SNU = 1 neutrino capture/sec in a target that contains 10³⁶ atoms of the neutrino absorbing isotope.
 The weighted average of the results of all Ga experiments is now 66.1±3.1 SNU
- There is good agreement between SSM prediction including neutrino oscillations and **Ga** results.
- The recent test of SAGE with a reactor-produced ³⁷Ar neutrino source shown that SSM predicted rate may be overestimated. (Although there are alternative explanations based on transitions to sterile neutrinos or on quantum decoherence in neutrino oscillations.)
- A new test of **SAGE** is planed with a reactor-produced very intense neutrino source to shed light on this question.
- **SAGE** is currently the only operating solar neutrino experiment which provides the determination of the fundamental *pp* neutrino flux and a continuous monitoring of the low energy solar neutrino flux with increasing sensitivity over very long time period.

Солнечные нейтрино

Elastic Scattering

electron

Cherenkov electron

neutrino

 v_x

neutrino

ES
$$V_x + e^- \rightarrow V_x + e^-$$

Солнечные нейтрино

es

Детектор SNO

Тяжелая вода: 1000 тонн Защита: 1700 + 5300 тонн H₂O 9500 ⊈ЭУ

CC	$\nu_{e} + d \rightarrow p + p + e^{-}$
	$\Phi_{cc} = \Phi_{e}$
NC	$v_x + d \rightarrow v_x + p + n$
Ć	$\Phi_{nc} = \Phi_e + (\Phi_\mu + \Phi_\tau)$
ES	$\nu_{\mathbf{x}} + \mathbf{e}^{-} \rightarrow \nu_{\mathbf{x}} + \mathbf{e}^{-}$
Ф	$= \Phi + (\Phi_{11} + \Phi_{7})/6$

Borexino - 2008

- 8″ PMT 2212
- Scintillator 278.3 ton
- Energy region (250 800) KeV
- SSM (osc.) (49±4) counts/day 100ton
 - without osc. (75±4) counts/day 100ton

Exp. – (49 ± 3) cpd/100 tons

 Borexino is located under the Gran Sasso mountain which provides a shield against cosmic rays (4000 m water equivalent);

Core of the detector: 278 tons of liquid scintillator contained in a nylon vessel of 4.25 m radius (PC+PPO);

1st shield: 890 tons of ultra-pure buffer liquid (PC+quencher) contained in a stainless steel sphere of 6.75 m radius;

External nylon vessel; it is a barrier against Rn emitted by PMT and s.steel

2214 photomultipliers pointing towards the center to view the light emitted by the scintillator (1843 with opt. concentr.)

2nd shield: 2100 tons of ultra-pure water contained in a cylindrical dome;

200 PMTs mounted on the SSS pointing outwards to detect light emitted in the water by muons crossing the detector;

PC filling completed

Syst error: 25%

Fit in the En. Range: 240-800 keV

Free parameters:7Be, CNO+210Bi,85Kr, 210Po (residual)

 χ^2 /NDF= 41.9/47

TAUP 2007

Gianpaolo Bellini - University and INFN Milano

Солнечные нейтрино

Solar Neutrino Survival Probability

Probes of the Earth's interior

- Deepest hole is about 12 km
- Samples from the crust (and the upper portion of mantle) are available for geochemical analysis.
- Seismology reconstructs density profile (not composition) throughout all Earth.

Geo-neutrinos: a new probe of Earth's interior

 They escape freely and instantaneously from Earth's interior.

They bring to Earth's surface information about the chemical composition of the whole planet.

Probes of the Earth's interior

- Deepest hole is about 12 km.
- The crust (and the upper mantle only) are directly accessible to geochemical analysis.

Open questions about natural radioactivity in the Earth

- 1 What is the radiogenic contribution to terrestrial heat production?
- 2 How much U and Th in the crust?

3 - How much U and Th in the mantle? 4 - What is hidden in the Earth's core? (geo-reactor, ⁴⁰K, ...)

5 - Is the standard geochemical model (BSE) consistent with geo-neutrino data?

Geoneutrinos: anti-neutrinos from the Earth

Uranium, Thorium and Potassium in the Earth release heat together with anti-neutrinos, in a well fixed ratio:

Decay	Q [MeV]	τ _{1/2} [10 ⁹ yr]	E _{max} [MeV]	ε _# [W/kg]	ε _⊽ [kg ⁻¹ s ⁻¹]
$^{238}U \rightarrow ^{206}Pb + 8^4He + 6e + 6\overline{\nu}$	51.7	4.47	3.26	0.95·10 ⁻⁴	7.41·10 ⁷
$^{232}Th \rightarrow ^{208}Pb + 6^4He + 4e + 4\overline{\nu}$	42.8	14.0	2.25	0.27.10-4	1.6 3·1 0 ⁷
$^{40}K \rightarrow ^{40}Ca + e + \overline{\nu}$	1.32	1.28	1.31	0. 36· 10 ⁻⁸	2.69·10 ⁴

