МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ имени Д.В.СКОБЕЛЬЦЫНА

#### УГЛОВЫЕ КОРРЕЛЯЦИИ ЧАСТИЦА –ГАММА-КВАНТ И ХАРАКТЕРИСТИКИ ВЫСТРОЕННЫХ ЯДЕР

Лебедев Виктор Михайлович

(01.04.16 – физика атомного ядра и элементарных частиц) Диссертация на соискание ученой степени доктора физико-математических наук Современный этап развития экспериментальной ядерной физики характеризуется стремлением проводить измерения в наиболее полных кинематических условиях. Диссертация посвящена проведению таких корреляционных экспериментов и теоретическому анализу ядерных реакций с образованием выстроенных ядер.

- Основной характеристикой выстроенных ядер являются спин-тензоры матрицы плотности, которые имеют ненулевые значения только для четного ранга.
- Знание полного набора спин-тензоров позволяет получить такие характеристики выстроенных ядер, которые в принципе не могут быть измерены в прямых экспериментах.

• В диссертации изучены ядерные реакции следующего типа:

$$A + x \to B(J^*) + y$$
$$\downarrow$$
$$\gamma(L) + B(J_0).$$

Заряженная частица у и ү-квант регистрируются на совпадения при разных углах вылета частицы у и ү-кванта, т.е. измеряется функция угловой уү –корреляции (ФУК).

Матрица плотности ядра  $B^*$  определяется через матричный элемент перехода системы из начального состояния в конечное, поэтому она содержит всю информацию как о структуре ядра, так и о механизме исследованной реакции. Сумма ее диагональных элементов (шпур) дает дифференциальное сечение реакции. Спинтензоры матрицы плотности определены стандартным образом, при этом спин-тензор нулевого ранга совпадает с дифференциальным сечением.

#### Функция угловой корреляции (ФУК)

частица-ү-квант

Измерение ФУК является одним из способов восстановления экспериментальных спин-тензоров матрицы плотности ядра *B*\*.

$$W(\Omega_{y}, \Omega_{\gamma}) = \sum_{k\kappa} \frac{1}{\sqrt{4\pi(2k+1)}} \cdot A_{k\kappa}(\theta_{y}) \cdot Y_{k\kappa}^{*}(\Omega_{\gamma}),$$

$$A_{k\kappa}(\Omega_y) = R_k(l,l',\delta) \cdot \rho_{k\kappa}(J_B;\Omega_y),$$

где  $Y_{k\kappa}^*$  – сопряженные сферические функции (тензоры эффективности регистрации гамма-кванта), зависящие от углов  $\theta_{\gamma}$  и  $\phi_{\gamma}$  вылета  $\gamma$ -кванта, а коэффициенты  $R_k(l,l',\delta)$  простыми алгебраическими коэффициентами связаны с коэффициентами смешивания электромагнитных переходов. ФУК частица– $\gamma$ -квант в ядерных реакциях выражается через спин-тензоры матрицы плотности и тензоры эффективности регистрации  $\gamma$ -квантов. Если поляризация конечных частиц, в т.ч. и  $\gamma$ -квантов не регистрируется, тензоры эффективности регистрации представляют собой произведение алгебраических множителей и сферических функций, зависящих от угла вылета  $\gamma$ -кванта.



Координатные системы с осью Z, направленной: (a) – вдоль пучка падающих частиц, (б) – перпендикулярно плоскости реакции С помощью найденных значений ρ<sub>kк</sub>(θ<sub>α</sub>) можно получить следующие характеристики, имеющие физический смысл:

1. Заселенности подсостояний изучаемого уровня конечного ядра (ориентации спина данного уровня) в системе координат, ось Z которой перпендикулярна плоскости реакции и совпадает с направлением спина ядра. Матрица поворота D<sup>J</sup>(π/2, π/2, π/2).

$$P_{M}(J_{f},\theta_{y}) = \frac{\rho'_{Jf}(M,M)}{Sp \rho'_{Jf}(M,M)}.$$

2. Ориентацию мультипольных моментов относительно оси симметрии ядра (в системе координат с осью Z по импульсу ядра отдачи). Матрица поворота D<sup>J</sup>(π/2, π/2, θ<sub>y</sub>).

$$t_{k\kappa} (J_f \theta_y) = \frac{\rho'_{k\kappa} (\theta_y)}{\sqrt{(2k+1)(2J_f+1)} \rho_{00} (\theta_y)}$$

Именно эти характеристики, наряду с  $A_{k\kappa}(\theta_y)$ , восстановленные из экспериментальных ФУК, затем сравнивались с расчетными, полученными в разных теоретических моделях.

#### Общая схема экспериментальной установки



1- циклотрон, 2 – магнитные квадрупольные линзы, 3 – поворотный магнит,

- 4 ионопровод, 5 защитная стена, 6 вакуумный клапан, 7 коллимирующие щели,
- 8 камера рассеяния, 9 мишень, 10 сцинтилляционные детекторы,

11 – телескопы кремниевых детекторов заряженных частиц, 12 – цилиндр Фарадея,

13 – интегратор тока.





ИВК включает несколько уровней обработки: аналоговую и быструю цифровую обработку полученных сигналов; формирование массивов, последующую их обработку и фильтрацию данных; визуализацию, управление экспериментом и подготовку отчетов.

ИВК позволяет осуществлять регистрацию заряженных частиц по шести и гамма-квантов по четырем каналам. В памяти ИВК копятся энергетические и временные спектры всех комбинаций детекторов, результаты отображаются как в графическом, так и табличном виде в режиме реального времени или по команде. Управление основными параметрами эксперимента осуществляется дистанционно с компьютера. Одновременно можно следить за десятками параметров эксперимента.

