НИИЯФ МГУ 18.12.2012

В. Т. Ворончев

Ядерные процессы в плазме: приложение к управляемому термоядерному синтезу и первичному нуклеосинтезу

Прикладные проблемы

УТС: оптимальный состав топлива, оптимизация зажигания, диагностика плазмы (не электронов, а ионов –> "оптика" здесь не подходит)

Фундаментальные проблемы

Механизмы превращения вещества в астрофизических объектах. Особое интерес – первичный нуклеосинтез как уникальный "зонд" ранней Вселенной, его разветвленная кинетика требует аккуратного описания.

Стандартный подход (СП) к описанию ядерной кинетики

– тепловая модель взаимодействия максвелловских частиц.

Какова точность СП ? (искажения ф.р., нетепловые Современная мотивация, темы

- Новая "фемто-физика", лабораторная астрофизика –> нетепловые процессы. Какова точность СП ?
 - ✓ УТС на базе компактных реактивных систем типа пинча. Какова точность СП ?
 - ✓ Стандартная модель нуклеосинтеза без свободных параметров. Какова точность СП ?

вещества

- Реакции ⁶Li с легчайшими ядрами и УТС,
 I. Ядерные данные
- Быстрые частицы в горячей плазме и их влияние на скорость ядерных реакций
 - Реакции ⁶Li с легчайшими ядрами и УТС, II. Гамма-лучевая диагностика горячей плазмы
- Термоядерный синтез в D³He-плазме пинчевого разряда с управлением фемтосекундным лазером
 - Ядерные реакции в плазме ранней Вселенной и первичный нуклеосинтез

Реакции ⁶Li с легчайшими ядрами и УТС, I. Ядерные данные

Низкоэнергетические литиевые реакции

■ T + ⁶Li

■ ³He + ⁶Li

■ D + ⁶Li

 ${}^{6}\text{Li}(t,d){}^{7}\text{Li}{}^{*}[0.478(1/2^{-};1/2)] + 0.52 \text{ M}\Im\text{B}$

 ${}^{6}\text{Li}(t,p){}^{8}\text{Li}{}^{*}[0.981(1^{+};1)] - 0.18 \text{ M}{}_{9}\text{B}$

 ${}^{6}\text{Li}({}^{3}\text{He}, p){}^{8}\text{Be}^{*}[16.626(2^{+}; 0 + 1)] + 0.16 \text{ M} \Im B$

 ${}^{6}\mathrm{Li}({}^{3}\mathrm{He},\mathrm{p}){}^{8}\mathrm{Be}^{*}[16.922(2^{+};0+1)] - 0.14~\mathrm{M} \Im \mathrm{B}$

 ${}^{6}\text{Li}(d,n){}^{7}\text{Be}^{*}[0.429(1/2^{-};1/2)] + 2.95 \text{ M}\Im\text{B}$

 ${}^{6}\text{Li}(d, p){}^{7}\text{Li}^{*}[0.478(1/2^{-}; 1/2)] + 4.55 \text{ M} \Im B$

⁶Li(d, pt) α + 2.28 МэВ

⁶Li(d, n³He) α + 1.70 M₉B

Экстраполяция сечений в подбарьерную область

$$\sigma(E) = \frac{S(E)}{E} P(E)$$

Особенности процедуры:

 Кулоновское подавление в выходном канале реакции (величина Q мала или отрицательна)

$$P(E) = P_{ij}(E) \times P_{kl}(E+Q)$$

✓ Потенциальный барьер реалистической формы

Самосогласованная модель свертки

 $V_{\mathbf{X}^{6}\mathbf{Li}}(R) = \langle \Psi_{^{6}\mathbf{Li}}^{J_{\mathbf{Li}}M_{\mathbf{Li}}}(\mathbf{r},\boldsymbol{\rho})\chi_{\mathbf{X}}^{J_{\mathbf{X}}M_{\mathbf{X}}} | \mathcal{V}_{\mathbf{X}^{6}\mathbf{Li}}(\mathbf{r},\boldsymbol{\rho},\mathbf{R}) | \Psi_{^{6}\mathbf{Li}}^{J_{\mathbf{Li}}M_{\mathbf{Li}}}(\mathbf{r},\boldsymbol{\rho})\chi_{\mathbf{X}}^{J_{\mathbf{X}}M_{\mathbf{X}}} \rangle,$

$$\mathcal{V}_{\mathrm{X}^{6}\mathrm{Li}}(\mathbf{r}, \boldsymbol{
ho}, \mathbf{R}) = \mathcal{V}_{\mathrm{X}1}(\mathbf{r}_{\mathrm{X}1}) + \mathcal{V}_{\mathrm{X}2}(\mathbf{r}_{\mathrm{X}2}) + \mathcal{V}_{\mathrm{X}3}(\mathbf{r}_{\mathrm{X}3}).$$

$$\bar{V}_{X^{6}Li}(R) = \frac{1}{(2J_{X}+1)(2J_{Li}+1)} \sum_{M_{X}M_{Li}} V_{X^{6}Li}(R).$$

$$\Psi_{^{6}\mathrm{Li}}^{J_{\mathrm{Li}}M_{\mathrm{Li}}}(\mathbf{r},\boldsymbol{\rho}) = \sum_{LS} \sum_{\lambda l} \sum_{j} C_{j} r^{\lambda} \rho^{l} \exp\{-a_{j}r^{2} - b_{j}\rho^{2}\} \mathcal{F}_{\lambda l L S_{23}}^{J_{\mathrm{Li}}M_{\mathrm{Li}}}(\hat{\mathbf{r}},\hat{\boldsymbol{\rho}}),$$

Потенциалы в подсистемах

- N-N Afnan & Tang S1 (до 300 МэВ)
- N-α Sack, Biedenharn, Breit (до 15 МэВ)
- N-t Cherif & Podmore (до 23 МэВ)
- α-t Neudatchin, Kukulin et al (до 20МэВ)
- α-α Kukulin, Neudatchin, Smirnov (до 30 МэВ)

Мнимая часть потенциала

X+⁶Ll

$$W(R) = -W_I \left(\frac{1}{1 + \exp[(R - R_I)/a_I]} + \frac{4 \exp[(R - R_I)/a_I]}{\{1 + \exp[(R - R_I)/a_I]\}^2} \right)$$

Таблица 1.1. Параметры аппроксимации периферической части найденных ядерных потенциалов формулой Вудса-Саксона: $V(R) = -V_0/\{1 + \exp[(R - R_0)/a_0]\}^{\beta}$. Дополнительно в таблице приведены высоты чисто кулоновского $H_{\rm C}$ и реалистического $H_{\rm CN}$ потенциальных барьеров в системе X + ⁶Li. Для высоты кулоновского барьера принята стандартная оценка $H_{\rm C} \simeq Z_{\rm X} Z_{\rm 6Li}/(A_{\rm X}^{1/3} + A_{\rm 6Li}^{1/3})$ МэВ.

Система	Ядерный потенциал			Потенциальный барьер		
	V_0	R_0	a_0	β	H_{C}	$H_{\rm CN}$
	(МэВ)	(фм)	(фм)		(МэВ)	(MэB)
$n(p) + {}^{6}Li$	52.49	2.247	0.725	1	0(1.065)	0(0.543)
$\mathrm{t}(^{3}\mathrm{He})+{}^{6}\mathrm{Li}$	73.41	2.250	0.565	0.708	0.920(1.841)	0.485(1.052)
$\alpha + {}^{6}\text{Li}$	116.86	2.100	0.815	1	1.762	1.001

Реакции t + ⁶Li

⁶Li(t, d)⁷Li^{*}[0.478(1/2⁻; 1/2)] + 0.52 M₉B ⁶Li(t, p)⁸Li^{*}[0.981(1⁺; 1)] - 0.18 M₉B

Реакции t + ⁶Li

 ${}^{6}\text{Li}(t,d){}^{7}\text{Li}{}^{*}[0.478(1/2^{-};1/2)] + 0.52 \text{ M}\Im\text{B}$

 ${}^{6}\text{Li}(t,p){}^{8}\text{Li}{}^{*}[0.981(1^{+};1)] - 0.18 \text{ M}\Im\text{B}$

Реакции ³He + ⁶Li

 ${}^{6}\text{Li}({}^{3}\text{He}, p){}^{8}\text{Be}^{*}[16.626(2^{+}; 0 + 1)] + 0.16 \text{ M} \Im B$ ${}^{6}\text{Li}({}^{3}\text{He}, p){}^{8}\text{Be}^{*}[16.922(2^{+}; 0 + 1)] - 0.14 \text{ M} \Im B$

Реакции ³He + ⁶Li

⁶Li(³He, p)⁸Be^{*}[16.626(2⁺; 0 + 1)] + 0.16 M∋B ⁶Li(³He, p)⁸Be^{*}[16.922(2⁺; 0 + 1)] − 0.14 M∋B N_{2} 1: $E_{1}^{*} = 17.190 \pm 0.025$ M∋B ($E_{1} = 589$ κ∋B), $\Gamma_{1} = 120 \pm 40$ κ∋B; N_{2} 2: $E_{2}^{*} = 17.637 \pm 0.010$ M∋B ($E_{2} = 1036$ к∋B), $\Gamma_{2} = 71 \pm 8$ к∋B;

Реакции ³He + ⁶Li

 ${}^{6}\text{Li}({}^{3}\text{He}, p){}^{8}\text{Be}^{*}[16.626(2^{+}; 0+1)] + 0.16 \text{ M} \Im B$

