Structure of light nuclei and modern theory (In resonance scattering with rare isotope beams)

V.Z. Goldberg Cyclotron Institute, Texas A&M University

Outline

 Thick Target Inverse Kinematics Method for Resonance Scattering induced by Rare Isotope Beams

- Structure of light nuclei and modern theory
- Resonance scattering induced by rare beams and alpha clusters
- Summary

- National Research Center "Kurchatov Institute".
- Before 1962 known under secret name of Laboratory #2. The place where the Soviet nuclear weapons program have started.

Laboratory #1 ???

Progress in Thick Target Inverse Kinematics Studies (publications) Resonance reactions with rare beams provide for access to low lying state in exotic nuclei.

The field of the investigation

G.V. Rogachev et al., PRL 92, 232502 (2004). P. Boutachkov et al., PRL 95, 132502 (2005). G.V. Rogachev et al., PRC 67, 041603(R) (2003). J.P. Mitchell et al., PRC 82, 011601(R) (2010). J.P. Mitchell et al., arXiv:1303.0331 (2013). G.V. Rogachev et al., PRC 64, 061601(R) (2001). V.Z. Goldberg, et al., JETP Lett. 67, 1013 (1998). G. V. Rogachev et al., PRC 75, 014603 (2007). V.Z. Goldberg and G. V.Rogachev, PRC 86, 044314 (2012). L. Axelsson, et al., PRC 54, R1511 (1996). K. Markenroth, et al., PRC 62, 034308 (2000). K. Perajarvi, et al., PRC 74, 024306 (2006) D.W. Lee et al, PRC 76, 024314 (2007) B.B. Skorodumov et al., PRC 75, 024607 (2007). B.B. Skorodumov, et al., PRC 78, 044603 (2008). V.Z. Goldberg et al., PLB 692, 307 (2010). V.Z. Goldberg et al., PRC 69, 031302(R) (2004).

B.B. Skorodumov et al., Phys. At. Nucl. 69, 1979 (2006).

1H

³He

2_H

¹⁹Na

Inverse geometry and thick target technique [Yad.Fiz. 52, 634 (1990); Sov.J.Nucl.Phys. 52, 408 (1990)]

Scattering chamber

- High efficiency
- Good energy resolution
- 180 degree (c.m.) measurements are possible
- Excitation function is continuous
- Low excitation energies could be measured due to energy amplification in inverse kinematics

- v(r_i,r_j) is bare nucleon-nucleon interaction determined from large body of experimental data on nucleon-nucleon scattering, and deuteron binding energy.
- Methods to solve (numerically) the many-body SE for atomic nuclei without introducing mean field have been developed during the last 15 years. No Core Large Basis Shell Model (NCSM), Variational Monte Carlo (VMC), Greens Function Monte Carlo (GFMC) and Chiral Effective Field Theory and Monte Carlo Lattice Simulations (ChEFT) methods are the prime examples.

Challenges of ab Initio Approach

- The nucleon-nucleon interaction is not unique.
- The "free" nucleon-nucleon interaction and nucleon-nucleon interaction in nuclear medium is not the same thing.
- Calculations are notoriously difficult, labor and time consuming.
- Truncation is still necessary.
- Three body (four body?) interactions appear to play an important role!
- Only light nuclei can be studied at present.

$$H = T + V = \sum_{i=1}^{A} \frac{-\hbar^2}{2m_N} \nabla_i^2 + \sum_{i,j=1(i$$

New nuclide, ¹⁴F

Proton Drip line

Black – Stable **Pink** – EC or β^+ Decay **Yellow** – p Decay

14F

G.C. Ball, et al., PRL **31**, 395 (1973) extrapolation F. Ajzenberg-Selove, NPA 523, 1 (1991). extrapolation G. Audi, et al., NPA 729, 337 (2003). Extrapolation P.Maris, A.M. Shirokov, J.P. Vary PRC 81, 021301(R)(2010) ¹⁴*F* instability to proton decay is ~3 MeV

An evident experimental solution is to add a proton to ^{13}O

It should be expected that a beam of extreme drip-line nuclei (like ¹³O) will be rather high energy beam and be obtained using in-flight separation.

Primary beam ¹⁴N@ 38 MeV/A – K500 Cyclotron
Primary target LN₂ cooled gas target H₂ p=3.0 atm

Secondary beam 13O @ 31 MeV/A Purity: ~90% Intensity: ~4x10³pps

Setup of the experiment

for Thick Target Inverse Kinematics Resonant Scattering

Heavy ions deposit their energy in the matter containing light elements (hydrogen or helium). A resonance manifests itself by a rapid increase of the recoil yield at the corresponding energy.

