МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына

Одночастичная структура ядер в модели среднего поля с дисперсионным оптическим потенциалом

Беспалова О.В.

Материалы диссертации на соискание степени доктора физико-математических наук

2020

Почему дисперсионная оптическая модель?

 Эффективно учитывает корреляции: распределенные по объему и сконцентрированные на поверхности

«The dispersive optical (model) provides a **natural framework for data-driven extrapolations to the drip lines**.» «...extrapolating the present DOM framework to more exotic nuclei will **provide a benchmark for gauging** the magnitude of any additional physics.»

R. J. Charity et al. PRC C 76, 044314 (2007), C 83, 064605 (2011)

• Нетребовательна к мощности вычислительной техники

«Дисперсионный подход представляет собой мощное средство для определения ядерного среднего поля, единого для положительных и отрицательных энергий, которое позволяет восполнять с помощью теоретически обоснованной феноменологии недостаток той информации, которую пока не удается надежно рассчитать микроскопически.» (J.W. Negele, E.W.Vogt, предисловие к обзору Mahaux C., Sartor R. "Single-Particle Motion in Nuclei"// Advances in Nuclear Physics. 1991. V.20. P.1-224)

Цель

Исследовать эволюцию одночастичной структуры Средних и средне-тяжелых ядер при изменении числа нейтронов/протонов вплоть до границ нуклонной стабильности

Основная задача

Развить метод конструирования дисперсионного оптического потенциала, пригодный для достижения цели

Комплексное среднее поле

- Комплексный оптический потенциал. Мнимая часть описывает E > 0 выбывание налетающей частицы из упругого канала. Связано с существованием длины свободного пробега частицы в ядре-мишени.
- Мнимая часть связана с существованием длины свободного пробега нуклона ядра в связанном одночастичном состоянии. Определяет время жизни нуклона в связанном состоянии и фрагментационную ширину этого состояния

$$\tau \approx \hbar / \Gamma^{\downarrow} \qquad \qquad \Gamma^{\downarrow} = 2 \langle W \rangle$$

C. Mahaux et al. Dynamics of the shell model. Physics Reports. 120, (1985), 1—274

Дисперсионное соотношение

ДС – следствие формула Коши для аналитической функции f(E)= Re f(E)+Im f(E):

$$\int_{L} \frac{f(E')}{E'-E} dE' = \frac{1}{2\pi i} f(E).$$

1926-1927 гг. Крамерс и Крониг ввели ДС в физику (для явления дисперсии света)

1954 г. – распространение ДС Гольдбергом, Гел-Манном и Тирингом на случай рассеяния потенциальным полем. Принцип причинности.

1958 г. – Фешбах обсуждал дисперсионную составляющую действительной части ОП

Основы дисперсионной оптической

модели (ДОМ)

$$V(\mathbf{r},\mathbf{r}';E) = V(\mathbf{r},\mathbf{r}') + P/\pi \int_{-\infty}^{+\infty} \frac{W(\mathbf{r},\mathbf{r}';E')}{E'-E} dE' = 0$$

$$E_F = -\frac{\left[S_{n,p}(A) + S_{n,p}(A+1)\right]}{2}$$

Mahaux C., Sartor R. "Single-Particle Motion in Nuclei"// Advances in Nuclear Physics. 1991. V.20. P.1-224.

Основы ДОМ

80

E, MeV

60

Радиальная зависимость компонент действительного центрального потенциала

Влияние дисперсионной составляющей на одночастичный спектр

взято из С. MAHAUX and R. SARTOR. Nuclear Physics A468 (1987) 193

ДОМ до начала исследований в НИИЯФ

- ▶ ДОМ разработана на примере дважды магических ядер ⁴⁰Ca, ²⁰⁸Pb и магического ядра ⁹⁰Zr.
- Мнимый потенциал, геометрические параметры хартри-фоковской составляющей, спин-орбитального и кулоновского взаимодействия определяются при анализе данных по рассеянию нуклона ядром.
- Силовой параметр хартри-фоковской составляющей находится при E < 0 по данным о E_{nlj} (немногочисленным и неточным)

Систематики глобальных параметров недисперсионной оптической модели

CH89

A = 40 - 209 E = 10 - 65 MeV

R.L. VARNER, W.J. THOMPSON, T.L. McABEE, E.J. LUDWIG and T.B. CLEGG. A GLOBAL NUCLEON OPTICAL MODEL POTENTIAL. PHYSICS REPORTS 201, No. 2 (1991) 57—119.