 ${}^{6}\text{Li}({}^{3}\text{He}, p){}^{8}\text{Be}^{*}[16.922(2^{+}; 0+1)] - 0.14 \text{ M} \Im B$

Реакции d + ⁶Li

 6 Li(d, pt) α + 2.28 M $_{2}$ B

 $^{6}\mathrm{Li}(\mathrm{d},\mathrm{n}^{3}\mathrm{He})\alpha+1.70~\mathrm{M}\Im\mathrm{B}$

Быстрые частицы в горячей плазме и их влияние на скорость ядерных реакций

Скорость реакции і + ј

$$R_{ij} = \frac{1}{1 + \delta_{ij}} n_i n_j \langle \sigma v \rangle_{ij}$$

$$\langle \sigma v \rangle_{ij} = \frac{1}{n_i n_j} \int f_i(\mathbf{v}_i) f_j(\mathbf{v}_j) \sigma(|\mathbf{v}_i - \mathbf{v}_j|) |\mathbf{v}_i - \mathbf{v}_j| \, d\mathbf{v}_i \, d\mathbf{v}_j$$

$$\langle \sigma v \rangle_{ij} = \frac{8\pi^2}{n_i n_j} \int_0^\infty v_i f_i(v_i) \int_0^\infty v_j f_j(v_j) \left\{ \int_{|v_i - v_j|}^{v_j + v_j} v^2 \sigma(v) \, dv \right\} \, dv_i \, dv_j$$

1. Две максвелловские группы (М и М')

$$\langle \sigma v \rangle_{ij,\text{MM'}} = \left(\frac{8}{\pi\mu}\right)^{1/2} \left(\frac{m_i T_j + m_j T_i}{m_i + m_j}\right)^{-3/2} \\ \times \int_0^\infty E\sigma(E) \exp\left[-\frac{E}{(m_i T_j + m_j T_i)/(m_i + m_j)}\right] dE$$

2. Монохроматический пучок (В) и максвелловская группа (М)

$$\langle \sigma v \rangle_{ij,\text{BM}} = \left(\frac{m_i + m_j}{2\pi\mu^2}\right)^{1/2} (E_0 T_j)^{-1/2} \int_0^\infty E^{1/2} \sigma(E)$$
$$\times \left\{ \exp\left[-\frac{\left(\sqrt{b_1 E} - \sqrt{b_2 E_0}\right)^2}{T_j}\right] - \exp\left[-\frac{\left(\sqrt{b_1 E} + \sqrt{b_2 E_0}\right)^2}{T_j}\right] \right\} dE$$

Образование быстрых частиц в плазме

Первичный механизм
 Генерация в экзотермических реакциях

 Вторичный механизм
 Столкновения тепловых частиц с энергичными продуктами реакций

Методы описания надтепловых реакций

1. Формализм ядерных реакций на "на

$$W_{kX}(E_{k,0} \to E_{th}) = 1 - \exp\left(\int_{E_{th}}^{E_{k,0}} v_k \frac{n_X \sigma(E_k)}{\langle dE_k / dt \rangle} dE_k\right)$$

$$R_{kX,fast} = W_{kX} \times R_{k,ij}$$

Заряженные частицы (Сивухин,
1964): $\lambda = 0.000$

$$\left\langle \frac{dE_q}{dt} \right\rangle_{\text{Coul}} = \left\langle \frac{dE_q}{dt} \right\rangle_e + \sum_i \left\langle \frac{dE_q}{dt} \right\rangle_i$$

$$\left\langle \frac{dE_q}{dt} \right\rangle_j = -\frac{4\pi e^4 (Z_q Z_j)^2}{(2m_j T_j)^{1/2}} n_j \Lambda_j \frac{\Psi(x_j)}{x_j}.$$
$$\Psi(x_j) = \operatorname{erf}(x_j) - \frac{2}{\pi^{1/2}} \left(1 + \frac{m_j}{m_q} \right) x_j \exp(-x_j^2), \quad x_j = \left(\frac{m_j}{m_q} \frac{E_q}{T_j} \right)^{1/2}$$

Методы описания надтепловых реакций

1. Формализм ядерных реакций на "на

$$\mathbf{A}_{kx}(E_{k,0} \to E_{th}) = 1 - \exp\left(\int_{E_{k,0}}^{E_{k,0}} v_k \frac{n_X \sigma(E_k)}{\langle dE_k / dt \rangle} dE_k\right)$$

$$\mathbf{B}_{kx,\text{fast}} = W_{kx} \times R_{k,ij}$$

$$\mathbf{B}_{kx,\text{fast}} = V_{kx} \times R_{kx,ij}$$

$$\mathbf{B}_{kx,ij,ij}$$

$$\mathbf{B}_{kx,ij} = V_{kx} \times R_{kx,ij}$$

$$\mathbf{B}_{kx,ij} =$$

Методы описания надтепловых реакций

2. Модель "двухтемпературной" максвелловской функции распределения (2ТМ-молепь)

Бинотория (
$$\mathbf{v}_x, \mathbf{v}'_x$$
) = $f_{x,M}^{(\text{bulk})}(\mathbf{v}_x) + f_{x,M}^{(\text{fast})}(\mathbf{v}'_x)$
тепловые частицы (n, T)
полный ансамбль
 $f_{x,M}(\mathbf{v}_x) = n_x \left(\frac{m_x}{2\pi T_x}\right)^{3/2} \exp\left(-\frac{m_x \mathbf{v}_x^2}{2T_x}\right)$
 $\int (\sigma v)_{ij,2TM} = \langle \sigma v(T) \rangle_{ij,M} \times \Delta_{ij}$

Скорость

$$\frac{\partial f_a}{\partial t} = \left(\frac{\partial f_a}{\partial t}\right)_{\text{Coul}} + \left(\frac{\partial f_a}{\partial t}\right)_{\text{NES}} + S_a - L_a = 0$$

$$\frac{\partial f_a}{\partial t} = \left(\frac{\partial f_a}{\partial t}\right)_{\text{Coul}} + \left(\frac{\partial f_a}{\partial t}\right)_{\text{NES}} + S_a - L_a = 0$$

$$\left(\frac{\partial f_a}{\partial t}\right)_{\text{Coul}} = \frac{1}{v^2} \frac{\partial}{\partial v} \left(A_a f_a + B_a \frac{\partial f_a}{\partial v}\right) \text{Rosenbluth (1957)}$$

 $\langle \circ \circ \rangle$

$$\frac{\partial f_a}{\partial t} = \left(\frac{\partial f_a}{\partial t}\right)_{\text{Coul}} + \left(\frac{\partial f_a}{\partial t}\right)_{\text{NES}} + S_a - L_a = 0$$

$$\begin{split} \left(\frac{\partial f_a}{\partial t} \right)_{\mathbf{C}} &= \frac{1}{2} \frac{\partial}{\partial r} \left(A_a f_a + B_a \frac{\partial f_a}{\partial r} \right) \\ \left(\frac{\partial f_a}{\partial t} \right)_{\mathbf{NES}} &= \sum_b \frac{2\pi}{v^2} \int_0^\infty v' f_a(v') \int_0^\infty v'_b f_b(v'_b) P(v' \to v | v_b) \\ &\times \left(\int_{|v' - v'_b|}^{v' + v'_b} v'^2_r \sigma_{\mathbf{NES}}(v'_r) \, dv'_r \right) \, dv' \, dv'_b - \sum_b \frac{2\pi}{v} f_a(v) \int_0^\infty v_b f_b(v_b) \\ &\times \left(\int_{|v' - v'_b|}^{v + v_b} v_r^2 \sigma_{\mathbf{NES}}(v_r) \, dv_r \right) \, dv_b, \\ &\times \left(\int_{|v - v_b|}^{v + v_b} v_r^2 \sigma_{\mathbf{NES}}(v_r) \, dv_r \right) \, dv_b, \\ &\text{Nakao (1995)} \end{split}$$

$$\frac{\partial f_a}{\partial t} = \left(\frac{\partial f_a}{\partial t}\right)_{\text{Coul}} + \left(\frac{\partial f_a}{\partial t}\right)_{\text{NES}} + S_a - L_a = 0$$

$$\begin{pmatrix} \frac{\partial f_a}{\partial t} \\ \frac{\partial f_a}{\partial t} \end{pmatrix}_{C} = \frac{1}{2} \frac{\partial}{\partial r} \begin{pmatrix} A_a f_a + B_a \frac{\partial f_a}{\partial r} \\ \frac{\partial f_a}{\partial t} \end{pmatrix}_{\text{NES}} = \sum_{r} \frac{2\pi}{v^2} \int_{0}^{\infty} v' f_a(v') \int_{0}^{\infty} v' f_b(v'_b) P(v' \to v | v_b)$$

$$S_d(v) - L_d(v) = \overline{S}_d \frac{\delta(v - v^+)}{4\pi v^2} - \frac{2\pi}{v} f_d(v) \int_{0}^{\infty} v' f_t(v') \int_{|v - v'|}^{v + v'} v_r^2 \sigma(v_r) dv_r dv' - \frac{f_d(v)}{\tau_N^{(d)}}.$$

$$\begin{pmatrix} |v' - v'_b| \\ \sqrt{v_r^2 - v_b^2} v_r^2 \sigma_{\text{NES}}(v_r) dv_r \end{pmatrix} dv_b,$$

$$Nakao (1995)$$

$$\frac{\partial f_a}{\partial t} = \left(\frac{\partial f_a}{\partial t}\right)_{\text{Coul}} + \left(\frac{\partial f_a}{\partial t}\right)_{\text{NES}} + S_a - L_a = 0$$