V.Z. Goldberg, et al., Phys. Lett. B 692 (2010) 307

Excitation functions for the¹³O+p elastic scattering

The solid line is the best fit.

The dashed line (blue) is a fit with 1^- as the ground state (instead of 2^-).

The dashed line (blue) is calculation with a second hypothetical 2^- state at high energy. The dashed-dot line is a calculation with a 4– state at 3 MeV (instead of 3^-) and a $3^$ state at 4.35 MeV (instead of 4^-).

The dashed line is the fit without the 1⁻ first excited state.

Prediction for the ${}^{14}F_{gr.st}$ was: E_R =3 MeV

¹⁴F Summary

- First experimental data on the level scheme in ¹⁴F (the intensity of the ¹³O beam was~3x10³ p/s) generally agree with the results of *ab initio* calculations
- However ¹⁴F appeared to be less unstable (~1.5 MeV) than was expected.
- The unexpected gain in stability of ¹⁴F is mainly related with the surprising purity of its single particle structure.

Would you believe that there are the unknown low laying levels in the lightest nuclei?

3/2⁻⊗3/2⁻ = 0⁺; 1⁺; 2⁺; 3⁺ 3/2⁻⊗1/2⁻ = 1⁺; 2⁺

Structure of ⁸B

P. Navratil, et al., PRC 73, 065801 (2006)

Courtesy of Dr. G. Rogachev

Hybrid (thick/thin) target technique

Courtesy of Dr. G. Rogachev

Known 3⁺ and 2⁻ states CANNOT explain high inelastic cross section!

 ${}^{8}B(3^{+}) => {}^{7}Be(3/2^{-},g.s.) + p \text{ with L=1}$ ${}^{8}B(3^{+}) => {}^{7}Be(1/2^{-},0.43) + p \text{ with L=3}$ ${}^{8}B(2^{-}) => {}^{7}Be(3/2^{-},g.s.) + p \text{ with L=0}$ ${}^{8}B(2^{-}) => {}^{7}Be(1/2^{-},0.43) + p \text{ with L=2}$

Courtesy of Dr. G. Rogachev

R-matrix fit requires new 0⁺ and 2⁺ states at 2.0 MeV and 2.55 MeV in ⁸B.

J.P. Mitchell, et al., PRC 82, 011601(R) (2010) PRC (2013)

Structure of ⁸B

interaction (χEFT)

Structure of ⁸B

Comparison of the ab initio NCSM/RGM [P. Navratil, et al., PRC82 034609 (2010)] phase shifts with experiment for the new low-lying states in ⁸B

J.P. Mitchell, GR, et al., arXiv:1303.0331 (2013).

⁸B Summary

•Study of the ⁷Be+p elastic and inelastic resonant scattering resulted in observation of new low laying levels: 0⁺ and 2⁺

•While the levels were predicted by the *ab initio* calculations the specific properties of the levels in disagreement with the theory.

Navr"atil P, Vary J P and Barrett B R

$\alpha\text{-clusters}$ and r/a beams

Phys. Rev. Lett. 84 5728 (2000)

The no core shell-model calculations for the ¹²C nucleus. The left hand part of the figure shows the experimental results. The calculations using the CD Bonn N-N interaction with increasing numbers of oscillator orbits are shown on the right.

Alpha Clusters

CNO: T9 < 0.2 Hot CNO: 0.2 < T9 < 0.5 rp process: T9 > 0.5

α -cluster structure of N \neq Z nuclei

Important: for astrophysics, due to breaking of CNO cycle through ${}^{14}O(\alpha,p){}^{17}F$ reaction as an example; for nuclear structure to provide for experimental observation of the relationship between the cluster and single particle approaches;

to use the ideas of the isospin conservation

1. THE SURFACE POTENTIAL MODEL

The simplest way to analyze the principal consequences of a surface potential model is to consider a potential that satisfies the boundary conditions $\Psi_{\alpha}(R)$ = 0 and $\Psi_{\alpha}(R - \Delta R) = 0$, where R is the radius of the nucleus and ΔR is the thickness of the surface layer, i.e., a potential that confines the particle to a spherical surface layer of thickness ΔR .

where μ is the reduced mass.