KD

A = 24 - 209 E = 1 keV - 200 MeV

A.J. Koning, J.P. Delaroche. Local and global nucleon optical models from 1 keV to 200 MeV. Nuclear Physics A 713 (2003) 231–310

зависят от (N-Z)/A V_R , W_d

не зависят от (N-Z)/A $r_{V, d}, a_{V, d}$

Методика конструирования ДОП (стабильные ядра)

Мнимый потенциал и хартри-фоковская составляющая при E>0 определяются с использованием современных систематик глобальных параметров.

Хартри-фоковская составляющая при E < 0 определяется из условия согласия с экспериментальными наиболее точными и надежными данными об одночастичных характеристиках, определенных методом согласования данных реакций срыва и подхвата нуклона на одном и том же ядре.

I.N. Boboshin, V. V. Varlamov, B. S. Ishkhanov, I. M. Kapitonov. Nucl. Phys. A 496, 93 (1989).

Дифференциальные сечения упругого рассеяния протонов ядрами ⁹⁰Zr

Полное сечение реакций и поляризация

Полное сечение реакций. Темные кружки и ромбы - экспериментальные данные для 90 Zr и ecm Zr , светлые значки - оценка. Сплошная линия — наш расчет, штриховая - с параметрами Wang Y. et al.// Phys. Rev. 1993. V.C47. P.2677

Поляризация.

Спектроскопические факторы S_{nlj}

$$\overline{m}(r,E)/m = m*(r,E)/m*_{HF}(r,E) = 1 - [m/m*_{HF}(r,E)] \frac{d}{dE}V(r,E)$$

Спектральные функции ζ_{nlj} (E)

Фрагментационная ширина

$$\Gamma_{nlj} = 2 \langle W_{nlj}(E_{nlj}) \rangle / \langle m *_{nlj} / m \rangle$$

Вероятности заполнения одночастичных орбит

Зарядовая плотность

$$\rho_{p(n)}(r) = \frac{1}{4\pi r^2} \sum_{nlj} (2j+1) N_{nlj} \, \overline{u}_{nlj}^2(r)$$

$$\rho_C(r) = (\pi a^2)^{-3/2} \int \rho_p(r') \exp\left[-(r-r')^2/a^2\right] d^3r'$$

Некоторые закономерности

экспериментальных одночастичных характеристик стабильных ядер вблизи энергии Ферми:

- ▶ 1. Смена последовательности протонных уровней $2s_{1/2}$ – $1d_{3/2}$ в изотопах Са; $2d_{5/2}$ – $1g_{7/2}$ в изотопах Sn; динамика уровней $1f_{5/2}$ -2р в ядрах Са, Ti, Cr, Fe, Ni;
- 2. Параллельное заполнение состояний, в частности 2p, $1f_{5/2}$ в ядрах вблизи Ni.

Зависимость геометрических параметров ДОП от (N-Z)/A

• 3. «Чашеобразная» форма массовой зависимости энергии нейтронного состояния $1f_{7/2}$ в ядрах Са, Ті, Сr, Fе Оболочечный эффект в мнимой части ДОП

n,p - Si, Ca, Ti, Cr, Fe, Ni, Zn, Ge, Se, Sr, Zr, Ag, Sn, 208Pb

Смена последовательности протонных

уровней: $2s_{1/2}$ – $1d_{3/2}$ в изотопах Са

⁴⁸Са: $\mathcal{O}_{HF} = 0.48 \ фм$

⁴⁸Са: $\mathcal{U}_{HF} = \mathcal{U}_{V}^{KD} = 0.659$ фм

Смена последовательности протонных уровней: $2d_{5/2}$ – $1g_{7/2}$ в изотопах Sn