$$\begin{array}{l} \left(\frac{\partial f_{a}}{\partial t}\right)_{C} = \frac{1}{2} \frac{\partial}{\partial \alpha} \left(A_{a}f_{a} + B_{a} \frac{\partial f_{a}}{\partial \alpha}\right) & \text{Rosenbluth (1957)} \\ \left(\frac{\partial f_{a}}{\partial t}\right)_{\text{NES}} = \sum \frac{2\pi}{v^{2}} v'f_{a}(v') v'f_{b}(v') v' + v|v_{b} \\ S_{d}(v) - L_{d}(v) = \overline{S}_{d} \frac{\delta(v - v^{+})}{4\pi v^{2}} - \frac{2\pi}{v} f_{d}(v) \int_{0}^{\infty} v'f_{t}(v') \int_{|v - v'|}^{v + v'} v_{r}^{2} \sigma(v_{r}) dv_{r} dv' - \frac{f_{d}(v)}{\tau_{N}^{(d)}} \\ S_{\alpha}(v) - L_{\alpha}(v) = n_{d} n_{t} \langle \sigma v \rangle_{t(d,n)\alpha} \frac{\delta(v - v_{\alpha,0})}{4\pi v^{2}} - \frac{f_{\alpha}(v)}{\tau_{\alpha,\text{leak}}} \right) \\ \hline \end{array}$$
 Nakao (1995)

$$\frac{\partial f_a}{\partial t} = \left(\frac{\partial f_a}{\partial t}\right)_{\text{Coul}} + \left(\frac{\partial f_a}{\partial t}\right)_{\text{NES}} + S_a - L_a = 0$$

$$\begin{split} \left(\frac{\partial f_a}{\partial t}\right)_{\mathbf{C}} &= \frac{1}{2} \frac{\partial}{\partial \alpha} \left(A_a f_a + B_a \frac{\partial f_a}{\partial \alpha}\right) \text{ Rosenbluth (1957)} \\ &\left(\frac{\partial f_a}{\partial t}\right)_{\mathrm{NES}} = \sum \frac{2\pi}{v^2} \int v' f_a(v') \int v'_b f_b(v'_b) P(v' \to v | v_b) \\ S_d(v) - L_d(v) &= \overline{S}_d \frac{\delta(v - v^+)}{4\pi v^2} - \frac{2\pi}{v} f_d(v) \int_0^{\infty} v' f_t(v') \int_{|v - v'|}^{v + v'} v_r^2 \sigma(v_r) dv_r dv' - \frac{f_d(v)}{\tau_N^{(d)}}. \\ S_\alpha(v) - L_\alpha(v) &= n_\mathrm{d} n_\mathrm{t} \langle \sigma v \rangle_{\mathrm{t(d,n)}\alpha} \frac{\delta(v - v_{\alpha,0})}{4\pi v^2} - \frac{f_\alpha(v)}{\tau_{\alpha,\mathrm{leak}}} \right) \\ &\left(\frac{J}{|v - v_b|}\right) & \mathrm{Nakao (1995)} \end{split}$$

$$\frac{\eta_{\rm td}}{(1+\eta_{\rm td})^2} n^2 \langle \sigma v \rangle_{\rm t(d,n)\alpha} E_\alpha - 3.34 \times 10^{-21} n^2 \sqrt{T} - \frac{3nT}{\tau_E} = 0$$

DT-плазма

DT-плазма

Могут ли эти искажения распределений в плазме ?

<u>Фактор "плюс"</u>: сечения реакций растут с увеличением энергии

<u>Фактор "минус"</u>: количество быстрых частиц довольно мало

Усиление реакций на "хвостах" распределений: DT/X-плазма (X = ⁶Li, ⁹Be)

относительное содержание быстрых частиц <u>всего</u> 0.03% (I)

		Система	Реакция	Q МэВ	< _ס v> / < _ס v> _{Maxw} T _i = 10–40 кэВ
	$t(d,n)\alpha$				
	10 d(d,n) ^o He	D+Li	⁶ Li(d,n ₁) ⁷ Be*	2.95	
ение (мбн)	10^{0} $^{6}\text{Li}(t,p)^{8}\text{Li}^{*}$		⁶ Li(d,p ₁) ⁷ Li [*]	4.55	
			⁶ Li(d,pt)α	2.56	
			⁶ Li(d,α)α	22.37	
Сеч		T+Li	⁶ Li(t,d ₁) ⁷ Li [*]	0.51	
	⁶ Li(t,d) ⁷ Li [*] ³ Be(d,γ) ¹ B		⁶ Li(t,p ₁) ⁸ Li [*]	- 0.18	
		D+Be	⁹ Be(d,γ) ¹¹ B	15.81	
	$10^{-6} \frac{1}{10^{10}} \frac{1}{10^{20}} \frac{1}{10^{30}} \frac{1}{10^{40}} \frac{1}{1$	D+T	D(t,n)α	17.59	
	Энергия (кэВ)	D+D	D(d,n) ³ He	3.27	

Усиление реакций на "хвостах" распределений: DT/X-плазма (X = ⁶Li, ⁹Be)

относительное содержание быстрых частиц <u>всего</u> 0.03% (!)

		G	D	•	
ение (мбн)	10 ⁴ t(d,n)α	Система	Реакция	Q МэВ	< _б v> / < _б v> _{Махw} Т _і = 10–40 кэВ
	10 ² d(d,n) ³ He	D+Li	⁶ Li(d,n ₁) ⁷ Be*	2.95	
			⁶ Li(d,p ₁) ⁷ Li [*]	4.55	
	10° $^{6}\text{Li}(t,p)^{8}\text{Li}^{*}$		⁶ Li(d,pt)α	2.56	
			⁶ Li(d,α)α	22.37	
Сеч		T+Li	⁶ Li(t,d ₁) ⁷ Li [*]	0.51	
	⁶ Li(t,d) ⁷ Li [*] ^{Be(d,γ)[*]B}		⁶ Li(t,p ₁) ⁸ Li [*]	- 0.18	
		D+Be	⁹ Be(d,γ) ¹¹ B	15.81	
	10^{-6} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1}	D+T	D(t,n)α	17.59	≤ 1.01
	Энергия (кэВ)	D+D	D(d,n) ³ He	3.27	≤ 1.07

Усиление реакций на "хвостах" распределений: DT/X-плазма (X = ⁶Li, ⁹Be)

относительное содержание быстрых частиц <u>всего</u> 0.03% (I)

	10 ⁴	Система	Реакция	Q МэВ	< _ס v> / < _ס v> _{Maxw} T _i = 10–40 кэВ
Сечение (мбн)	$10^{2} d(d,n)^{3}He$ $10^{0} d(d,n)^{3}He$ $10^{0} d^{+6}Li$ $d^{+6}Li$ $d^{+6}Li$ $^{6}Li(t,d)^{7}Li^{*}$ $^{9}Be(d,\gamma)^{11}B$	D+Li	⁶ Li(d,n ₁) ⁷ Be* ⁶ Li(d,p ₁) ⁷ Li* ⁶ Li(d,pt)α ⁶ Li(d,α)α	2.95 4.55 2.56 22.37	2.2–1.5 2.5–1.5 2.9–1.6 1.5–1.2
		T+Li	⁶ Li(t,d ₁) ⁷ Li [*] ⁶ Li(t,p ₁) ⁸ Li [*]	0.51 - 0.18	
		D+Be	⁹ Be(d,γ) ¹¹ B	15.81	
	$10^{-6} \frac{1}{10^{1}} \frac{1}{10^{2}} \frac{1}{10^{3}} \frac{1}{10^{4}}$	D+T	D(t,n)α	17.59	≤ 1.01
	Энергия (кэВ)	D+D	D(d,n)³He	3.27	≤ 1.07
Усиление реакций на "хвостах" распределений: DT/X-плазма (X = ⁶Li, ⁹Be)

относительное содержание быстрых частиц <u>всего</u> 0.03% (I)

		Система	Реакция	Q МэВ	< _ס v> / < _ס v> _{Maxw} Т _i = 10–40 кэВ
Сечение (мбн)	$10^2 \frac{t(d,n)\alpha}{d(d,n)^3 He}$				
		D+Li	⁶ Li(d,n ₁) ⁷ Be*	2.95	2.2–1.5
			⁶ Li(d,p ₁) ⁷ Li [*]	4.55	2.5–1.5
	$10^{\circ} d+^{6}Li \theta+^{6}Li $		⁶ Li(d,pt)α	2.56	2.9–1.6
			⁶ Li(d,α)α	22.37	1.5–1.2
		T+Li	⁶ Li(t,d ₁) ⁷ Li [*]	0.51	7.8–1.7
			⁶ Li(t,p ₁) ⁸ Li [*]	- 0.18	
		D+Be	⁹ Be(d,γ) ¹¹ B	15.81	
	$10^{-6} \frac{1}{10^{1}} \frac{1}{10^{2}} \frac{1}{10^{3}} \frac{1}{10^{4}}$	D+T	D(t,n)α	17.59	≤ 1.01
	Энергия (кэВ)	D+D	D(d,n) ³ He	3.27	≤ 1.07

Усиление реакций на "хвостах" распределений: DT/X-плазма (X = ⁶Li, ⁹Be)

относительное содержание быстрых частиц <u>всего</u> 0.03% (I)