V. Z. Gol'dberg, V. P. Rudakov, and V. A. Timofeev

I. V. Kurchatov Atomic Energy Institute (Submitted June 19, 1973) Yad. Fiz. 19, 503-515 (March 1974)

The number of nodes N for the radial wave functions are calculated by the harmonic-oscillator relations as

 $P_{i} 2N + L = \Sigma(2n_{i} + l_{i}),$

where L is the angular momentum of the cluster, while n_i and l_i the corresponding shell model numbers for nucleons

Resonances in the α +¹⁴C interaction.

E. Johnson, G.V.Rogachev, V.Z. Goldberg et al., Eur.Phys.J. A 42, 135 (2009)

Table of States

0° states

4" states

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E[MeV]	E _{exc} [MeV]	`F _{tot} [keV]	`Γ _e [ke\	ſ] ľŗ[keV]	Robson's Po Γ_sp [keV]	ot Volya's F Γ[ke'	Pot Rma V] θ	atrix Ro	bson 9_2	Volya 0 ²
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.624	9.851	3209	3209	0			1.85	536		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1 states					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E[MeV]	E _{exc} [MeV]	`Γ _{tot} [keV]	`F_[ke\	/] `F __ [keV]	Robson's Po Γ _{oSP} [keV]	ot Volya's F Γ _{αSP} [ke'	Pot Rma V] 0	atrix Ro	bson 3 ²	Volya 0 ²
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.808	8.035	2	2	0	0.1021	0.1077	7 0.01	199 0.0)196	0.0186
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.904	9.131	166	152	14	1.6800	1.4891	1 0.18	855 0.0	905	0.1021
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.611	9.838	732	654	78			0.45	578		
5.883 11.610 189 105 84 0.0386 6.144 12.371 106 0.8 105.2 0.0002 5.864 12.091 680 333 347 0.1087 8.214 14.441 495 288 207 0.0675 8.750 14.977 2611 1382 1229 0.2995 E[MeV] Γ_{wl} [keV] Γ_{rds} [keV] Γ_{ads} [keV] Π Π θ_a^2	4.564	10.791	680	622	58			0.29	913		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5.383	11.610	189	105	84			0.03	386		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.144	12.371	106	0.8	105.2			0.00	002		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5.864	12.091	680	333	347			0.10	087		
8.750 14.977 2611 1382 1229 0.2995 E[MeV] $\Gamma_{wl}[keV]$ $\Gamma_{wl}[keV]$ $\Gamma_{rl}[keV]$ $\Gamma_{rl}[keV]$ $Robson's Pot \Gamma_{oss}[keV]$ $Rmatrix \theta_a^2$ $Robson \theta_a^2$ θ_a^3 1.987 8.214 2 1.7 0.3 0.0585 0.0517 0.0270 0.0291 0.0329 2.732 8.959 69 5 64 0.3900 0.3380 0.0162 0.0128 0.0148 3.633 9.860 183 94 89 2.3050 1.4669 0.1011 0.0408 0.064' 4.168 10.395 180 43 137 3.9908 0.0321 0.0108 5.077 11.304 218 72 146 0.0358 0.3543 0.0162 6.763 12.903 330 293 37 0.0965 0.0144 0.0144 7.306 13.533 651 59 592 0.0145 0.0185 0.0145 7.306 13.533 651 59 592 0.0135 0.1775 0.2222 0.2222 <td>8.214</td> <td>14.441</td> <td>495</td> <td>288</td> <td>207</td> <td></td> <td></td> <td>0.06</td> <td>675</td> <td></td> <td></td>	8.214	14.441	495	288	207			0.06	675		
Z' states E[MeV] $\Gamma_w[keV]$ $\Gamma_v[keV]$ $\Gamma_v[keV]$ $\Gamma_v[keV]$ $Robson's Pot \\ \Gamma_{usp}[keV]$ Volya's Pot \\ \Gamma_{usp}[keV] $Rmatrix \\ \theta_a^2$ $Robson \\ \theta_a^2$ θ_a^3 1.987 8.214 2 1.7 0.3 0.0585 0.0517 0.0270 0.0221 0.0322 2.732 8.959 69 5 64 0.3900 0.3380 0.0162 0.0128 0.0148 3.633 9.860 183 94 89 2.3050 1.4669 0.1011 0.0408 0.064' 4.168 10.395 180 43 137 3.9908 0.0321 0.0108 5.077 11.304 218 72 146 0.0356 5.544 12.171 974 918 56 0.3543 6.743 12.970 4892 4892 0 1.5922 0.0144 7.085 13.312 317 296 21 0.0185 0.0185 F(MeV] $\Gamma_w[keV]$ $\Gamma_w[keV]$	8.750	14.977	2611	1382	1229			0.29	995		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						2° states					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E[MeV]	E _{exc} [MeV]	`Γ _{tot} [keV]) `F_[ke\	/] `F _, [keV]	Robson's Po Γ _{oSP} [keV]	ot Volya's F F _{esp} [ke	Pot Rma V] 0	atrix Ro	bson 3 ²	Volya 0 ²
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.987	8.214	2	1.7	0.3	0.0585	0.0517	7 0.02	270 0.0	291	0.0329
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.732	8.959	69	5	64	0.3900	0.3380	0.01	162 0.0)128	0.0148