Зависимость нейтронных уровней $1f_{5/2} - 2p$ от избытка нейтронов

Зависимость нейтронных уровней $1f_{5/2} - 2p$ от избытка нейтронов

Параллельное заполнение состояний

$$N_{nlj} = 1/2 \cdot \left(1 - \frac{(E_{nlj}^{\Pi O \Pi} - E_{\rm F})}{\sqrt{(E_{nlj}^{\Pi O \Pi} - E_{\rm F})^2 + (\Delta)^2}}\right)$$

- формула теории БКШ

Зависимость диффузности $a_{\rm HF}$ от относительного нейтронного избытка

«Чашеобразная» форма

массовой зависимости энергии нейтронного состояния $1f_{7/2}$

 Глобальные параметры мнимой части ДОП систематики КD не позволяют описать форму массовой зависимости энергии заполняемого нейтронного состояния 1f_{7/2}

«Чашеобразная» форма

массовой зависимости энергии нейтронного состояния $1f_{7/2}$

 E_F

В магических ядрах Е

между E_ и E₊

располагается посередине

Оболочечный эффект

в мнимой части ДОП npu \dot{E} < O

В магических ядрах интервал энергий, при которых мнимая часть ДОП может быть приравнена 0, шире по сравнению с немагическими.

Оболочечный эффект

в мнимой части $O\Pi$ при E>0

 $J_1^{KD}(E_k = 6 \text{ M} \Rightarrow B) - 78 \div 83 \text{ M} \Rightarrow B \cdot \phi M^3$

Smith A.B., Guenter P.T., Whalen J.F. THE OPTICAL MODEL OF FEW-MeV NEUTRON ELASTIC SCATTERING FROM Z = 39 TO 51 TARGETS// Nucl. Phys. 1984. V.A415.P.1.

Глобальные параметры ДОП

Bespalova O.V., Romanovsky E.A., Spasskaya T.I. Journal of Physics. 2003. V. G 29. N 6. P.1193 (**503**)

Беспалова О.В., Романовский Е.А., Спасская Т.И. Изв. РАН. Сер. физ. 2004. Т. 68, № 8. С.1214. (**Б04**)

Беспалова О.В., Бобошин И.Н., Варламов В.В.и др. // Изв. РАН. Сер. физ. 2006. Т. 70. № 5. С. 680; Беспалова О.В., Бобошин И.Н., Варламов В.В. и др. Изв. РАН. Сер. физ. 2007. Т. 71. № 3. С.438-442. (Б07)

Morillon B., Romain P. Phys. Rev. 2004. V. C70. P. 014601 (MR04)

Morillon B., Romain P. Phys. Rev. 2006. V. C74. P. 014601-1 – 014601-6. (MR06)

Morillon B., Romain P. Phys. Rev. 2007. V. C76. P. 044601 (MR07)

Глобальные параметры Б07

Свидетельство о регистрации прав на ПО GLOB № 2017662532 от 10 ноября 2017 г.

В анализ включены нейтронные и протонные энергии $E_{nlj}^{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}$ и $N_{nlj}^{\,}$ вблизи E_{F} для ядер ⁴⁰Ca, ⁴⁸Ca, ⁵²Cr, ⁵⁴Fe, ⁵⁶Ni, ⁹⁰Zr, ²⁰⁸Pb

$$V_{HF}(E) = \left(V_0 \pm V_t \frac{N - Z}{A} + E_C V_C\right) \exp[-\kappa E]$$

$$V_0$$
=51.04 МэВ , V_t =22 МэВ

для n

$$V_{o}\!\!=\!\!51.92~{\rm M}{
m s}{\rm B}$$
 , $V_{t}\!\!=\!\!12.5~{\rm M}{
m s}{\rm B}$, $V_{C}\!\!=\!\!0.32$, для р

$$\begin{cases} \kappa = 0.00808 - 0.00427(N-Z)/A & для р \\ \kappa = 0.00773 + 0.00382(N-Z)/A & для n \end{cases}$$

$$\kappa = 0.00773 + 0.00382(N - Z)/A$$
 для n

$$E_F^n$$
=-12.46+35.4(N-Z)/A (M₃B),
 E_F^p =-11.93-54.8(N-Z)/A + E_C . (M₃B).