40	4	Системя	Реакция	Q	<مv> / <مv>
10		Cherema	i cundini	МэВ	$T_{\rm H} = 10-40 \text{ K}_{\rm H}$
	$t(d,n)\alpha$				
40	10^{2} d(d,n) ³ He 10^{0} $^{6}Li(t,p)^{8}Li^{*}$ 10^{-2} d+ ^{6}Li				
10		D+Li	⁶ Li(d,n₁) ⁷ Be*	2.95	2.2–1.5
(н)			⁶ Li(d,p ₁) ⁷ Li*	4.55	2.5–1.5
<u>ອ</u> 10 ອ			⁶ Li(d,pt)α	2.56	2.9–1.6
ени			⁶ Li(d,α)α	22.37	1.5–1.2
о С С		T+Li	⁶ Li(t,d ₁) ⁷ Li [*]	0.51	7.8–1.7
10	4 ⁶ Li(t,d) ⁷ Li [*] ³ Be(d,γ) ¹ B		⁶ Li(t,p ₁) ⁸ Li [*]	- 0.18	
10		D+Be	⁹ Be(d,γ) ¹¹ B	15.81	50–3
10	$6 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 10^2 & 10^3 & 10^4 \end{bmatrix}$	D+T	D(t,n)α	17.59	≤ 1.01
	Энергия (кэВ)	D+D	D(d n) ³ He	3 27	< 1 07
				0.27	2 1.07

Усиление реакций на "хвостах" распределений: DT/X-плазма (X = ⁶Li, ⁹Be)

относительное содержание быстрых частиц <u>всего</u> 0.03% (I)

		Система	Реакция	Q МэВ	< ₀ v> / < ₀ v> _{Maxw} Т, = 10–40 кэВ
ение (мбн)	$t(d,n)\alpha$				1
	10 d(d,n) ³ He	D+Li	⁶ Li(d,n ₁) ⁷ Be*	2.95	2.2–1.5
			⁶ Li(d,p ₁) ⁷ Li [*]	4.55	2.5–1.5
	10° ⁶ Li(t,p) ⁸ Li [*]		⁶ Li(d,pt)α	2.56	2.9–1.6
			⁶ Li(d,α)α	22.37	1.5–1.2
Сеч		T+Li	⁶ Li(t,d ₁) ⁷ Li [*]	0.51	7.8–1.7
	10^4 ⁶ Li(t,d) ⁷ Li [*] ^{Be(d,\gamma)¹B}		⁶ Li(t,p ₁) ⁸ Li [*]	- 0.18	10 ⁸ –20
		D+Be	⁹ Be(d,γ) ¹¹ B	15.81	50–3
	$10^{-6} \frac{1}{10^{1}} \frac{1}{10^{2}} \frac{1}{10^{3}} \frac{1}{10^{4}}$	D+T	D(t,n)α	17.59	≤ 1.01
	Энергия (кэВ)	D+D	D(d,n) ³ He	3.27	≤ 1.07

Пример: параметры скорости реакций t + ⁶Li

Q = + 0.51 МэВ

40

(D⁶LI, ³He³He, H¹¹B) •понижение температуры зажигания ? •новый вид топлива с малым выходом нейтронов •уточнение сечений реакций в МэВной области энергий •плазменные нейтронные источники

пересмотр альтернативных топливных смесей

небольшое количество быстрых частиц, <u>естественным образом образующихся в плазме</u>, вызывает неожиданно сильное увеличение скорости ряда реакций

Итак,

Генерация нейтронов в D³He-и ⁹Be-плазме

П Нейтронный источник "М14"

предлагается отказаться от использования трития и применить принцип ядерной конверсии

 $n(\text{slow}) + {}^{3}\text{He}(\text{thermal}) \rightarrow t(191 \text{ keV}) + p$

 $t(191 \text{ keV}) + D(\text{thermal}) \rightarrow {}^{4}\text{He} + n(14 \text{ MeV}); \qquad E_{t}^{res} \sim 160 \text{ keV}$

 Короткое время процесса – следствие резонансного соотношения энергий (E_{t,0} ≅ E_{t,res})

О Электронный пучок и ⁹Ве-мишень

Реакции ⁶Li с легчайшими ядрами и УТС, II. Гамма-лучевая диагностика горячей плазмы

DT-плазма

⁷Be* (
$$\tau$$
 = 192 fs) \rightarrow ⁷Be[gr.st.] + γ
⁷Li* (τ = 105 fs) \rightarrow ⁷Li[gr.st.] + γ
⁸Li* (τ = 12 fs) \rightarrow ⁸Li[gr.st.] + γ

Сечения диагностических реакций

различие в _ס(E) → различие в Y(T_i) → комбинации Y будут зависеть от Т_i Для чего нужны эти комбинации ?

Выход диагностических гамма-квантов

$$\begin{split} Y(0.429) &= n_{Li} n_D \left\langle \sigma v \right\rangle_{{}^{6}Li(d,n)} \\ Y(0.478) &= n_{Li} n_D \left\langle \sigma v \right\rangle_{{}^{6}Li(d,p)} + n_{Li} n_T \left\langle \sigma v \right\rangle_{{}^{6}Li(t,d)} \\ Y(0.981) &= n_{Li} n_T \left\langle \sigma v \right\rangle_{{}^{6}Li(t,p)} \end{split}$$

зависимость от плотности ионов топлива и диагностической присадки

$$\eta = n_{\rm T} / n_{\rm D}$$

метод относительных измерений Y

две гамма-линии (диагностика Т_і)

 $G_{\gamma}(0.478/0.429) = \langle \mathbf{d}, \mathbf{p}/\mathbf{d}, \mathbf{n} \rangle + \eta_{\mathrm{td}} \langle \mathbf{t}, \mathbf{d}/\mathbf{d}, \mathbf{n} \rangle,$ $G_{\gamma}(0.981/0.478) = \eta_{\mathrm{td}} \left[\langle \mathbf{d}, \mathbf{p}/\mathbf{t}, \mathbf{p} \rangle + \eta_{\mathrm{td}} \langle \mathbf{t}, \mathbf{d}/\mathbf{t}, \mathbf{p} \rangle \right]^{-1}$ $G_{\gamma}(0.981/0.429) = \eta_{\mathrm{td}} \langle \mathbf{t}, \mathbf{p}/\mathbf{d}, \mathbf{n} \rangle,$

$$G_{\gamma}(E_1/E_2) = Y(E_1) / Y(E_2)$$

 $\eta_{td} = n_t / n_d$

- две гамма-линии (диагностика η_{td})

$$G_{\gamma}(E_1/E_2) = Y(E_1) / Y(E_2)$$

 $\eta_{td} = n_t / n_d$

три гамма-линии (абс. диагностика Т_і)

 $G_{\gamma}(0.429, 0.478/0.981) \equiv G_{\gamma}(0.478/0.981) - \langle d, p/d, n \rangle G_{\gamma}(0.429/0.981)$

с учетом надтепловых реакций d+⁶Li и t+⁶Li

1 0.5

1.0

 n_t / n_d

1.5

D³He-плазма

диагностика Т_і

 $G_{\gamma}(0.429/13.77) = \eta_{\rm d^3He} \langle \rm d, n/^3He, p \rangle,$

 $G_{\gamma}(0.478/13.77) = \eta_{\rm d^3He} \langle \rm d, p/^3He, p \rangle,$

 $G_{\gamma}([0.429 + 0.478]/13.77) = \eta_{d^{3}He} (\langle d, n/^{3}He, p \rangle + \langle d, p/^{3}He, p \rangle).$

диагностика Т_і (с литием и без лития)

 $G_{\gamma}(0.429/13.77) = \eta_{\rm d^3He} \langle \rm d, n/^3He, p \rangle,$

$$G_{\gamma}(16.66/23.85) = 2\eta_{\mathrm{d}^{3}\mathrm{He}}^{-1} \frac{\langle \sigma v \rangle_{^{3}\mathrm{He}(\mathrm{d},\gamma)^{5}\mathrm{Li}}}{\langle \sigma v \rangle_{\mathrm{d}(\mathrm{d},\gamma)\alpha}}.$$

Диагностика энергичных частиц в DT-плазме

(возмущение распределения тритонов и удержание α-частиц)

Источники быстрых тритонов в DT-плазме:

первичный -- реакция d(d,p)t, вторичный -- αt-

диагностики быстрых тритонов (и α-частиц)

Парциальный вклад тритонов в выход ү-квантов из реакции ⁶Li(t,p)⁸Li*[0.981]

Профиль гамма-линии: реакция ⁶Li(t,p)⁸Li*[0.981]

$$\frac{dY_{\gamma}}{dE_{\gamma}} \propto \exp\left[-\frac{\left(E_{\gamma}-E_{0}\right)^{2}}{\lambda}\right];$$

 $E_0 = 0.981 \,\mathrm{MeV}$

Плотность и температура быстрых тритонов

Удержание альфа-частиц

Гамма-лучевые и нейтронные "профили" в плазме ITER

(keV) n н⁻⁻ n_{He} Ľ, pedestal R (m)

О регистрации гамма-квантов в DT-плазме

✓ ожидаемые потоки гамма-квантов
 n_d = n_t = 0.6x10⁻¹⁴ см⁻³, Т = 10 кэВ
 Y(0.429) = 2.3×10¹⁰ квант/(м³с)
 Y(0.478) = 5.5×10¹⁰ квант/(м³с)
 Y(0.981) = 2.7×10⁹ квант/(м³с)

✓ длительность измерений (для TFTR-фона)
 t(0.429) ~ 10⁻² c; t(0.478) ~ 3×10⁻³ c; t(0.981) ~ 0.7 c
 (апертура 10см×10см, расстояние 12 м, в поле зрения 0.45 м³)