- Earth emits (mainly) antineutrinos, Sun shines in neutrinos.
- Different components can be distinguished due to different energy spectra.
- Geoneutrinos from U and Th (not from K) are above treshold for inverse β on protons: $\overline{\nu} + p \rightarrow e^+ + n 1.8MeV$

KamLAND Kamioka Liquid Scintillator Anti-Neutrino Detector

2 flavor neutrino oscillation

1325 17" and 554 20" PMTs most sensitive region

000 ton LS

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \sin^2\left(\frac{1.27\Delta m^2 [\text{eV}^2] l[m]}{E[\text{MeV}]}\right)$$

$$\Delta m^2 = (1/1.27) \cdot (E[\text{MeV}]/L[m]) \cdot (\pi/2)$$
$$\sim 3 \times 10^{-5} \text{eV}^2$$

reactor neutrino : sensitive to LMA solution

Physics Target in KamLAND

Эксперимент КатLAND

Running and planned experiments

 Several experiments, either running or under construction or planned, have geo-v among their goals.

 Figure shows the sensitivity to geo-neutrinos from crust and mantle together with reactor background.

KamLAND result*

- In two years 152 counts in the geo-neutrino energy range:
- Background is dominated by: -reactor events (80.4±7.2)
 - -fake geo-neutrinos from ${}^{13}C(\alpha,n)$ (42± 11)

- The result** is N(U+Th)=28₋₁₅+16 geo-neutrino events from U+Th in the Earth (one event / month !)
- A pioneering experiment, showing that the technique for identifying geo-neutrinos is now available.

TNU (Terrestrial Neutrino Unit) = events/10³² target-proton/year

KamLAND result – 2007 I.Shimizu, TAUP, 14 September, 2007

 Exposure – 2881 ton-year
 BSE model expectation – 69.3 events (U: 56.2, Th: 13.1). H(U + Th) = 19 TW H(Earth) = (30 – 44) TW

Experimental – 74.9 ±27.3 events

Detection of Supernova Bursts

12 neutrinos in KAMIOKANDE (figure) 8 in IMB, 3 in Baksan Remember SN-1987A

Expect

- msec pulse from leptonization
- Few-second-pulse from

$$e^{-} + p \rightarrow n + v_{e} \quad (10ms)$$
$$e^{-} + e^{+} \rightarrow v_{x} + v_{x} \quad (10s)$$

 Av. energy a few MeV
 Threshold of v telescope > 10MeV

Baksan Neutrino Observatory

- Depth: 850hg/cm²
- Size: 17m×17m×11m
- Number of tanks: 3150
- Tank size: 70cm×70cm'30cm
- Angular resolution: 2º
- Time resolution: 5 ns
- Trigger: 10Mev in any plane
- 🕷 Rate: 17 Hz
- upward/downward: 10-7

К.Nishikawa Атаlk Стренье нейтрино

Super-Kamiokande

50,000 ton water Cherenkov detector (22.5 kton fiducial volume) Optically separated INNER and OUTER detector

1000m underground (2700 m.w.e.)11,146 20-inch PMTs for inner detector1,885 8-inch PMTs for outer detector
Large detectors for SN neutrinos

Supernova in IceCube

4.4 Mton—A Magic Size

Based on work in preparation with J. F. Beacom and H.Yüksel

32 kton I Mton 4.4 Mton

- Reach of burst mode (≥ 5 events)
- Scaled by 10⁴ events from a supernova at 10 kpc at 32 kton detector
- 4.4 Mton detector can take us beyond the "desert"

Summary of Neutrino Detection from Nearby Galaxies

- I-Mton detectors allow us to collect SN neutrinos from nearby galaxies with a rate of ~ I / yr
- Burst mode reaches up to 4–5 Mpc with a 4.4-Mton detector (e.g., TITAND)
 - Within 4 Mpc, the SN rate is ~ I / yr
 - So, we can collect SN neutrinos at a rate of > 10 / yr
- We can learn time and energy distribution of SN neutrinos
- This also provides us precise information of the time of gravitational core collapse, invaluable for gravitational wave searches

S.Ando, February 24, 2007, Hawaii

- Galactic SN rate is ~ a few/century
- Within 10 Mpc SNe occur with a rate of
 - > 2 -3/year

N - Mton neutrino detector enable us to collect SN neutrinos at a rate of N/year

TITAND -4.4 Mton $\sim (3 - 5)$ Mpc

4.4-Mton Detector:TITAND

See talk by Y. Suzuki, or hep-ex/010005

DSNB Searches (Detection Upper Bounds)