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.633	9.860	183	94	89	2.3050	1.4669	9 0.10	0.0	408	0.0641
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.168	10.395	180	43	137		3.9908	3 0.03	321		0.0108
	4.755	10.982	278	15	263			0.00	086		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.077	11.304	218	72	146			0.03	358		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.944	12.171	974	918	56			0.35	543		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.743	12.970	4892	4892	0			1.59	922		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.676	12.903	330	293	37			0.05	965		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.888	13.115	172	131	41			0.04	476		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.085	13.312	317	296	21			0.05	908		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.306	13.533	651	59	592			0.01	144		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.835	14.062	90	68	22			0.0	185		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						3 states					
2.059 8.286 9 3 6 0.0135 0.0135 0.1775 0.2222 0.2222 2.586 8.813 58 0.3 57.7 0.0675 0.0683 0.0041 0.0044 0.0044 3.134 9.361 167 103 64 0.2185 0.2184 0.4812 0.4714 0.4717 3.470 9.697 138 15 123 0.3930 0.3837 0.0437 0.0382 0.0391 3.890 10.117 17 7 10 0.7440 0.7005 0.0128 0.0094 0.0100 4.169 10.396 65 18 47 1.1080 1.0010 0.0261 0.0162 0.0180 5.652 11.879 521 290 231 9.6527 0.1749 0.0300 6.128 12.355 85 2 83 11.3857 0.0012 0.0002 6.152 12.379 229 98 131 114454 0.0492	E[MeV]	E _{ex} [MeV]	F _{tot} [keV]	`Г _" [keV]	Γ _" [keV] ^F	Robson's Pot \ F _{eSP.} [keV]	/olya's Pot F _{eSP.} [keV]	Rmatrix θ_0^2	Robson θ_g^2	Volya θ_{g}^{2}	a
2.586 8.813 58 0.3 57.7 0.0675 0.0683 0.0041 0.0044 0.0044 3.134 9.361 167 103 64 0.2185 0.2184 0.4812 0.4714 0.4717 3.470 9.697 138 15 123 0.3930 0.3837 0.0437 0.0382 0.0391 3.890 10.117 17 7 10 0.7440 0.7005 0.0128 0.0094 0.0100 4.169 10.396 65 18 47 1.1080 1.0010 0.0261 0.0162 0.0180 5.652 11.879 521 290 231 9.6527 0.1749 0.0300 6.128 12.355 85 2 83 11.3857 0.0012 0.0002 6.152 12.379 229 98 131 11.4454 0.0492 0.0086	2.059	8.286	9	3	6	0.0135	0.0135	0.1775	0.2222	0.222	22
3.134 9.361 167 103 64 0.2185 0.2184 0.4812 0.4714 0.4717 3.470 9.697 138 15 123 0.3930 0.3837 0.0437 0.0382 0.0391 3.890 10.117 17 7 10 0.7440 0.7005 0.0128 0.0944 0.0100 4.169 10.396 65 18 47 1.1080 1.0010 0.0261 0.0162 0.0180 5.652 11.879 521 290 231 9.6527 0.1749 0.0300 6.128 12.355 85 2 83 11.3857 0.0012 0.0092 6.152 12.379 229 98 131 114454 0.0492 0.0086	2.586	8.813	58	0.3	57.7	0.0675	0.0683	0.0041	0.0044	0.004	44
3.470 9.697 138 15 123 0.3930 0.3837 0.0437 0.0382 0.0391 3.890 10.117 17 7 10 0.7440 0.7005 0.0128 0.0094 0.0100 4.169 10.396 65 18 47 1.1080 1.0010 0.0261 0.0162 0.0180 5.652 11.879 521 290 231 9.6527 0.1749 0.0300 6.128 12.355 85 2 83 11.3857 0.0012 0.0002 6.152 12.379 229 98 131 11.4454 0.0492 0.0086	3.134	9.361	167	103	64	0.2185	0.2184	0.4812	0.4714	0.471	17
3.890 10.117 17 7 10 0.7440 0.7005 0.0128 0.0094 0.0100 4.169 10.396 65 18 47 1.1080 1.0010 0.0261 0.0162 0.0180 5.652 11.879 521 290 231 9.6527 0.1749 0.0300 6.128 12.355 85 2 83 11.3857 0.0012 0.0002 6.152 12.379 229 98 131 11.4454 0.0492 0.0086	3.470	9.697	138	15	123	0.3930	0.3837	0.0437	0.0382	0.039	91
4.169 10.396 65 18 47 1.1080 1.0010 0.0261 0.0162 0.0180 5.652 11.879 521 290 231 9.6527 0.1749 0.0300 6.128 12.355 85 2 83 11.3857 0.0012 0.0002 6.152 12.379 229 98 131 11.4454 0.0492 0.0086	3.890	10.117	17	7	10	0.7440	0.7005	0.0128	0.0094	0.010	00
5.652 11.879 521 290 231 9.6527 0.1749 0.0300 6.128 12.355 85 2 83 11.3857 0.0012 0.0002 6.152 12.379 229 98 131 11.4454 0.0492 0.0086	4.169	10.396	65	18	47	1.1080	1.0010	0.0261	0.0162	0.018	30
6.128 12.355 85 2 83 11.3857 0.0012 0.0002 6.152 12.379 229 98 131 11.4454 0.0492 0.0086	5.652	11.879	521	290	231		9.6527	0.1749		0.030	00
6 152 12 379 229 98 131 11 4454 0.0492 0.0086	6.128	12.355	85	2	83		11.3857	0.0012		0.000	02
the second	6 152	12 379	229	98	131		11 4454	0.0492		0.000	86