потери энергии на излучение

концентрация ⁶Li ~ 1% → усиление потерь на ~ 6% частичная компенсация за счет реакций d+⁶Li (Q_{tot} ~ 40 МэВ)

Таким образом, литиевые реакции ⁶Li+d, ⁶Li+t, ⁶Li+³He:

✓ являются чувствительным ядерным "термометром" в плазме

 ✓ служат удобным инструментом диагностики основных характеристик быстрых частиц (эффективная плотность и температура, удержания в зоне горения)

Термоядерный синтез в D³Heплазме пинчевого разряда с управлением фемтосскундным лазером

Основные топливные смеси

N⁰	Реакция	<i>Q</i> (МэВ)	Топливная смесь			
			DT	DD	$D^{3}He$	D ⁶ Li
1	$t(d,n)\alpha$	17.590	†	‡	‡	‡
2	d(d,p)t	4.033	†	†	†	†
3	$d(d,n)^{3}\mathrm{He}$	3.270	†	†	†	†
4	$t(t,2n)\alpha$	11.332	†	‡	‡	‡
5	${}^{3}\mathrm{He}(\mathrm{d},\mathrm{p})\alpha$	18.350	‡	‡	†	‡
7	$^{3}\mathrm{He}(^{3}\mathrm{He},2\mathrm{p})\alpha$	12.860	‡	‡	†	‡
8	$^{6}\mathrm{Li}(\mathrm{d},\alpha)\alpha$	22.373				†
9	$^{6}\mathrm{Li}(\mathrm{d},\mathrm{p})^{7}\mathrm{Li}$	5.026				†
10	$^{6}\mathrm{Li}(\mathrm{d},\mathrm{p})^{7}\mathrm{Li}^{*}$	4.548				†
11	${}^{6}\mathrm{Li}(\mathrm{d},\mathrm{n}){}^{7}\mathrm{Be}$	3.381				†
12	$^{6}\mathrm{Li}(\mathrm{d},\mathrm{n})^{7}\mathrm{Be}^{*}$	2.952				†
13	${}^{6}\mathrm{Li}(\mathrm{d},\mathrm{pt})\alpha$	2.283				†
14	$^{6}\mathrm{Li}(\mathrm{d},\mathrm{p^{3}He})\alpha$	1.699				†

Трудности в создании и эксплуатации DT-реакторов (токамаков)

– Риск работы с радиоактивным тритием (т_{1/2} ≈ 12.8 лет);

– Большие потоки энергии, циркулирующей постоянно внутри реактора, так как общий к.п.д. DT-реактора будет около 20-25 %;

 – Необходимость конверсии огромных потоков 14 МэВ'ных нейтронов в тритий в литиевом бланкете;

 Трудные материаловедческие проблемы с передней стенкой реактора;

и т.д.

Лазерный термоядерный синтез (DT, стандартная схема)

Изменение стандартной схемы:

- Заменить лазер-драйвер на электроразряд (компактно, дешево, большой к.п.д)
- Для поджига использовать фемтолазер (инициирует реакции)

(by T. Johzaki, Osaka Univ.)

Ускорение заряженных частиц в сверхсильных лазерных полях

(Mike Dunne "Laser-Driven Accelerators", Science 21 April 2006)

Эта область – по-видимому, одна из самых бурно развивающихся областей физики. Пиковая мощность лазеров растет на порядок величины каждые 3 года. МэВные настольные

Например, эксперименны Дюссельдорфе (Т. Toncian et al, Science 312, 410 (2006)) по ускорению протонов и ионов в лазерной мишени до энергий в

Large and small. (Left) Conventional accelerator at Fermilab. (Center) Part of the linear accelerator beamline. (Right) Benchtop laser particle accelerator for multi-MeV experiments.

Hercules Petawatt Laser (2007)

Достигнутая мощность 2×10^{22} W/cm². Общая энергия в импульсе τ = 30 fs P = 15 J

Такой лазер в Мичиганском университете может ускорять электроны и протоны до энергий 0.5 ГэВ

200 TW 45 fs laser based on optical parametric chirped pulse amplification

V.V. Lozhkarev, G.I. Freidman, V.N. Ginzburg, E.V. Katin, E.A. Khazanov, A.V. Kirsanov, G.A. Luchinin, A.N. Mal'shakov, M.A. Martyanov, O.V. Palashov, A.K. Poteomkin, A.M. Sergeev, A.A. Shaykin and I.V. Yakovlev

Institute of Applied Physics of Russian Academy of Science, 46 Uljanov St., N.Novgorod, 603950 Russia khazanov@appl.sci-nnov.ru

S.G. Garanin, S.A. Sukharev, N.N. Rukavishnikov

Russian Federal Nuclear Center, Sarov, Russia

A.V. Charukhchev

Research Institute for Comprehensive Tests of Opto-Electronic Devices and Systems, Sosnovy Bor, Russia

R.R. Gerke

HoloGrate JSC, St. Petersburg, Russia

V.E. Yashin

Institute for Laser Physics, St. Petersburg, Russia

Abstract: 200 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P (DKDP) crystals providing 14.5 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor. The final parametrical amplifier and the compressor are described in detail. Scaling of such architecture to multipetawatt power is discussed.

©2006 Optical Society of America

Система для сжигания D³He-топлива

1) Мегаамперый импульс электрического тока Р₁

→ быстрый разогрев и сжатие капсулы → плотный плазменный лайнер

2) Фемтосекундный лазерный импульс Р₂

→ направленный по оси пучок быстрых электронов с энергиями 10-200 МэВ

→ кулоновский "взрыв" мишени → ускорение многозарядных ионов до энергий в десятки МэВ

→ ударная волна вдоль плазменного шнура, сильно сжимающая и нагревающая малую порцию топлива → возникновение локальной области горения

Механизмы нагрева

2. Гидродинамический нагрев

- сжатие лайнера → n ≈ 10²³ см⁻³, T ~ кэВ
- ударная волна → n ≈ 10²⁴ см⁻³, Т ~ десятки кэВ (в области фронта волны)

Резонансный каталитический нагрев: этап 1

• взаимодействие нейтронов с D³He-смесью

генерация резонансных тритонов и протонов

 $n + {}^{3}\text{He} \rightarrow t(191 \text{ кэB}) + p(572 \text{ кэB})$

Резонансный каталитический нагрев: этап 2

нагрев D³He-смеси

 $t(191 \text{ кэB}) + D(\text{тепловой}) \rightarrow \alpha + n + 17.59 \text{ МэВ}$ $(E_t^{res} \sim 160 \text{ кэB})$

нагрев ⁹Ве-оболочки

лайнора $p(572 \text{ keV}) + {}^9\text{Be}(\text{тепловой}) \rightarrow \alpha + {}^6\text{Li} + 2.13 \text{ МэВ}$

 $p(572 \text{ keV}) + {}^{9}\text{Be}(\text{тепловой}) \rightarrow d + 2\alpha + 0.65 \text{ МэВ}$ $(E_{p}^{res} \sim 330 \text{ кэB})$

Удержание плазмы

Магнитно-инерционное

- Магнитное радиус ларморовского вращения продуктов реакций имеет порядок радиуса плазменного шнура (для тока 1 МА)

Удержание плазмы

Обжатие ⁹Ве-оболочкой

нагрев бериллиевой оболочки лайнера продуктами реакций р + ⁹Ве → расширение оболочки в радиальном направлении к оси лайнера

Воздействие фемтолазера на мишень

N⁰	Р (ТВт)	I (Вт/см²)	Т _{eff} (МэВ)	Е _{cut} (МэВ)
1	1	10 ¹⁸	0.8	~ 9.7
2	10	10 ¹⁹	4.5	~ 32
3	100	10 ²⁰	14	~ 145

Лазерная генерация нейтронов в торце лайнера

Пример:

Интенсивность *I* = 10¹⁹ Вт/см², длительность импульса 100 фс диаметр пятна 15 мкм, средний пробег электрона 15 мкм, доля горячих электронов 1%

 Число электронейтронов за импульс N_n ≈ 10⁷ Полное число нейтронов за импульс N_n > 10⁸ (процессы ⁹Be(e,e`n), ⁹Be(γ,n), ⁹Be(n,2n))

	Список учтенных реакций в области фронта ударной	
Номер	ВОЛНЫ Реакция	Q (M ₃ B)
	энерговыделяющие (первичные)	
1	$\mathrm{D}+\mathrm{D} o p+\mathrm{T}$	4.03
2	${ m D}+{ m D} ightarrow n+{}^{3}{ m He}$	3.27
3	$\mathrm{D} + {}^{3}\mathrm{He} \rightarrow p + {}^{4}\mathrm{He}$	18.35
4	$^{3}\mathrm{He}$ + $^{3}\mathrm{He} \rightarrow 2p$ + $^{4}\mathrm{He}$	12.86
	энерговыделяющие (каталитические)	
5	${ m D}+{ m T} ightarrow n+{ m ^4He}$	17.59
6	$T + T \rightarrow 2n + {}^{4}He$	11.33
	диагностические	
7	${ m D}+{ m D} ightarrow \gamma + { m ^4He}$	23.85
8	${\rm D}$ + ${}^{3}{\rm He} \rightarrow \gamma$ + ${}^{5}{\rm Li}$	$16.66^{+)}$
9	$^{3}\mathrm{He}$ + $^{3}\mathrm{He} \rightarrow \gamma$ + $^{6}\mathrm{Be}^{*}[1.67 \mathrm{MsB}]$	$9.82^{\dagger)}$
10	$\alpha + {}^{9}\text{Be} \rightarrow n + {}^{12}\text{C}^{*}[4.44 \text{ M}3\text{B}]$	1.26
	$^{12}\mathrm{C}^{*} \leadsto \gamma + ^{12}\mathrm{C}$	4.44

 $^{\dagger)}$ Приведенные значения Qмогут меняться в пределах ширин рассматриваемых состояний

ядер ⁵Li ($\Gamma_{c.m.} = 1.23$ МэВ) и ⁶Ве^{*} ($\Gamma_{c.m.} = 1.16$ МэВ).