$$N_{nlj} = 1/2 \cdot \left(1 - \frac{(E_{nlj}^{DO\Pi} - E_{\rm F})}{\sqrt{(E_{nlj}^{DO\Pi} - E_{\rm F})^2 + (\Delta)^2}}\right)$$

Jeukenne J.-P., Mahaux C., Sartor R.
$$E_F^n$$
=-12.52+31.3(N-Z)/A (M3B), Phys. Rev. C. 1991. V. 43. P. 2211. E_F^p =-11.88-57.5(N-Z)/A + E_C (M3B)

0.00 0.04 0.08 0.12 0.16

$$E_F^n$$
=-12.52+31.3(N-Z)/A (M3B),
 E_F^n =-11.88-57.5(N-Z)/A + E_a (M

$$E_F^n$$
=-12.52+31.3(N-Z)/A (M3B),
 E_F^p =-11.88-57.5(N-Z)/A + E_C (M3B). $E_F = -\frac{\left[S_{n,p}(A) + S_{n,p}(A+1)\right]}{2}$

Предсказания E_{nlj} : Б07 и РМСП

Typel S., Wolter H. H. Relativistic mean field calculations with density – dependent meson-nucleon coupling. Nucl. Phys. A. 1999. V. 656. P. 331

$$\chi_i^2 = \frac{1}{N} \sum_{nlj} \frac{(E_{nlj}^{(i)} - E_{nlj}^{\beta KCII})^2}{(\Delta_{nlj}^{\beta KCII})^2}$$

Предсказания E_{nlj} : Б07 и MR

Ядро	n,p	$\chi^2_{E07}/\chi^2_{MR04,06}$	$\chi_{E07}^2/\chi_{MR07}^2$
⁴⁰ Ca	n	0.2	0.3
	p		0.12
^{90}Zr	n	0.36	0.53
	p		0.20
²⁰⁸ Pb	n	0.48*	0.47*
	p		0.31

*без значения $E_{n,1s_{1/2}}^{MR}$, которые не могут быть вычислены из-за отсутствия сходимости процесса итераций при нахождении V_{HF}^{MR} .

Одно из положений, выносимых на защиту

▶ Разработанная систематика глобальных параметров хартри-фоковской составляющей нейтронного и протонного ДОП позволяет описывать и предсказывать одночастичные характеристики близких к сферическим ядер как стабильных, так и вблизи границы β-стабильности с А от 40 до 208 и в интервале энергии от -70 до +70 МэВ.

Цель

 Исследовать эволюцию одночастичной структуры ядер при изменении числа нейтронов/протонов вплоть до границ нуклонной стабильности

Суммарное число нуклонов $N_{n(p)}$ в ядре

Материалы диссертации на соискание степени доктора физико-математических наук

Методика конструирования ДОП (нестабильные ядра)

- Мнимый потенциал определяется с использованием современных систематик глобальных параметров и с учетом оболочечного эффекта
- > Хартри-фоковская составляющая при $E_{\rm F}$ определяется из условия согласия суммарного числа нуклонов C числом N (Z) ядра $N_{n(p)} = \sum \ (2\,j+1)N_{nlj}$

N = 28

нейтронные одночастичные характеристики

Материалы диссертации на соискание степени доктора физико-математических наук

N = 20

нейтронные одночастичные характеристики

«Остров инверсии» при Z < 14 и N = 20 N = 16 -новое магическое число Возрастание вклада возбуждений 4p4h в основное состояние 32 Mg (Z = 12) A.O. Macchiavelli et al., Phys. Rev. C **94**: 051303 (2016) (three state (0p0h, 2p2h, and 4p4h) mixing model);

N. Tsunoda, T. Otsuka, N. Shimizu et. al., Phys. Rev. C. **95**: 021304(R) (2017) ((sd and pf model space)

N = 50

нейтронные одночастичные характеристики

Гало в ⁷⁰Ca?