6.412

7.895

8.671

12.639

14.122

14.898

730

2533

1076

650

2001

627

80

21567

449

11.7879

11.2135

12.5305

0.3019

0.6620

0.1828

0.0551

0.1784

0.0500

E[MeV]	E[MeV]	`Γ _{ьс} [keV]	`F_[keV]	`Г_[keV]	Robson's Pot Γ _{αSP} [keV]	Volya's Pot F _{asp} [keV]	Rmatrix θ_{a}^{2}	Robson θ_a^2	Volya θ_{a}^{2}
4.073	10.300	27	17	10	0.2020	0.1435	0.0802	0.0842	0.1184
5.200	11.427	40	32	8	0.8696	0.5903	0.0506	0.0368	0.0542
6.322	12.549	8	7	1		1.6374	0.0058		0.0043
7.180	13.407	475	196	279		3.1697	0.1140		0.0618
7.666	13.893	52	10	42		4.5735	0.0052		0.0022
8.238	14.465	203	11	192		7.3832	0.0046		0.0015
8.254	14.481	287	144	143		7.4915	0.0616		0.0192
8.544	14.771	342	262	80			0.1050		

5 States

E[MeV]	E _{ex} [MeV]	`Γ _{tot} [keV]	`Г [keV]	`Г_[keV]	Robson's Pot Γ _{αSP.} [keV]	Volya's Pot F _{es.P.} [keV]	Rmatrix θ _a ²	Robson θ _a ²	Volya θ _a ²
5.409	11.636	41	30	11	0.196	0.1642	0.1274	0.1531	0.1827
6.115	12.342	37	25	12	0.438	0.3569	0.0575	0.0571	0.0700
6.716	12.943	67	25	42	0.799	0.6237	0.0386	0.0313	0.0401
6.877	13.104	128	95	33	0.927	0.7154	0.1346	0.1025	0.1328
7.897	14.124	611	293	318	2.485	1.5439	0.2504	0.1179	0.1898
7.573	13.800	31	2	29	1.768	1.2291	0.0023	0.0011	0.0016
8.497	14.724	251	202	49		2.2940	0.1375		0.0881
8.543	14.770	128	94	34		2.3598	0.0634		0.0398
0.0.0					6° states	2.0000			

E[MeV]	E _{exc} [MeV]	`Γ _{ω[} [keV]	`F_[keV]	`Г [keV]	Robson's Pot Γ _{αSP} [keV]	Volya's Pot F _{esp} [keV]	Rmatrix θ _a ²	$\begin{array}{c} \text{Robson} \\ \theta_{_{B}}^{^{2}} \end{array}$	Volya θ_a^2
5.475	11.702	19	10	9	0.0233	0.0232	0.2060	0.4292	
6.369	12.596	81	54	27	0.0765	0.0294	0.4019	0.7059	1.8395

α halo state in ¹⁸O

0⁺ at 3.8+/-0.5 MeV (~10.0 MeV ¹⁸O excitation energy) with width of ~3-5 MeV is necessary to fit the α +¹⁴C data. This width corresponds to purely α particle state.