Непрерывно ведется также регистрация интенсивности пучка, загрузок, просчетов и ряда других служебных параметров. Это позволяет свести к минимуму систематические ошибки эксперимента.



Блок-схема электроники ИВК. К1–К3 – крейты КАМАК, Д – монитор установки и контроля параметров эксперимента, PC1–PC2 – компьютеры. Указаны виды сигналов, поступающих на крейты.

Состав и связь модулей крейтов К2 и К3. Указаны виды сигналов, поступающих на крейты.



Структура крейта К3 после модификации. Указаны виды сигналов, поступающих на крейт и сигналы связи модулей.



Типичные спектры реакции  ${}^{12}C(\alpha, \alpha\gamma){}^{12}C$  при  $E_{\alpha} = 25$  МэВ,  $\theta_{\alpha} = 25^{\circ}, \theta_{\gamma} = 20^{\circ}, \phi_{\gamma} = 180^{\circ}: a - часть \gamma$ спектра в районе  $E_{\gamma} = 4$  МэВ,  $\delta$  – прямой спектр рассеянных  $\alpha$ -частиц, e – спектр  $\alpha$ -частиц после совпадений с  $\gamma$ -квантами, e – временной спектр  $A_{T}$ совпадений  $\gamma$ -квантов с группой  $\alpha_{1}, \partial$ – спектр  $A_{T0}$  случайных совпадений. Указаны группы частиц и цифровые окна в спектрах.



]

уровень среза(I5) N= 3 выход при N=0



Двумерный  $\Delta E$ -E спектр протонов (нижняя гипербола) и дейтронов (верхняя гипербола) из реакций, измеренный телескопом, у которого толщина рабочей области E-детектора барьерного типа подобрана такой, чтобы пробег наиболее энергичных групп дейтронов ( $d_0$  и  $d_1$ ) полностью укладывался в E- детекторе (входной канал <sup>12</sup>C + d,  $E_d = 15.3$  МэВ,  $\theta_v = 30^\circ$ ).

## Спектр $\alpha$ -частиц из реакции <sup>24</sup>Mg( $\alpha, \alpha$ )<sup>24</sup>Mg при $\theta_{\alpha} = 46^{\circ}$ и $E_{\alpha} = 30.3$ МэВ

(скриншот окна программы SELECTOR)





Спектр время-амплитудного конвертора из реакции <sup>24</sup>Mg( $\alpha, \alpha_1 \gamma$ )<sup>24</sup>Mg при  $\theta_{\alpha} = 27.5^{\circ}, \phi_{\gamma} = 240^{\circ}, \theta_{\gamma} = 68^{\circ}$  и  $E_{\alpha} = 30.3$  МэВ (t = 13 часов) (скриншот из программы SELECTOR)