Ядерная кинетика в D³He-плазме: выгорание топлива и генерация энергии

Эффективность т/я синтеза

выгорание дейтерия ξ_D = 35%

выгорание гелия ξ_{не} = 11%

время горения t = 10⁻⁷ с

усиление по энергии: 50-100

энергия синтеза E_{ch} = 240 МДж/мм³

Ядерная кинетика в D³He-плазме: пробеги частиц в зоне горения

$T_{\rm c}$ (vo D)	t(1.008)		p(3.025)		³ He(0.817)		<i>α</i> (3.670)		p(14.680)	
Г _і (кэр)	$l_{ m t,th}$	$ au_{ m t,th}$	$l_{\mathrm{p,th}}$	$ au_{ m p,th}$	$l_{^3\mathrm{He,th}}$	$ au_{^3\mathrm{He},\mathrm{th}}$	$l_{lpha, { m th}}$	$ au_{lpha,{ m th}}$	$l_{\mathrm{p,th}}$	$ au_{ m p,th}$
10	0.57	0.11	1.43	0.12	0.11	0.02	0.54	0.07	4.3	0.20
20	0.83	0.15	3.05	0.23	0.16	0.03	0.99	0.12	9.4	0.40
30	0.96	0.17	4.66	0.33	0.18	0.03	1.33	0.15	15.1	0.61
50	1.08	0.19	7.62	0.51	0.19	0.04	1.77	0.19	27.4	1.04

при $T_i \lesssim 30$ кэВ быстрые продукты реакций, за исключением протонов, будут находиться в пределах локальной зоны горения с пространственным размером ~ 1 мм. Протоны же, оставляя в этой зоне часть своей энергии, будут также осуществлять преднагрев топлива впереди фронта ударной волны. Таким образом, заметная доля генерируемой энергии будет расходоваться предельно эффективно, т.е в первую очередь она будет идти на поддержание локального горения, а не на нагрев всего объема плазмы.

Ядерная кинетика в D³He-плазме: нейтроны в выделяемой энергии

Гамма-лучевая диагностика: ионы топлива

Гамма-лучевая диагностика: продукты синтеза

• Гамма-линия 4.44 МэВ – "ядерный маркер" D+³He-синтеза

Итак:

1. Базовые реакции – источники энергии в системе D³He-⁹Be идут с участием заряженных частиц. Роль нейтронов здесь

минимальна и в основном сводится к каталитическому

BOBWHEV T/G BDOUDCOS

2. Нейтронные потоки во много раз меньше, чем в DT-процессе, и они не используются ни в регенерации топлива, ни в

- 3. При определенных обстоятельствах скорость волны горения оказывается порядка скорости ударной волны, т.е. появляются условия для распространения реакции вдоль
- **ППООНИОГО ШИМОО**
- 4. Основная энергетика сжатия и начального нагрева обеспечивается "дешевыми" мегаджоулями электрического разряда, тогда как ультракороткий лазерный импульс осуществляет быстрый и холодный поджиг малой порции

CWOTOFO FODIOUOFO

5. Коэффициент усиления электрической энергии составляет

<u>E0_100</u>

6. Возможность удобной гамма-лучевой диагностики всего

процесса.

Ядерные реакции в плазме ранней Вселенной и первичный нуклеосинтез

Thermal assumption of BBN: the standard model of BBN relies on a nuclear reaction network operating with thermal reaction rates for Maxwellian plasma.

In the BBN epoch, however, a number of suprathermal reactions induced by energetic particles can occur.

Main mechanisms responsible for the production of energetic particles:

(primary) - generation in excergic reactions (Q > 0);

(secondary) – upscattering of thermal bulk particles by fast reaction products.

Динамическая картина синтеза легких ядер

No.	Reaction	$Q~({ m MeV})$	No.	Reaction	$Q~({ m MeV})$		
	top eleven reactions	8	13	${}^{7}\mathrm{Be}(n,\alpha){}^{4}\mathrm{He}$	18.99		
1	$\mathrm{H}(n,\gamma)\mathrm{D}$	2.22	14	$^{7}\mathrm{Li}(d,n)2^{4}\mathrm{He}$	15.12		
2	$\mathrm{D}(p,\gamma)^3\mathrm{He}$	5.49	15	$^7\mathrm{Be}(d,p)2^4\mathrm{He}$	16.77		
3	$\mathbf{D}(d,n)^{3}\mathbf{He}$	3.27	16	${\rm T}(t,2n)^4{\rm He}$	11.33		
4	$\mathrm{D}(d,p)\mathrm{T}$	4.03	0	other N-induced capture reactions a			
5	${\rm T}(d,n)^4{\rm He}$	17.59	17	$\mathrm{D}(n,\gamma)\mathrm{T}$	6.26		
6	${}^{3}\mathrm{He}(n,p)\mathrm{T}$	0.76	18	${\rm T}(p,\gamma)^4{\rm He}$	19.81		
7	${}^{3}\mathrm{He}(d,p){}^{4}\mathrm{He}$	18.35	19	${}^{3}\mathrm{He}(n,\gamma){}^{4}\mathrm{He}$	20.58		
8	${\rm T}(\alpha,\gamma)^{7}{\rm Li}$	2.47	20	$^{7}\mathrm{Li}(n,\gamma)^{8}\mathrm{Li}$	2.03		
9	${}^{3}\mathrm{He}(\alpha,\gamma){}^{7}\mathrm{Be}$	1.59	21	$^{7}\mathrm{Be}(p,\gamma)^{8}\mathrm{B}$	0.14		
10	$^{7}\mathrm{Li}(p,\alpha)^{4}\mathrm{He}$	17.35	N	NEW N-induced breakup reactions ^a			
11	$^7\mathrm{Be}(n,p)^7\mathrm{Li}$	1.64	22	D(N, Nn)H	-2.22		
other fast-particle-generating reactions			23	$^{6}\mathrm{Li}(N, Nd)^{4}\mathrm{He}$	-1.47		
12	$^{3}\mathrm{He}(^{3}\mathrm{He},2p)^{4}\mathrm{He}$	12.86	24	$^{7}\mathrm{Li}(N, Nt)^{4}\mathrm{He}$	-2.47		
^{a}N = neutron, proton.				$^7\mathrm{Be}(N,N{}^3\mathrm{He}){}^4\mathrm{He}$	-1.59		

Характеристики быстрых частиц

Скорость потери энергии

заряженные частицы

$$\left\langle \frac{dE_q}{dt} \right\rangle = \left\langle \frac{dE_q}{dt} \right\rangle_{\text{Coul}} + \left\langle \frac{dE_q}{dt} \right\rangle_{\text{Comp}} + \left\langle \frac{dE_q}{dt} \right\rangle_{\text{NES}}$$

Скорость потери энергии

нейтроны

$$\left\langle \frac{dE_{\rm n}}{dt} \right\rangle = \left\langle \frac{dE_{\rm n}}{dt} \right\rangle_{\rm NES} + \left\langle \frac{dE_{\rm n}}{dt} \right\rangle_{\rm MMI} + \left\langle \frac{dE_{\rm n}}{dt} \right\rangle_{\rm MMC}$$

Jedamzik (2006)

$$\left\langle \frac{dE_q}{dt} \right\rangle_{\rm Comp} = -\frac{32\pi^3}{135} \frac{e^4}{\hbar^3 c^8} \frac{v_q^2}{m_q^2} T^4.$$

Kawasaki (2005)

при
$$m_e c^2/26 < T \leqslant m_e c^2$$

 $\left\langle \frac{dE_n}{dt} \right\rangle_{\text{MMI}} = -\frac{16\alpha^2 g_n^2}{3\pi (m_n c^2)^3 \hbar} T^4 \left(x_e^3 + 3x_e^2 + 6x_e + 6 \right) \exp(-x_e) E_n,$
при $T \leqslant m_e c^2/26$
 $\left\langle \frac{dE_n}{dt} \right\rangle_{\text{MMI}} = -\frac{4\alpha^2 g_n^2 \hbar^2 c^3}{3\pi (m_n c^2)^3} n_e \left(\frac{2\pi}{m_e c^2 T} \right)^{3/2} (m_e c^2)^3 T E_n.$

Gould (1993)

$$\left\langle \frac{dE_{\rm n}}{dt} \right\rangle_{\rm MMC} = \frac{320}{441} \pi^2 g_{\rm n}^2 \left(\frac{T}{m_{\rm n} c^2} \right)^2 \left\langle \frac{dE_{\rm n}}{dt} \right\rangle_{\rm MMI}.$$

Время термализации

Coulomb >> NES

Функция распределения нейтронов по энергии

~

$$\begin{split} \sum_{j} n_{j} \sigma_{tj}^{\text{eff}}(E_{n}) \Psi(E_{n}) &= \sum_{j} \int n_{j} \sigma_{Sj}^{\text{eff}}(E_{n}' \to E_{n}) \Psi(E_{n}') dE_{n}' + S(E_{n}) \\ \Psi(E_{n}) &= v_{n} f_{n}(E_{n}) \quad \sigma_{tj}^{\text{eff}} &= \sigma_{Sj}^{\text{eff}} + \sigma_{aj}^{\text{eff}} \quad \text{усреднение по тепловому распределению ядер мишени} \\ S_{\text{fus}}(E_{n}) &= v_{n} f_{n}(E_{n}) \quad \sigma_{tj}^{\text{eff}} &= \sigma_{Sj}^{\text{eff}} + \sigma_{aj}^{\text{eff}} \quad \text{усреднение по тепловому распределению ядер мишени} \\ S_{\text{fus}}(E_{n}) &= \frac{1}{1 + \delta_{ij}} n_{i} n_{j} \langle \sigma v \rangle_{ij} \frac{1}{\sqrt{\pi \Delta}} \exp\left[-\frac{(E_{n} - E_{0})^{2}}{\Delta^{2}}\right] \\ S_{\text{upscat}}(E_{n}) &= \sum_{k} \int n_{n, \text{bulk}} \sigma_{\text{Sn}}^{\text{eff}}(E_{k}'; E_{n}) \Psi_{k}(E_{k}') dE_{k}'. \end{split}$$

Функция распределения нейтронов по энергии

Плотность частиц

absolute, n'

relative to bulk, n' / (n' +n)

At the age of 220 s (T₉ = 0.88) the amount of fast neutrons generated at that time is comparable with the total amount of ³He synthesized from the beginning !