Super – K (Malek et al. 2002) : anti - ν_e

 E_{e+} > 18 MeV , F_v < 1.2 cm ⁻² sec ⁻¹ @ 90 %

- Mont Blanc (Aglietta et al. 1992) : v_e F_v (25 – 50 MeV) < 6800 cm ⁻² sec ⁻¹ @ 90 %
- Super K (Lunardini 2006) : ν_e
 - $E_{e} > 18 \text{ MeV}$, $F_{v} < 5.5 \text{ cm}^{-2} \text{ sec}^{-1} @ 90 \%$
- SNO ($v_e + D \rightarrow e + p + p$): Beacom & Strigari (2006): $F_v < ~ 1 \text{ cm}^{-2} \sec^{-1}$ SNO (Aharmin et al. 2006): $F_v < 70 \text{ cm}^{-2} \sec^{-1}$ @ 90 %

UV & Optically (SDSS) Motivated SN Rates

Recent Data Favors The Upper End Of The Concordance Region

Super-Kamiokande

50,000 ton water Cherenkov detector (22.5 kton fiducial volume) Optically separated INNER and OUTER detector

1000m underground (2700 m.w.e.)11,146 20-inch PMTs for inner detector1,885 8-inch PMTs for outer detector

Атмосферные нейтрино

Super-Kamiokande

Атмосферные нейтрино

Угловое распределение

Neutrino2004, June 15, Paris

Атмосферные нейтрино

 $V_{\mu} \leftrightarrow V_{\tau}$ осцилляции

Neutrino2004, June 15, Paris

V Tel

The unified spectrum of neutrinos

standard detection scheme

detector

nuclear reaction

neutrino

muon

Чувствительность оптического фотоприемника

Высота \times диаметр = 70м \times 40м, V=10⁵м³

Квазар: d = 37cm

Hot water drilling

2 MW power 3-4 days / 2 km

Объекты (направления) исследования

- Природные потоки нейтрино высоких (Е > 15 ГэВ) энергий (поиск локальных источников нейтрино).
- Частицы темной материи (поиск массивных слабовзаимодействующих частиц - WIMP).
- Магнитные монополи.
- Диффузный поток нейтрино сверхвысоких (E>10 ТэВ) энергий.

Aumospheric Muon-Neutrinos

 With looser cuts, 1998-2002: 372 events. N_µ(>15GeV)/N_µ(>1GeV)~1/7
→ A higher statistics neutrino sample for Point-Source Search.
MC: 385 ev. Expected (15%BG).

Skyplot AMANDA and Baikal

 $\nu_{\mu} + N \rightarrow \mu + X$

AMANDA:2000-2003, Baikal: 1998-2002 galactic coordinates

Search for steady point source

AMANDA-II: 2000-2004 (1001 live days) 4282 v from Northern hemisphere

No significant excess found

Поиск дополнительного потока мюонов, обусловленного нейтрино от аннигиляции частиц невидимого вещества в центре Земли

> 5 1600 004100 00010 00010 800 600

 $\chi + \chi \rightarrow b + b$ $\longrightarrow c + \mu + v_{\mu}$ $\rightarrow W^{+} + W^{-}$ Эффективная площадь регистрации околовертикальных мюонов снизу нейтринным телескопом HT-200

WIMPs: neutrinos from Sun

WIMPs: neutrinos from Sun

Ограничения на потоки медленных (10⁻⁵<β <10⁻³) и релятивистских монополей β>0.8

NT-200 - поиск ярких объектов (GUT-monopoles, nuclearites, Q-balls ...) Триггер N_{hit} >4 в интервале dt=500µsec Критерии отбора - N_{ch} >1 с N_{hit} >14

$N_{\gamma}(\lambda) = n^2 (g/e)^2 N_{\gamma\mu}(\lambda) = 8300 N_{\gamma\mu}(\lambda)$ g = 137/2, n = 1.33

Критерии отбора $N_{hit} > 35$ ch, свет снизу

 $\Sigma(z_i-z)(t_i-t)/(\sigma_t\sigma_z) > 0.45 \& \theta > 100^{\circ}$

Стратегия поиска событий от нейтрино высоких энергий

Limit on diffuse extraterrestrial fluxes

IceCube

4800 Digital Optical Modules on 80 strings

 160 Ice-Cherenkov tank surface array (IceTop)
1 km³ of instrumented Ice
Surrounding existing AMANDA detector

IceCube

Hose reel

Less energy and more than twice as fast as old AMANDA

annannandette ym 👔 🛞 🖞

drill

IceTop Station

Drill tower

(2 tanks)

IceCube Laboratory and Data Center

Commissioned for operation in January 2007

Completion by 2011

Гигатонный (км³) Водный Детектор на оз.Байкал

91 гирлянда (12 ОМ) = 1308 ОМ

- → эффективный объем для регистрации каскадов (E>100 TeV) ~ 0.5 -1.0 км³!
- → порог регистрации мюонов 10 - 100 ТэВ