#### Реакции, исследованные на 120-см циклотроне НИИЯФ МГУ

| N⁰ | Реакция                                             | $I_n^{\pi}$             | $J_0^{\pi}$ | EL (ML)-                                          | <i>Е<sub>x</sub></i> (лаб.), |  |
|----|-----------------------------------------------------|-------------------------|-------------|---------------------------------------------------|------------------------------|--|
|    |                                                     | $E^*$ M <sub>2</sub> D  |             | переход                                           | МэВ                          |  |
|    | 0 10                                                | E,MBB                   | • ±         |                                                   |                              |  |
| 1  | $^{9}\text{Be}(d, p\gamma)^{10}\text{Be}$           | 2, 3.77                 | 0           | $E2 (2^+ \rightarrow 0^+)$                        | 12.5; 15.3                   |  |
| 2  | $^{10}\mathrm{B}(d,p\gamma)^{11}\mathrm{B}$         | 5/2 <sup>-</sup> , 4.44 | 3/2         | $M1(5/2^- \rightarrow 3/2^-)$                     | 15.3                         |  |
| 3  | $^{13}\mathrm{C}(d,\alpha\gamma)^{11}\mathrm{B}$    | 5/2 <sup>-</sup> , 4.44 | 3/2-        | M1+E2                                             | 15.3                         |  |
|    |                                                     |                         |             | $(5/2^{-} \rightarrow 3/2^{-})$                   |                              |  |
| 4  | $^{10}\mathrm{B}(\alpha, d\gamma)^{12}\mathrm{C}$   | 2 <sup>+</sup> , 4.443  | $0^+$       | $E2 (2^+ \rightarrow 0^+)$                        | 21÷25; 30                    |  |
| 5  | $^{11}B(\alpha, t\gamma)^{12}C$                     | 2 <sup>+</sup> , 4.443  | $0^+$       | $E2 (2^+ \rightarrow 0^+)$                        | 25; 30                       |  |
| 6  | $^{12}\mathrm{C}(p,p\gamma)^{12}\mathrm{C}$         | 2 <sup>+</sup> , 4.443  | 0+          | $E2 (2^+ \rightarrow 0^+)$                        | 7.5                          |  |
| 7  | $^{12}\mathrm{C}(d, d\gamma)^{12}\mathrm{C}$        | 2 <sup>+</sup> , 4.443  | 0+          | $E2 (2^+ \rightarrow 0^+)$                        | 15.3                         |  |
| 8  | $^{12}C(^{3}\text{He}, ^{3}\text{He}\gamma)^{12}C$  | 2 <sup>+</sup> , 4.443  | 0+          | $E2 \ (2^+ \rightarrow 0^+)$                      | 22.4                         |  |
| 9  | $^{12}C(\alpha, \alpha\gamma)^{12}C$                | 2 <sup>+</sup> , 4.443  | $0^+$       | $E2 \ (2^+ \rightarrow 0^+)$                      | 15÷25; 30                    |  |
| 10 | $^{13}C(\tau, \alpha\gamma)^{12}C$                  | 2 <sup>+</sup> , 4.443  | $0^+$       | $E2 \ (2^+ \rightarrow 0^+)$                      | 22.5                         |  |
| 11 | $^{14}$ N( $d, \alpha \gamma$ ) $^{12}$ C           | 2 <sup>+</sup> , 4.443  | $0^+$       | $E2 \ (2^+ \rightarrow 0^+)$                      | 15.4                         |  |
| 12 | $^{15}$ N( $p, \alpha \gamma$ ) $^{12}$ C           | 2 <sup>+</sup> , 4.443  | 0+          | $E2 \ (2^+ \rightarrow 0^+)$                      | 7.5                          |  |
| 13 | $^{12}\mathrm{C}(d,p\gamma)^{13}\mathrm{C}$         | $\frac{1}{2}^{+}, 3.09$ | 1/2-        | $E1(\frac{1}{2}^{+} \rightarrow \frac{1}{2}^{-})$ | 12.5                         |  |
| 14 | $^{11}B(\alpha, p\gamma)^{14}C$                     | 3 <sup>-</sup> , 6.73   | 0+          | $E3 (3^{-} \rightarrow 0^{+})$                    | 30.3                         |  |
| 15 | $^{12}C(\alpha, p\gamma)^{15}N$                     | 3/2 <sup>-</sup> , 6.32 | 1/2-        | $E2 (3/2^- \rightarrow 1/2^-)$                    | 30.3                         |  |
| 16 | $^{14}N(\alpha, d\gamma)^{16}O$                     | 3 <sup>-</sup> , 6.13   | $0^+$       | $E3 (3^{-} \rightarrow 0^{+})$                    | 30.3                         |  |
| 17 | $^{15}N(\alpha, t\gamma)^{16}O$                     | 3 <sup>-</sup> , 6.13   | $0^+$       | $E3 (3^{-} \rightarrow 0^{+})$                    | 30.3                         |  |
| 18 | $^{16}O(\alpha, \alpha\gamma)^{16}O$                | 3 <sup>-</sup> , 6.13   | $0^+$       | $E3 (3^{-} \rightarrow 0^{+})$                    | 25; 30                       |  |
| 19 | $^{19}\mathrm{F}(p,\alpha\gamma)^{16}\mathrm{O}$    | 3 <sup>-</sup> , 6.13   | 0+          | $E3 (3^{-} \rightarrow 0^{+})$                    | 7.5                          |  |
| 20 | $^{19}\mathrm{F}(\alpha, t\gamma)^{20}\mathrm{Ne}$  | 2 <sup>+</sup> , 1.63   | 0+          | $E2 \ (2^+ \rightarrow 0^+)$                      | 30.3                         |  |
| 21 | $^{24}Mg(\alpha, \alpha\gamma)^{24}Mg$              | 2 <sup>+</sup> , 1.37   | $0^+$       | $E2 \ (2^+ \rightarrow 0^+)$                      | 30.3                         |  |
| 22 | $^{27}$ Al( $\alpha$ , $t\gamma$ ) $^{28}$ Si       | 2 <sup>+</sup> , 1.78   | $0^+$       | $E2(2^+ \rightarrow 0^+)$                         | 30.3                         |  |
|    |                                                     | 4 <sup>+</sup> , 4.62   |             | $E2 (4^+ \rightarrow 2^+) \rightarrow$            |                              |  |
|    |                                                     |                         |             | $E2(2^+ \rightarrow 0^+)$                         |                              |  |
| 23 | $^{28}\text{Si}(\alpha,\alpha\gamma)^{28}\text{Si}$ | 2 <sup>+</sup> , 1.78   | $0^+$       | $E2(2^+ \rightarrow 0^+)$                         | 25, 30.3                     |  |
|    |                                                     | 4 <sup>+</sup> , 4.62   |             | $E2 (4^+ \rightarrow 2^+) \rightarrow$            |                              |  |
|    |                                                     |                         |             | $E2(2^+ \rightarrow 0^+)$                         |                              |  |



Функции угловой корреляции в реакции  ${}^{12}C(\alpha, \alpha_1\gamma){}^{12}C$  (точки) при  $E_{\alpha} = 24.8$  МэВ для углов (лаб.) вылета  $\alpha$ -частиц 21, 39, 58 и 135°, измеренные в различных плоскостях  $\phi_{\gamma}$  относительно плоскости реакции. Сплошные кривые – девятипараметрическая подгонка.

<sup>16</sup>О( $\alpha, \alpha \gamma$ )<sup>16</sup>О при  $E_{\alpha} = 30.3$  МэВ  $\theta_{\alpha}$ (лаб.) = 20° (a) и 39° ( $\delta$ )



<sup>13</sup>С(<sup>3</sup>He,  $\alpha_1 \gamma$ )<sup>12</sup>С при  $E_{\tau} = 22.5$  МэВ



Азимутальная проекция функции угловой корреляции из реакции  ${}^{13}C({}^{3}He, \alpha\gamma){}^{12}C(2^+)$ .  $\theta_{\tau}$  (л.с.) = 20°,  $E({}^{3}He)$  = 22.5 МэВ. Точками указаны углы, при которых измерены двойные дифференциальные сечения. Значения функции угловой корреляции указаны около соответствующих кривых.



Теоретические модели, используемые в диссертации

- Метод связанных каналов (МСК), используемый в приближении ротационной модели.
- Метод искаженных волн (МИВОКОР) с учетом конечного радиуса взаимодействия частиц.
- Модель составного ядра
- Многочастичная модель оболочек.
- Для проведения конкретных расчетов использовались широко известный программный комплекс CHUCK, а также оригинальные, разработанные в НИИЯФ МГУ OLYMP, CNDENSI.