- J. Meng, H. Toki, J. Y. Zeng *et al.*, Phys. Rev. C **65**, 041302 (2002). (ХФ+континуум)
- J. Terasaki, S. Q. Zhang, S. G. Zhou *et al.*, Phys. Rev. C **74**, 054318 (2006). (ХФБ)

N = 56

нейтронные одночастичные характеристики

⁹⁶Zr – уединенное магическое число, N = 56, Z = 40 – магическая пара Бобошин И.Н., Комаров С.Ю. // Изв. РАН, сер. физ. – 2009. – Т. 73. – № 11. – С. 1541.

N = 64 нейтронные одночастичные характеристики

Материалы диссертации на соискание степени доктора физико-математических наук

Z = 14

протонные одночастичные характеристики

Возникновение протонной магичности Z = 14 с ростом числа N

Z = 32 (Ge)

протонные одночастичные характеристики

Слабая магичность числа Z = 32 вблизи N = 32

 Дисперсионная оптическая модель в сочетании с разработанным методом конструирования ее потенциала обладает высокой предсказательной силой!

Основные положения, выносимые на защиту

- ▶ 1. В мнимой части ДОП при отрицательных энергиях проявляется оболочечный эффект, приводящий к расширению энергетической щели G в магических ядрах.
- 2. Параметр диффузности хартри-фоковской составляющей нейтронного и протонного ДОП зависит от относительного нейтронного избытка и влияет на особенности эволюции одночастичных уровней.
- 3. Разработанная систематика глобальных параметров хартрифоковской составляющей нейтронного и протонного ДОП позволяет описывать и предсказывать одночастичные характеристики близких к сферическим ядер как стабильных, так и вблизи границы β-стабильности с A от 40 до 208 и в интервале энергии от -70 до +70 МэВ.

Основные положения, выносимые на защиту

- 4. Разработанный метод конструирования ДОП позволяет предсказывать одночастичные характеристики нестабильных ядер вплоть до границ нуклонной стабильности.
- ▶ 5. При приближении к границе нейтронной стабильности увеличивается концентрация расчетных нейтронных уровней вблизи энергии Ферми и уменьшается энергетическая щель G, ослабляются традиционные (N = 20, 28, 50) и возникают нетрадиционные магические числа (N = 16, 32, 34, 56, 64), происходит смена последовательности ряда уровней вблизи энергии Ферми.
- ▶ 6. При приближении к границе протонной стабильности магические свойства ядер с числами Z = 28, 50, 82 сохраняются, при N вблизи 32 возникает нетрадиционное слабое магическое число Z = 32, а при приближении к границе нейтронной стабильности возникает нетрадиционное магическое число Z = 14.

Научная новизна

- Разработана новая систематика глобальных параметров ДОП, применимая для сферических и близких к ним ядер с А от 40 до 208 внутри и вблизи границы β-стабильности в диапазоне энергии -70 ≤ E ≤ +70 МэВ.
- 2. Разработан новый метод конструирования дисперсионного оптического потенциала для ядер среднего и тяжелого атомного веса для близких к сферическим ядер за пределами долины β-стабильности.
- 3. Впервые выполнены предсказания эволюции нейтронных и протонных характеристик широкого круга ядер от Si до Pb в направлении границы нейтронной стабильности по дисперсионной оптической модели.

Достоверность и апробация

Достигнуто хорошее согласие с имеющимися экспериментальными данными о параметрах оболочечной структуры исследованных стабильных ядер и с рядом предсказаний в рамках других теоретических подходов для нестабильных ядер.

Материалы диссертации неоднократно докладывались и обсуждались на научных семинарах НИИЯФ МГУ и международных конференциях «Ядро» по ядерной спектроскопии и структуре атомного ядра в 2000, 2001, 2002, 2003, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 гг.

Спасибо за Ваше внимание!