План (стратегический)

2008 - 2009 - завершение работы над проектом детектора HT1000 (BAIKAL-GVD). 2009 - 2014 - изготовление и приобретение комплектующих элементов 2010 – 2012 – развертывание первой очереди (0.1 - 0.3) куб км вторая очередь (0.3 – 0.6) куб км 2014 третья очередь (0.6 – 0.9) куб км 2016 Постоянно – поддержание работоспособности, набор и анализ данных HT200+......HT1000

The Mediterranean approach

6'W 4'W 2'W 0'E 2'E 4'E 6'E 10'E 12'E 14'E 16'E 18'E 20'E 22'E 24'E 26'E 28'E 30'E 32'E 34'E 36'E 38'E 40'E 4

from

Flux of Ultra-High Energy Neutrinos

- AMANDA: Optical Cherenkov in South Pole ice
- RICE: Radio Cherenkov in South Pole Ice
- GLUE and
- KALYAZIN-RAMHAND: Earthbound search for Radio Cherenkov in Lunar Regolith (RAMHAND - Radio Astronomical Method of Hadron And Neutrino Detection, 1989;

KALYAZIN – Radio Telescope near Moscow)

- FORTE: Satellite search for radio Cherenkov in Greenland ice
- ANITA-lite: prototype search in 2003

Theory:

- GZK p: Neutrinos from GZK process if the UHECK flux is primarily protons
- GZK Fe: Neutrinos from GZK process if the UHECR flux is primarily iron
- TD: Neutrinos from a top down theory of UHECR origin (cosmic string loops or monopolonium)
- Z-burst: UHECRs originate from interactions of UHE neutrinos

WIMPS: neutrinos from center of Earth

Baikal – GVD Schedule Milestones

06-07	R&D, Testing NT200+
08	Technical Design
08-14	Fabrication (OMs, cables,
	connectors, electronics)
10-12	Deployment (0.1 – 0.3) km3
13-14	Deployment (0.3 – 0.6) km3
<u> 15-16 </u>	Deployment (0.6 – 0.9) km3
Overall cost with logistics ~ 20 MEuro	
Detector ~ 16 MEuro	Logistics, including infrastructure ~ 4
MEuro	

Very preliminary

Under Construction: will be operational at Pylos the summer of 2007

НТ-200+ в качестве модуля гигатонного детектора

Теоретические ограничения на величину диффузного потока нейтрино высоких энергий и экспериментальные верхние пределы на величину потока с формой спектра ~E⁻²

Верхние пределы на величину диффузного потока нейтрино от Квазаров (модель SS) и от Блазаров (модель SeSi)

Diffuse Flux Limits

Байкальский нейтринный эксперимент

Г.В. Домогацкий

AMANDA

Hot water drilling

Search for fast monopoles ($\beta > 0.8$)

$$N_{\gamma}(\lambda) = n^{2} (g/e)^{2} N_{\gamma\mu}(\lambda) = = 8300 N_{\gamma\mu}(\lambda) g = 137/2, n = 1.33 \sim E_{\mu} = 10^{7} \text{ GeV}$$

Event selection criteria:

hit channel multiplicity - $N_{hit} > 35$ ch, upward-going monopole - $\Sigma(z_i-z)(t_i-t)/(\sigma_t\sigma_z) > 0.45$ & $\theta > 100^{\circ}$

Background - atmospheric muons

90% C.L. upper limit on the flux of fast monopole (994 livedays)

Ограничения на диффузные потоки нейтрино

Теоретические ограничения на величину диффузного потока нейтрино высоких энергий и экспериментальные верхние пределы на величину потока с формой спектра ~E⁻²

Верхние пределы на величину диффузного потока нейтрино от Квазаров (модель SS) и от Блазаров (модель SeSi)

NT-200+ - intermediate stage to Gigaton Volume Detector (km3 scale)

8 Ñ

Energy spectrum of all flavor extraterrestrial HE-neutrinos:

- enclosed volume 5 Mt, V(E) > 10 Mt-250 AMANDA II – 10 Mt $_{-300}$ ANTARES - 10 Mt -350 NESTOR (7 towers) - 30 Mt - high resolution of cascade vertex and⁻⁴⁰⁰ energy — neutrino energy

CONCLUSIONS

>> Borexino just started the study of the various solar neutrino sources below 2 MeV, with a real time detection (pp,⁷Be, pep, CNO)

>> The program includes also the study of the antineutrinos (from Sun, Earth, Reactors)

>> Borexino in also a useful observatory for the Supernova

>>A study of the neutrino magnetic moment with an artificial source is also considered