#### Реакция срыва

#### Реакция «тяжелого» срыва



#### Типичные схемы расчетов в МСК



#### Спектроскопические амплитуды $\Theta_{lj}$ для реакции <sup>19</sup>F(p, $\alpha$ )<sup>16</sup>O

| Реакция                  | $J_A \rightarrow J_B$                                  | l | j   | $\Theta_{lj}$ |
|--------------------------|--------------------------------------------------------|---|-----|---------------|
|                          |                                                        |   |     |               |
| $^{19}F(p,\alpha)^{16}O$ | 1/2 <sup>+</sup> (осн.)→0 <sup>+</sup> (осн.)          | 0 | 1/2 | -0.101        |
|                          | 1/2⁺(осн.)→3⁻(6.13 МэВ)                                | 3 | 5/2 | 0.26          |
|                          |                                                        |   | 7/2 | -0.30         |
|                          | 5/2⁺(1.197 МэВ)→0⁺(осн.)                               | 2 | 5/2 | -0.152        |
|                          | 5/2 <sup>+</sup> (1.197 M∋B)→3 <sup>-</sup> (6.13 M∋B) | 1 | 1/2 | 0.015         |
|                          |                                                        |   | 3/2 | -0.016        |
|                          |                                                        | 3 | 5/2 | 0.089         |
|                          |                                                        |   | 7/2 | 0.142         |
|                          | 3/2 <sup>+</sup> (1.557 МэВ) →0 <sup>+</sup> (осн.)    | 2 | 3/2 | -0.152        |
|                          | 3/2 <sup>+</sup> (1.557 M∋B)→3 <sup>-</sup> (6.13 M∋B) | 1 | 3/2 | -0.024        |
|                          |                                                        | 3 | 5/2 | -0.185        |
|                          |                                                        |   | 7/2 | -0.015        |

Угловые распределения неупруго (2<sup>+</sup>) рассеянных  $\alpha$ -частиц на ядре <sup>12</sup>С при  $E_{\alpha} = 30$  МэВ. Кружки – экспериментальные данные. Кривые – сечение, вычисленное в МСК: короткие штрихи –  $\beta_2 = -0.5$ , сплошная линия –  $\beta_2 = -0.55$  и длинные штрихи –  $\beta_2 = -0.55$  и якривая – расчет для механизма срыва тяжелой частицы.



Угловые зависимости дифференциального сечения неупругого рассеяния дейтронов на <sup>12</sup>С при  $E_d = 15.3$ МэВ. Кружки – экспериментальные результаты. Кривые – расчеты в предположении различных механизмов реакции: короткий штрих – результаты расчета в МСК, длинный штрих – срыв тяжелой частицы, крестики – механизм последовательной передачи нуклонов из дейтрона, точечная – сумма этих механизмов,, сплошная – сумма трех механизмов



# Угловые зависимости дифференциального сечения реакции ${}^{13}C(d, \alpha){}^{11}B$ при $E_d = 15.3$ МэВ



Кружки — экспериментальные результаты. Кривые — расчеты в предположении различных механизмов: красная — подхват дейтронного кластера в МСК, синяя — срыв тяжелой частицы, фиолетовая — последовательная передача кластеров для срыва тяжелой частицы, зеленая — когерентная сумма этих механизмов, черная — суммарная кривая.



Угловые распределения дифференциального сечения упругого и неупругого рассеяния  $\alpha$ -частиц ядрами <sup>16</sup>О при E<sub> $\alpha$ </sub> = 25.2 МэВ (*a*) и 30.3 МэВ (*б*). Кривые -результаты расчета для механизма образования СЯ (штрих-пунктир), механизма коллективного возбуждения МСК с *V*=150.4 МэВ (пунктир) и с *V*=160 МэВ (длинный пунктир), а также механизма срыва тяжелой частицы (точечная кривая). Сплошные кривые для групп  $\alpha_{12}$  и  $\alpha_{34}$  - сумма первых двух механизмов, для группы  $\alpha_0$  -сумма механизмов СЯ, срыва тяжелой частицы и оптического рассеяния. *в* – Энергетические зависимости дифференциального сечения рассеяния



Угловые зависимости СПИНтензоров А<sub>кк</sub> матрицы плотности <sup>12</sup>C (2<sup>+</sup>,4.44 МэВ), ядра образованного в реакции <sup>12</sup>С( $\alpha, \alpha \gamma$ )<sup>12</sup>С при  $E_{\alpha}$  = 30 МэВ. Кривые – расчет по МСК (пунктир,  $\beta_2$  = -0.55), расчет для механизма срыва тяжелого кластера <sup>8</sup>Be (длинный штрих). Сплошная кривая соответствует сумме этих механизмов.

Угловые зависимости спин-тензоров матрицы плотности ядра <sup>12</sup>С в состоянии 2<sup>+</sup>(4.44 МэВ), образованного в неупругом рассеянии дейтронов при  $E_d$  = 15.3 МэВ. Кривые : штрих – результаты расчета в МСК, длинный штрих – срыв тяжелой частицы, крестики – механизм последовательной передачи нуклонов, точечная – сумма этих механизмов,, сплошная – сумма трех механизмов



Угловые зависимости спин-тензоров матрицы плотности ядра <sup>12</sup>С в состоянии 2<sup>+</sup> (4.44 МэВ), образованного в неупругом рассеянии ядер <sup>3</sup>Не при  $E_{\tau} = 22.4$  МэВ. Кривые: результаты расчета по МСК (штриховые), для механизма срыва тяжелой частицы (штрихпунктирные) и суммы двух этих механизмов (сплошные).







Угловые зависимости некоторых компонентов спин-тензоров  $A_{k\kappa}(\theta_{\alpha})$  матрицы плотности состояния 3-(6.131 МэВ) ядра 16О, образованного в реакции <sup>16</sup>О( $\alpha$ ,  $\alpha\gamma$ )<sup>16</sup>О для  $E_{\alpha}$  = 30.3 МэВ. Точки – эксперимент. Кривые – результаты расчета в МСК с *V*=150.4 МэВ (пунктир) и с V=160 МэВ (длинный пунктир), механизма образования составного ядра (штрихпунктир).