Эффективная температура частиц

Влияние быстрых частиц на скорость реакций

Пример № 1: реакции в системе N + D

Пример № 1: реакции в системе N + D

Пример № 1: реакции в системе N + D

• The neutron-induced in-flight breakup is the <u>most important process in the N+D</u> system (at T₉ < 0.8). Although only <u>0.01%</u> of plasma neutrons contribute here, this process is more reactive than even excergic D(n, γ) and D(p, γ).

Пример № 2: реакции в системе n + ⁷Li

105

Пример № 3: прямая и обратная реакции

$$d + d \rightleftharpoons n + {}^{3}He, d + d \rightleftharpoons p + t$$

$$n + {}^{3}He \rightleftharpoons p + t$$

прямая *i*+*j* ---> *k*+*l*+*Q*, обратная *k*+*l*---> *k*+*l*-*Q*

$$\frac{\langle \sigma v \rangle_{kl}}{\langle \sigma v \rangle_{ij}} = \frac{(2J_i + 1)(2J_j + 1)}{(2J_k + 1)(2J_l + 1)} \frac{(1 + \delta_{kl})}{(1 + \delta_{ij})} \left(\frac{G_i G_j}{G_k G_l}\right) \left(\frac{A_i A_j}{A_k A_l}\right)^{3/2} \exp\left(-\frac{Q}{T}\right)$$

Пример № 3: прямая и обратная реакции

$$d + d \rightleftharpoons n + {}^{3}He, d + d \rightleftharpoons p + t$$

$$n + {}^{3}He \rightleftharpoons p + t$$

Пример № 3: прямая и обратная реакции

$$d + d \rightleftharpoons n + {}^{3}He, d + d \rightleftharpoons p + t$$

$$n + {}^{3}He \rightleftharpoons p + t$$

Пример № 3: прямая и обратная реакции

Пример № 4: процессы со слабым усилением

Кинетика нуклеосинтеза

Standard nuclear reaction network

Уравнения ядерной кинетики

- добавлено 8 реакций развала d, ⁶Li, ⁷Li, ⁷Be нуклонами
- учтено 40 надтепловых реакций

$$N_i({}^{A_i}Z_i) + N_j({}^{A_j}Z_j) \rightleftharpoons N_k({}^{A_k}Z_k) + N_l({}^{A_l}Z_l)$$

Wagoner (1969); Kawano (1992)

$$\frac{dY_i}{dt} = \sum_{j,k,l} N_i \left[-\frac{Y_i^{N_i} Y_j^{N_j}}{N_i! N_j!} \widehat{[ij]}_k + \frac{Y_l^{N_l} Y_k^{N_k}}{N_l! N_k!} \widehat{[lk]}_j \right]$$

заряженные
частицы
$$\widehat{[ij]}_{k} = \rho_{b} N_{A} \langle \sigma v \rangle_{ij,M} + \rho_{b} N_{A} \langle \sigma v \rangle_{ij,\text{fast}}$$
$$\langle \sigma v \rangle_{ij,\text{fast}} = \frac{1 + \delta_{ij}}{1 + \delta_{12}} \frac{n_{1}n_{2}}{n_{i,\text{fast}}n_{j}} \langle \sigma v \rangle_{12} W_{ij}$$

реакция "на лету"

нейтрон
$$\widehat{[\mathbf{n}j]}_k = \rho_b N_{\mathbf{A}} \langle \sigma v \rangle_{\mathbf{n}j}$$

реалистическое nраспределение

первичное содержание изотопов н, не						
ИLi						
Элемент	Данная работа ¹	Coc ¹ 2012	Cyburt ² 2008	Наблюдения		
D/H (×10 ⁻⁵)	2.529	2.59	2.49	2.82 ± 0.21		
T/H (×10 ⁻⁸)	7.719					
$^{3}\text{He/H}$ (×10 ⁻⁵)	1.002	1.04	1.00	$\{1.1 \pm 0.2\}$		
⁴ He (×10 ⁻¹)	2.457	2.476	2.486	2.49 ± 0.09		
⁶ Li/H (×10 ⁻¹⁴)	1.100	1.23				
⁷ Li/H (×10 ⁻¹⁰)	4.474	5.24	5.24	1.70 ± 0.44		
¹ для $\eta = 6.16 \times 10^{-10}$; ² для $\eta = 6.23 \times 10^{-10}$						

Первичное содержание изотопов В и СNO

Элемент	Данная работа ¹	Coc ¹ 2012	Iocco ² 2007
¹⁰ B/H (×10 ⁻²⁰)	2.531	0.30	
$^{11}\text{B/H} (\times 10^{-16})$	3.867	3.05	3.9
$^{12}C/H$ (×10 ⁻¹⁶)	6.445	5.34	4.6
¹³ C/H (×10 ⁻¹⁶)	1.179	1.41	0.9
¹⁴ C/H (×10 ⁻¹⁷)	1.125		1.3
$^{14}N/H$ (×10 ⁻¹⁷)	4.344	6.76	3.7
15 N/H (×10 ⁻²⁰)	1.434	2.25	
¹⁶ O/H (×10 ⁻²⁰)	3.027	9.13	2.7
¹ для $\eta = 6.16 \times 10^{-3}$	$0^{-10};$ ² для $\eta = 6$	3.11×10^{-10}	

Основные результаты

Глава 1. Взаимодействие ⁶Li с легчайшими ядрами и низкоэнергетические литиевые реакции

Рассчитаны ядерные потенциалы взаимодействия нуклонов и легчайших ядер t, ³He, ⁴He с ядром ⁶Li в рамках самосогласованной модели свертки с учетом внутренней структуры ⁶Li. Установлено, что ширина найденных взаимодействий превышает ширину стандартных оптических потенциалов, а высота реалистического потенциального барьера в соответствующих системах почти в два раза меньше величины, следующей из чисто кулоновских оценок.

На основе уточненной процедуры экстраполяции, использующей найденные ядерные потенциалы, рассчитаны низкоэнергетические сечения ядерных реакций ⁶Li с ионами трития, ³He и дейтерия, имеющих практическое применение в УТС. Показано, что использование реалистического потенциального барьера между реагирующими частицами и учет кулоновского подавления реакций в выходном канале заметно влияют на значения ядерных сечений, что приводит к их отличию от результатов других работ.

Глава 2. Быстрые частицы в горячей плазме и их влияние на скорость ядерных реакций

Впервые обнаружено, что быстрые ядра дейтерия и трития, естественным образом образующиеся в DT-плазме в результате ядерного упругого рассеяния МэВных α-частиц на тепловых ионах среды, способны существенно увеличивать скорость ряда реакций в среде. Показано, что этот эффект особенно сильно проявляется в случае пороговых процессов, для которых увеличение скоростей может достигать несколько порядков величины.

На основе реалистической кинетической модели рассчитаны факторы усиления реакций в системах d+⁶Li, t+⁶Li и d+⁹Be.

Установлено, что плазменная D³He-мишень, облучаемая тепловыми нейтронами, может служить эффективным источником 14-МэВных нейтронов, продуцируемых в каталитических реакциях между ионами дейтерия и быстрыми тритонами, рожденными в мишени. Найден коэффициент эффективности этого процесса.

Показано, что реакция расщепления ядер ⁹Ве быстрыми электронами может давать большой выход нейтронов из плазменной бериллиевой мишени. Определена зависимость потока этих нейтронов от параметров электронного пучка.

Глава 3. Использование литиевых реакций для гамма-лучевой диагностики горячей плазмы

4. Установлено, что потоки гамма-квантов из ядерных реакций d+⁶Li, t+⁶Li и ³He+⁶Li, специально активируемых в DT- и D³He плазме путем добавления изотопа ⁶Li, весьма чувствительны к характеристикам состояния ионов среды, включая тонкие детали их функций распределения. На этой основе разработана новая ядерно-физическая методика диагностики плазмы, позволяющая определять температуру ионов, их относительную концентрацию и основные параметры быстрых тритонов (в DT-плазме).