The spectra do differ

A=10 isobaric triplet

FIG. 1. Levels diagram for the A-10 T-1 isobaric multiplet.

SUMMARY

- Problems of the nuclear astrophysics, development of the ab initio calculations pushed up the interest to the structure of unstable light nuclei.
- Rare isotope beam-hydrogen resonance scattering provides for the detailed data. It is important that the experiments are feasible at low intensities of the rare isotope beams
- Rare isotope beam-helium, A(N≠Z)+α, resonance studies are in the very beginning. Due to the reasons [1] and the interest to specific nuclear structure of the α-cluster states, I expect these studies will be very popular in the nearest future.
- I also expect a growing interest to the studies of analog states of the very neutron rich nuclei using resonance scattering of neutron rich nuclei on hydrogen. Sorry, I could not consider this problem in the present talk

Acknowledgments

Florida State University:

G.V. Rogachev J.P. Mitchell E.D. Johnson M.L. Avila K. Kemper A.S. Volya

НИИЯФ МГУ A.M. Shirokov

Texas A&M University: B.T. Roeder G.G. Chubarian A.A. Alharbi A. Banu G. Tabacaru L. Trache R.E. Tribble E. Simmons M. McCleskey

Indiana University:

[V.Z.G and G.V. Rogachev Phys. Rev. C 86, 044314 (2012)]

Alpha-Cluster States in A=10

1. Potential well model predictions and the levels in ¹⁰Be,B (T=1).

2. Resonance scattering to study of T=1 levels in ¹⁰B

3. Analisys of available ¹⁰Be,B,C data (¹⁰C – see R. J. Charity, T. D. Wiser, K. Mercurio et al., Phys. Rev. C 80, 024306 (2009)) using shell model (A. S. Volya, continuum shell model code cosmo, http://www.volya.net.) and potential well model for cluster calculations

4. ⁶He+α resonance scattering

Array for Nuclear Astrophysics and Structure with Exotic Nuclei

¹⁰Be (α+⁶He)

 α +6He wave function for the 0+6.2 MeV level in a potential well with forbidden states $\Sigma 2n_i+l_i=2N+L$

> Potential parameters R=2.58 fm; a=0.7 fm; V_0 =-116.8 MeV

Angular distribution if gated around 2.75+/-0.1 MeV

Green's function Monte Carlo (GFMC) algorithm Nuclear structure of 7Be, 8B, and 7,8Li is studied within the *ab initio* no-core shell model (NCSM). ab initio lattice results PRL109,252(2012); no-core shell model PRL107,072501(2011) Fermionic molecular dynamics Phys. Rev. Lett. 105, 022501(2010) Forces two-body AV18, "two-body" +3-GISP16

Moment of inertia ratio for the g.s. band and band based on 0+ at 6.2 MeV: A. Dote, et al., PRC 56,

Clustering in ¹⁰Be

- Rotational band with high moment of inertia built on 0⁺ at 6.18 MeV
- 10.15 MeV state reported to be extremely clustered [1]
- Believed to be associated with α-2n-α molecular rotational band.
- Disagreement in spin-parity assignment for 10.15 MeV 4⁺ in [1,2] 3⁻ in [3]

[1] M. Freer, et al., PRL 96, 042501 (2006)
[2] M. Milin, et al., NPA 753, 263 (2005)
[3] N. Curtis, et al., PRC 64, 044604 (2001)

⁶He +α elastic scattering

α-partial width >150 keV is needed to explain the observed cross section!

Maximum α -partial width for pure α -⁶He 4⁺ state at 2.75 MeV is ~100 keV

Colloquium, Texas A&M University, March 2013

Model levels in mirror nuclei

The Coulomb shift energies could be a valuable source of information

V.Z. Goldberg et al., Phys. Rev. **C 69**, 031302(R) (2004)