Угловые зависимости: *a*- заселенностей магнитных подуровней состояния  $5/2^{-}(4.445 \text{ M}_{9}\text{B})$ , ядра <sup>11</sup>B, образованного в реакциях <sup>13</sup>C(*d*,  $\alpha\gamma$ )<sup>11</sup>B при  $E_d = 15.3$  МэВ (синие кружки) и <sup>10</sup>B(*d*,  $p\gamma$ )<sup>11</sup>B при  $E_d = 15.3$  МэВ (пустые кружки); *б*- компонентов квадрупольного тензора ориентации  $t_{2\kappa}(\theta_{\alpha})$  ядра <sup>11</sup>B в состоянии  $5/2^{-}(4.445 \text{ M}_{9}\text{B})$ , образованном в реакции <sup>13</sup>C(*d*,  $\alpha\gamma$ )<sup>11</sup>B. Кривые – расчеты в предположении различных механизмов реакции: красная – механизм подхвата дейтронного кластера в МСК при  $\beta_2(^{11}\text{B}) = 0.4$ , фиолетовая – когерентная сумма срыва тяжелого кластера и двухступенчатого механизма, черная – суммарные корреляционные характеристики. Штрих-пунктир –то же для <sup>11</sup>B(5/2<sup>-</sup>) при  $\beta_2(^{11}\text{B}) = -0.4$ .



Угловые зависимости компонентов тензоров ориентации состояния 2+(4.44 МэВ) ядра <sup>12</sup>С, образованного в реакции <sup>12</sup>С( $\alpha$ ,  $\alpha\gamma$ )<sup>12</sup>С(2<sup>+</sup>) при E<sub> $\alpha$ </sub> = 30 МэВ



Угловые зависимости компонентов тензоров ориентации состояния 2<sup>+</sup>(1.78 МэВ) ядра <sup>28</sup>Si, образованного в реакции <sup>28</sup>Si( $\alpha$ ,  $\alpha\gamma$ )<sup>28</sup>Si(2+) при E $\alpha$  = 30.3 МэВ









Сопоставление экспериментальных тензоров ориентации мультипольных момента ядра  ${}^{12}C(2^+)$ , образованного в реакциях  ${}^{12}C(d, d){}^{12}C$  (красные кружки) и  ${}^{12}C({}^{3}\text{He}, {}^{3}\text{He}){}^{12}C$  (зеленые треугольники) при E = 7.5 МэВ/нуклон.



Сравнение нормированных угловых распределений d и  $\alpha$ -частиц из реакций <sup>14</sup>N( $\alpha$ , d)<sup>16</sup>O (зеленые кружки) и <sup>15</sup>N( $\alpha$ , t)<sup>16</sup>O (красные треугольники) для смешанного состояния <sup>16</sup>O(0<sup>+</sup> + 3<sup>-</sup>) (a) и спин-тензоров выстроенного ядра <sup>16</sup>O(3<sup>-</sup>) ( $\delta$ ) при  $E_{\alpha}$  = 30.3 МэВ.









## Тензоры ориентации $t_{20}(0^\circ)$ и параметры $\beta_L$ , определенные для выстроенных ядер – продуктов различных реакций