Глава 4. Термоядерный синтез в D³He-плазме пинчевого разряда с управлением фемтосекундным лазером

5. Разработан новый подход к реализации термоядерного синтеза в D³Heплазме, основанный на сжатии и предварительном нагреве топлива, находящегося внутри ⁹Be-лайнера, Z-пинчевым разрядом с последующим сверхбыстрым инициированием термоядерного горения импульсом фемтосекундного лазера.

Рассчитана кинетика ядерных реакций, определены основные параметры горения и установлено, что коэффициент энергетического усиления процесса может составлять 50–100.

Показана возможность диагностики процесса методами гаммаспектроскопии.

Глава 5. Ядерные реакции в плазме ранней Вселенной и первичный нуклеосинтез

6. Установлено, что ядерные реакции в ранней Вселенной приводят к появлению в первичной плазме групп быстрых немаксвелловских частиц, эффективная температура которых в десятки и даже сотни раз превышает температуру окружающей среды.

На основе реалистического моделирования нетепловых процессов показано сильно влияние этих частиц на скорости ряда ядерных реакций в эпоху первичного нуклеосинтеза. Обнаружено, что вклад быстрых частиц существенным образом меняет, по сравнению со стандартным законом, соотношение скоростей прямых и обратных реакций в плазме.

Проведено расширенное моделирование первичного нуклеосинтеза с учетом нетепловых ядерных реакций, вызываемых быстрыми частицами в плазме, и установлена степень их влияния на предсказания первичного содержания легких элементов Li, B и CNO.

Основные публикации

- Kukulin V. I., Kamal M., Voronchev V. T., Krasnopol'sky V. M. On the extrapolation of the low-energy cross sections of nuclear reactions in the d+⁶Li system. // Journal of Physics G: Nuclear Physics. 1984. Vol. 10, no. 9. Pp. L213– L219.
- Камаль М., Ворончев В. Т., Кукулин В. И. Самосогласованный расчет потенциалов взаимодействия нуклонов и дейтронов с ядром ⁶Li. // Вопросы атомной науки и техники. Серия: Ядерные константы. 1989. № 4. С. 42–57.
- 3. Камаль М., Кукулин В. И., Ворончев В. Т. Ядерно-физическая диагностика ионной температуры в горячей плазме. // Вопросы атомной науки и техники. Серия: Термоядерный синтез. 1989. № 3. С. 37–40.
- 4. Voronchev V.T., Kukulin V.I., Krasnopolsky V.M., Nakao Y., Kudo K. Nuclearphysical aspects of controlled thermonuclear fusion, I. // Memoirs of the Faculty of Engineering of Kyushu University 1990. Vol. 50. Pp. 517– 526.
- 5. Voronchev V.T., Kukulin V.I., Krasnopolsky V.M., Nakao Y., Kudo K. Nuclearphysical aspects of controlled thermonuclear fusion, II. // Memoirs of the Faculty of Engineering of Kyushu University 1991. Vol. 51. Pp. 63–80.
- 6. Kamal M., Voronchev V. T., Kukulin V. I. et al. Self-consistent calculation of the interactions of lightest nuclei with ⁶Li. // Journal of Physics G: Nuclear and Particle Physics, 1992, Vol. 18, no. 2, Pp. 379–392.

- Voronchev V. T., Kukulin V.I. Rate parameters of ⁶Li(d,pα)T and ⁶Li(d,nα)³He nuclear reactions at thermonuclear temperatures. // Journal of Physics G: Nuclear Physics. 2000. Vol. 26, no. 6. Pp. L103–L109.
- Voronchev V. T., Kukulin V. I. Cross sections of ⁶Li(t,d)⁷Li*[0.478] and ⁶Li(t,p)⁸Li*[0.981] nuclear reactions in the 0–2 MeV energy range. // Journal of Physics G: Nuclear and Particle Physics. 2000. Vol. 26, no. 12. Pp. L123–L130.
- 9. Ворончев В. Т., Кукулин В. И. Ядерно-физические аспекты УТС: Анализ перспективных топлив и гамма-лучевая диагностика горячей плазмы. // Ядерная физика. 2000. Т. 63, № 12. С. 2147–2162.
- Voronchev V. T., Kukulin V. I., Nakao Y. Use of γ-ray-generating nuclear reactions for temperature diagnostics of DT fusion plasma. // Physical Review E. 2001. Vol. 63, no. 2. Pp. 026413(1–7).
- Voronchev V. T., Kukulin V. I., Nakao Y. Use of reaction-produced monochromatic γ-rays for temperature diagnostics of DT plasma and relevant nuclear data. // Journal of Nuclear Science and Technology, Supplement 2. 2002. Pp. 1131–1134.
- Voronchev V. T., Nakao Y. Nuclear reaction ⁶Li(³He,p)⁸Be*[16.63; 16.92] at subbarrier energies. // Journal of Physics G: Nuclear and Particle Physics. 2003. Vol. 29, no. 2. Pp. 431–441.

- Voronchev V. T., Nakao Y. On feasibility of absolute measurements of ion temperature in D-³He fusion plasma. // Journal of the Physical Society of Japan. 2003. Vol. 72, no. 5. Pp. 1292–1299.
- Nakamura M., Voronchev V. T., Nakao Y. On potentiality of ion temperature and fuel density ratio measurements in D-T plasma using ⁶Li+D and ⁶Li+T nuclear reactions. // Journal of Plasma and Fusion Research SERIES. 2004. Vol. 6. Pp. 295–298.
- 15. Voronchev V. T., Kukulin V. I., Kuzhevskij B. M. Developmental study of a plasma source of 14-MeV neutrons. I. General concept. // Nuclear Instruments and Methods in Physics Research A. 2004. Vol. 525, no. 3. Pp. 626–632.
- 16. Voronchev V. T., Kukulin V. I., Kuzhevskij B. M. Electrodisintegration reaction in beryllium plasma as a source of neutrons. // Nuclear Instruments and Methods in Physics Research A. 2005. Vol. 539, no. 3. Pp. 640–645.
- 17. Ворончев В. Т., Кукулин В. И., Кужевский Б. М. О генерации нейтронов в бериллиевой плазме под действием пучка быстрых электронов. // Ядерная физика. 2005. Т. 68, № 2. С. 374–376.
- Nakamura M., Nakao Y., Voronchev V. T. et al. Kinetic analysis of γ-raygenerating reactions for fuel ion and energetic particle diagnostics of D-T fusion plasma. // Journal of the Physical Society of Japan. 2006. Vol. 75, no. 2. Pp. 024801(1–8).

- 19. Nakamura M., Voronchev V. T., Nakao Y. On the enhancement of nuclear reaction rates in high-temperature plasma. // Physics Letters A. 2006. Vol. 359, no. 6. Pp. 663–668.
- Nakamura M., Nakao Y., Voronchev V. T. Use of the ⁶Li + T nuclear reaction for diagnostics of energetic particles in burning plasmas. // Nuclear Instruments and Methods in Physics Research A. 2007. Vol. 580, no. 3. Pp. 1502–1512.
- 21. Nakao Y., Nakamura M., Voronchev V. T. Use of the γ-rays from the ⁶Li(t,p₁)⁸Li* reaction for studying knock-on tritons in the core of fusion plasmas. // Fusion Science and Technology. 2007. Vol. 52, no. 4. Pp. 1045–1050.
- Voronchev V. T., Nakao Y., Nakamura M. Non-thermal processes in standard big bang nucleosynthesis: I. In-flight nuclear reactions induced by energetic protons. // Journal of Cosmology and Astroparticle Physics. 2008. Vol. 2008, no. 05. Pp. 010(1–19).
- Voronchev V. T., Nakamura M., Nakao Y. Non-thermal processes in standard big bang nucleosynthesis: II. Two-body disintegration of D, ⁷Li, ⁷Be nuclei by fast neutrons. // Journal of Cosmology and Astroparticle Physics. 2009. Vol. 2009, no. 05. Pp. 001(1–15).
- 24. Voronchev V. T., Nakao Y., Nakamura M. Proton-induced nonthermal nuclear effects in the early Universe plasma. // Journal of Plasma and Fusion Research SERIES. 2009. Vol. 8. Pp. 194–198.

- 25. Voronchev V. T., Nakao Y., Nakamura M. Analysis of suprathermal nuclear effects in the standard model of big bang nucleosynthesis. // Astrophysical Journal. 2010. Vol. 725, no. 1. Pp. 242–248.
- 26. Ворончев В. Т., Кукулин В. И. Реализация термоядерного процесса в D³He-⁹Be-плазме на основе Z-пинча со сверхбыстрым лазерным поджигом. // Ядерная физика. 2010. Т. 73, № 1. С. 41–61.
- 27. Кукулин В. И., Ворончев В. Т. Термоядерный синтез в D³He-плазме на основе пинча с управлением фемтосекундным лазером. // Ядерная физика. 2010. Т. 73, № 8. С. 1418–1426.
- Nakao Y., Tsukida K., Voronchev V. T. Realistic neutron energy spectrum and a possible enhancement of reaction rates in the early Universe plasma. // Physical Review D. 2011. Vol. 84, no. 6. Pp. 063016 (1–14).
- 29. Voronchev V. T., Nakao Y., Nakamura M. On the relation between forward and reverse nuclear reactions in an astrophysical plasma. // Journal of Physics G: Nuclear and Particle Physics. 2011. Vol. 38, no. 1. Pp. 015201(1–11).
- Voronchev V. T., Nakao Y., Tsukida K., Nakamura M. Standard big bang nucleosynthesis with a nonthermal reaction network. // Physical Review D. 2012. Vol. 85, no. 6. Pp. 067301(1–5).

БЛАГОДАРЮ ЗА ВНИМАНИЕ !