| Реакция                                                       | $E_x$ , МэВ | $t_{20}(0^{\circ})$ | $\beta_2(B(E2)\uparrow)$ | $\beta_2(Q_{\text{mom}})$ | β2               | β3   |
|---------------------------------------------------------------|-------------|---------------------|--------------------------|---------------------------|------------------|------|
| ${}^{9}\text{Be}(d, p\gamma)^{10}\text{Be}(2^+)$              | 12.5        | -0.147              | 1.13±0.06                |                           | 1.0              |      |
| $^{10}\mathrm{B}(d,p\gamma)^{11}\mathrm{B}(5/2^{-})$          | 15.3        |                     |                          | 0.498±0.29                | 0.4              |      |
| $^{13}C(d, \alpha\gamma)^{11}B(5/2)$                          | 15.3        |                     |                          | 0.498±0.29                | 0.4              |      |
| $^{10}\mathrm{B}(\alpha, d\gamma)^{12}\mathrm{C}(2^{+})$      | 25.0        |                     | 0.592±0.036              | -0.411±0.226              | -0.5             |      |
| $^{11}B(\alpha, t\gamma)^{12}C(2^+)$                          | 25.0        | -0.072              | 0.592±0.036              | -0.411±0.226              | -0.5±0.2         |      |
| $^{12}\mathrm{C}(p,p)^{12}\mathrm{C}(2^+)$                    | 7.5         | -0.239              | 0.592±0.036              | -0.411±0.226              | -0.55            |      |
| $^{12}C(d, d\gamma)^{12}C(2^+)$                               | 15.3        | -0,239              | 0.592±0.036              | -0.411±0.226              | -0.5             |      |
| $^{12}C(\tau, \tau \gamma)^{12}C(2^+)$                        | 22.4        | -0.239              | 0.592±0.036              | -0.411±0.226              | -0.35            |      |
| $^{12}C(\alpha, \alpha\gamma)^{12}C(2^{+})$                   | 30.3        | -0.239              | 0.592±0.036              | -0.411±0.226              | $-0.55 \pm 0.05$ |      |
| $^{13}C(\tau, \alpha\gamma)^{12}C(2^+)$                       | 22.5        | -0.167              | 0.592±0.036              | -0.411±0.226              | -0.5±0.1         |      |
| $^{14}N(d, \alpha\gamma)^{12}C(2^{+})$                        | 15.4        |                     | 0.592±0.036              | -0.411±0.226              | -0.5             |      |
| $^{15}$ N( $p, \alpha\gamma$ ) $^{12}$ C( $2^+$ )             | 7.5         |                     | 0.592±0.036              | -0.411±0.226              | -0.5             |      |
| $^{11}\mathrm{B}(\alpha, p\gamma)^{14}\mathrm{C}(3^{-})$      | 30.3        |                     | $0.361 \pm 0.024$        |                           |                  | 0.35 |
| $^{12}C(\alpha, p\gamma)^{15}N(3/2)$                          | 30.3        |                     |                          |                           | 0.35             |      |
| $^{14}N(\alpha, d\gamma)^{16}O(3^{-})$                        | 30.3        |                     | 0.362±0.018              |                           |                  | 0.4  |
| $^{15}N(\alpha, t\gamma)^{16}O(3^{-})$                        | 30.3        | -0.046              | 0.362±0.018              |                           | 0.35             | 0.35 |
| $^{16}O(\alpha, \alpha\gamma)^{16}O(3^{-})$                   | 25.2; 30.3  | -0.195              | 0.362±0.018              |                           | 0.3              | 0.4  |
| $^{19}\text{F}(p, \alpha\gamma)^{16}\text{O}(3^{-})$          | 7.5         |                     | 0.362±0.018              |                           |                  | 0.35 |
| $^{19}F(\alpha, t\gamma)^{20}Ne(2^+)$                         | 30.3        |                     | 0.728±0.032              | 0.741±0.134               | 0.35             |      |
| $^{24}$ Mg( $\alpha, \alpha\gamma$ ) $^{24}$ Mg( $2^+$ )      | 30.3        | -0.239              | 0.606±0.008              | $0.172 \pm 0.082$         | 0.4              |      |
|                                                               |             |                     |                          | $0.438\pm0.054$           |                  |      |
|                                                               |             |                     |                          | $0.443 \pm 0.071$         |                  |      |
|                                                               |             |                     |                          | $0.713 \pm 0.109$         |                  |      |
| $^{27}\mathrm{Al}(\alpha, t\gamma)^{28}\mathrm{Si}(2^+)$      | 25.0        |                     | $0.407 \pm 0.007$        | $-0.352 \pm 0.076$        | -0.35            |      |
|                                                               |             |                     |                          | $-0.313 \pm 0.074$        |                  |      |
| $^{28}\mathrm{Si}(\alpha, \alpha\gamma)^{28}\mathrm{Si}(2^+)$ | 30.3        | -0.239              | $0.407 \pm 0.007$        | $-0.352 \pm 0.076$        | -0.35            |      |
|                                                               |             |                     |                          | $-0.313 \pm 0.074$        |                  |      |

## Статическая деформация

Деформированное ядро можно представить в виде сфероида, поверхность которого определяется параметрами деформации βμν:

$$R\left(\theta,\phi\right) = R_{0} \left[1 + \sum_{\mu\nu} \beta_{\mu\nu} \cdot Y_{\mu\nu}\left(\theta,\phi\right)\right]$$

Если v = 0, деформированное ядро является сфероидом вращения, если = 2 - эллипсоидом вращения. Параметр 2 обычно называют параметром квадрупольной деформации, 3 – октупольной, 4 – гексадекапольной.

#### Динамическая деформация

Динамическая деформация ядра определяется поверхностью сфероида, который строится из тензоров ориентации  $t_{k\kappa}(\theta_y)$  мультипольных моментов выстроенного ядра:

$$R(\theta,\phi;\widetilde{\theta}_{\mathcal{Y}}) = R_0 \left\{ 1 + \sum_{k\kappa} N_k t_{k\kappa}(\widetilde{\theta}_{\mathcal{Y}}) Y_{k\kappa}(\theta,\phi) \right\},\$$

где углы  $\theta$ ,  $\phi$ , задаются в системе координат, ось Z которой направлена по оси симметрии ядра. На малых углах ( $\theta_y \cong 0^\circ$ ) при минимальном переданном импульсе этот сфероид должен быть подобен форме статической деформации ядра. Нормировочная константа  $N_k$  для  $\kappa = 0$  определяется соотношением:

$$N_k = \beta_k / t_{k0}(0),$$

где  $\beta_k$  – параметр статической деформации ядра четного ранга.



Динамическая деформация (*a*) ядра <sup>12</sup>С в нижнем состоянии 2<sup>+</sup>, образованном в реакции <sup>10</sup>В( $\alpha$ , *d*)<sup>12</sup>С при  $E_{\alpha}$  = 25 МэВ. Указаны углы  $\theta_d$  (с.ц.м.). На панели  $\delta$  показаны сечения сфероида динамической деформации плоскостями *XZ* (черные), *YZ* (красные) и *XY* (зеленые).

Динамическая деформация (*a*) ядра <sup>28</sup>Si в состоянии 2<sup>+</sup>(1.78 МэВ), образованном в неупругом рассеянии  $\alpha$ -частиц при  $E_{\alpha} = 30.3$  МэВ Указаны углы регистрации  $\alpha$ -частиц в с.ц.м. Ось Z направлена по импульсу ядра отдачи. На панели  $\delta$  показаны разрезы сфероида динамической деформации плоскостями XZ (черные), YZ (красные) и XY (зеленые).



Динамическая деформация ядра <sup>10</sup>Ве в состоянии 2<sup>+</sup>(3.37 МэВ), образованном в реакции <sup>9</sup>Ве $(d, p)^{10}$ Ве при энергии  $E_d = 15.3$  МэВ. Указаны углы вылета протонов в с.ц.м.

#### Основные результаты диссертации

С использованием уникального многоканального измерительно-вычислительного комплекса накопления и обработки экспериментальной информации в режиме *on-line* в диссертации реализованы корреляционные эксперименты, которые позволяют, не проводя измерений в  $4\pi$ -геометрии, получать результаты, соответствующие такой геометрии. Получены экспериментальные функции угловой корреляции частица– $\gamma$ -квант в 23 реакциях на легких ядрах от <sup>9</sup>Ве до <sup>28</sup>Si с образованием выстроенных конечных ядер в различных возбужденных состояниях. Созданы вычислительные программы для обработки измеренных функций угловой корреляции и восстановления различных характеристик этих ядер. Без проведения дополнительных экспериментов восстановлены спин-тензоры четного ранга матрицы плотности исследованных ядер. Из спин-тензоров получены заселенности магнитных подуровней и компоненты тензоров ориентации различных мультипольных моментов.

Теоретический анализ характеристик корреляционных экспериментов выполнен в рамках современных моделей. Установлено, что основными механизмами образования выстроенных ядер при неупругом рассеянии являются коллективные возбуждения (для реакций – механизм срыва/подхвата с учетом коллективных возбуждений) в передней полусфере углов вылета конечных частиц, а на больших углах – обменный механизм срыва тяжелого кластера. Если частица-снаряд или ядро-мишень имеют небольшую энергию связи по кластерным каналам распада, существенную роль играют двухступенчатые механизмы, связанные с последовательной передачей частиц. При увеличении атомного номера выстроенного ядра вклад механизма срыва (подхвата) тяжелого кластера уменьшается.

- Универсальность механизма коллективного возбуждения деформированных выстроенных ядер подтверждает установленное в диссертации подобие корреляционных характеристик для одного и того же конечного выстроенного ядра, образующегося в различных реакциях. Такой эффект продемонстрирован на примере ядер <sup>12</sup>C(2<sup>+</sup>), <sup>11</sup>B(5/2<sup>-</sup>) и <sup>16</sup>O(3<sup>-</sup>). Аналогичное подобие обнаружено и для одного типа реакции (неупругого рассеяния α-частиц) на разных ядрах (<sup>24</sup>Mg и <sup>28</sup>Si) с образованием нижних 2<sup>+</sup> состояний.
- В диссертации впервые установлена заметная чувствительность заселенностей магнитных подуровней возбужденных состояний ядер и тензоров ориентации мультипольных моментов к параметру β<sub>L</sub> статической квадрупольной или октупольной деформации выстроенных ядер, причем не только к его абсолютной величине, но и к знаку, что позволило определить величину и знак β<sub>L</sub> для 9 конечных ядер и 4 ядер-мишеней.
- При анализе экспериментальных данных для выстроенного ядра <sup>10</sup>Be(2<sup>+</sup>), образованного в реакции <sup>9</sup>Be(d, pγ)<sup>10</sup>Be(2<sup>+</sup>, 3.37 МэВ) впервые обнаружено, что в выстроенном ядре <sup>10</sup>Be должна присутствовать кластерная конфигурация, соответствующая динейтронной компоненте волновой функции ядра <sup>10</sup>Be, т.е. установлено существование гало-ядра <sup>10</sup>Be(2<sup>+</sup>).
- Получена динамическая деформация выстроенных ядер, определяемая найденными тензорами ориентации мультипольных моментов. Динамическая деформация выстроенного ядра имеет сложную форму, не сводящуюся к статической, и существенно зависит как от способа его образования, так и от угла вылета конечной частицы.



Научная новизна представленной работы обусловлена тем, что все экспериментальные частица–гамма-квант функции угловой корреляции получены диссертантом впервые. Впервые без дополнительных измерений восстановлены спин-тензоры матрицы плотности и другие корреляционные характеристики выстроенных ядер. Впервые установлено, что основным механизмом образования выстроенных ядер является механизм коллективного возбуждения. Для ряда ядер уточнены параметры квадрупольной и октупольной статической деформации.

**Практическая значимость.** Диссертантом разработан уникальный измерительно-вычислительный комплекс, позволяющий в режиме *on-line* проводить длительные многоканальные корреляционные эксперименты и их первичную обработку. Несомненную практическую ценность представляет уточнение параметров ядро-ядерного взаимодействия, статических мультипольных параметров деформации. Многие результаты диссертации размещены в базе ЦДФЭ (CENTRE FOR PHOTONUCLEAR EXPERIMENTS DATA).

Полученные в диссертации результаты могут найти свое применение в экспериментальных исследованиях ядерных реакций, которые проводятся в ряде российских научных центров (НИИЯФ МГУ, РНЦ «Курчатовский институт», НИФИ СПбГУ, ФЭИ (г. Обнинск), ПИАФ (г. Гатчина)) и др.

Личный вклад автора диссертации. В работах по теме диссертации, выполненных с соавторами, автору диссертации принадлежат постановка тех задач, которые вошли в основные положения диссертации, разработка основных идей измерительно-вычислительного комплекса, разработка и создание основных экспериментальных методик, их программная реализация. Автор диссертации принимал непосредственное участие в экспериментальном исследовании всех 23 реакций, представленных в работе. При определяющем вкладе автора проведены численные расчеты и теоретический анализ полученных экспериментальных характеристик выстроенных ядер.

Достоверность результатов полученных в диссертации, обеспечена надежностью и тщательностью использованных экспериментальных методик, проведением ряда контрольных и повторных экспериментов, высоким качеством обработки экспериментальных данных. Достоверность результатов опирается также на использование хорошо апробированных теоретических моделей и реализующих их вычислительных программ. Отклонение поверхности ядра от сферической формы радиуса  $R_0$  описывается с помощью коллективных переменных  $\beta_{k\kappa}$  разложением по сферическим гармоникам в системе координат, ось Z которой совпадает с осью симметрии ядра

$$\frac{R(\theta,\varphi)}{R_0} = 1 + \sum_{k\kappa} \beta_{k\kappa} Y_{k\kappa}(\theta,\varphi) .$$
 (1)

Параметры  $\beta_{kk}$  - средние значения оператора мультипольного момента  $Q_{kk}$  в заданном состоянии |*JM*>

$$\boldsymbol{\beta}_{\boldsymbol{k\kappa}} \cong \left\langle JM \middle| \widehat{\boldsymbol{Q}}_{\boldsymbol{k\kappa}} \middle| JM \right\rangle.$$

Для ориентированных ядер среднее значение  $Q_{k\kappa}$  может быть представлено с помощью спиновой матрицы плотности

$$\langle JM | \hat{Q}_{k\kappa} | JM \rangle = \frac{1}{\hat{k}\hat{J}} \frac{\rho_{k\kappa}}{\rho_{00}} \langle J \| \hat{Q}_{k} \| J \rangle,$$

где  $\rho_{k\kappa}$  - неприводимые спин-тензоры матрицы плотности.

Введем величину  $t_{k\kappa} = \beta_{k\kappa} / < ||Q_k|| > -$  тензор ориентации мультипольного момента, тогда

$$t_{k\kappa} = \frac{1}{\hat{k}\hat{J}}\frac{\rho_{k\kappa}}{\rho_{00}}.$$

По аналогии с (1) определим поверхность, которую описывает полный спин J ориентированного ядра в состоянии |JM>, образованного в реакции  $A(x, y)B^*$ 

$$\begin{split} R(\theta,\varphi;\theta_{y}) &= R_{0}(1+\sum_{k\kappa}\beta_{k\kappa}(\theta_{y})Y_{k\kappa}(\theta,\varphi)),\\ \beta_{k\kappa}(\theta_{y}) &= N_{k}t_{k\kappa}(\theta_{y}); \end{split}$$

Таким образом, форму  $R(\theta, \varphi; \theta_y)$  можно рассматривать как форму динамической деформации ядра в состоянии |*JM*>.

Нормировочная константа  $N_k$  задается приведенным матричным элементом мультипольного момента и непосредственно определяется статической деформацией ядра.

$$\beta_{k\kappa}(\theta_{y}=0)\equiv\delta_{\kappa0}\beta_{k0}^{cman}$$







В начале 80-х годов в работах Н.С. Зеленской и И.Б. Теплова был разработан, теоретически обоснован принципиально новый метод изучения свойств ядер в возбужденных состояниях с помощью измерения частица – гамма-квант корреляций в различных плоскостях относительно плоскости реакции [1-3], который был впервые экспериментально реализован в НИИЯФ МГУ [10]. Именно этот метод явился основой целой серии экспериментальных и теоретических работ, позволивших развить качественно новые представления о свойствах ядер в возбужденных состояниях.

- 1. Н.С. Зеленская, И.Б. Теплов // Параметризация функции угловой корреляции конечных частиц и γ- квантов в случае регистрации γ- квантов вне плоскости реакции. Изв. АН СССР. Сер. Физ. 1980. Т.44. С. 960-967.
- 2. N.S. Zelenskaya, I.B. Teplov // Determination of the final nucleus density matrix by measuring the angular correlations of charged particles and γ-quanta in various plane. Nucl. Phys. A. 1983. V.406. P. 306-324.
- И. Б. Теплов, Г.С. Гуревич, В.М. Лебедев, Н.В. Орлова, А. В. Спасский, Л.Н. Фатеева, Г.В. Шахворостова // Экспериментальное определение угловой зависимости безмодельных характеристик неупругого рассеяния <sup>12</sup>C(α,αγ)<sup>12</sup>C<sub>4.43</sub> с помощью угловых α-γ -корреляций. Письма в ЖЭТФ. 1984. Т. 39 С. 31-33.
- 4. Н.С. Зеленская, И.Б. Теплов. Характеристики возбужденных состояний ядер и угловые корреляции в ядерных реакциях. М.: Энергоатомиздат, 1995. 224 с.



Угловые зависимости (в с.ц.м.) различных динамических характеристик выстроенного ядра  ${}^{12}C(2+)$ , полученных в реакции  ${}^{12}C(\alpha,\alpha\gamma){}^{12}C(2+)$  при  $E_{\alpha} = 30$  МэВ: a – заселенность магнитных подуровней состояния с проекцией M = 2. Штрихпунктирная кривая – расчет по МСК в предположении отсутствия других механизмов. Приведены также кривые, соответствующие парциальным вкладам для МСК (короткий штрих), механизма срыва тяжелого кластера <sup>8</sup>Ве (длинный штрих) и для их суммы (сплошная кривая);  $\delta$ , e – некоторые компоненты тензора ориентации. Кривые – расчет по МСК с потенциалом A2 и  $\beta_2 = -0.55$ , кружки – эксперимент.

## Статическая деформация

Статическая деформация ядра является сфероидом, поверхность которого определяется параметрами деформации ядра:

$$R\left(\theta,\varphi\right) = R_{0} \left[1 + \sum_{\mu\nu} \beta_{\mu\nu} \cdot Y_{\mu\nu}\left(\theta,\varphi\right)\right]$$

Если  $\nu = 0$ , статическая деформация является сфероидом вращения, если  $\mu=2$  – эллипсоидом вращения. Параметр  $\beta_2$  обычно называют параметром квадрупольной деформации,  $\beta_3$  – октупольной,  $\beta_4$  – гексадекапольной.

Характеристики выстроенных ядер, определенные без

#### дополнительных экспериментов

- Заселенность магнитных подуровней распределение относительных дифференциальных сечений по проекциям спина ядра.
- Тензоры ориентации мультипольных моментов, совпадающие при малых углах вылета частиц для аксиально-симметричных ядер с параметрами статической деформации.
- Динамическая деформация выстроенного ядра поверхность сфероида, описываемая полным спином ядра.