Московский государственный университет им. М.В.Ломоносова

Прохождение пучков положительных ионов через диэлектрические каналы.

Вохмянина К.А.

(N. Stolterfoht, J.-H. Bremer, V. Hoffmann et al. //Phys.Rev.Lett. 2002. V.88. p.133201)

Сохранение начального зарядового состояния!

Ионы Ne⁷⁺ пропускаются через пленку с капиллярами. На выходе исследуется зарядовое состояние ионов. Оказалось, что 99% прошедших через капилляры ионов являются ионы Ne⁷⁺

(N. Stolterfoht, J.-H. Bremer, V. Hoffmann et al. //Phys.Rev.Lett. 2002. V.88. p.133201)

 φ_{in} (град.)

Угловое распределение ионов Ne⁷⁺, прошедших через капилляры в РЕТ (узкий пик в центре соответствует угловому распределению ионов, прошедших через капилляр, внутренняя поверхность которого была покрыта серебром)

Капилляры оказывают управляющее действие на пучок

(N. Stolterfoht, J.-H. Bremer, V. Hoffmann et al. //Phys.Rev.Lett. 2002. V.88. p.133201)

Прохождение ионов через PET(guiding)

Для понимания физики процесса guiding'а удобно разделить путь движения ионов в капилляре на две области

(N. Stolterfoht, J.-H. Bremer, V. Hoffmann et al. //Phys.Rev.Lett. 2002. V.88. p.133201)

Взаимодействие ионов с поверхностью изолятора

Самоорганизация системы пучок-заряд поверхности

Схема экспериментальной установки: 1- направление движения пучка; 2 - щелевая диафрагма; 3 - квадрупольная линза; 4 - диэлектрическая пластина; 5 - отклоняющий конденсатор; 6 - гониометр; 7 - экран, покрытый сцинтиллятором

Жиляков Л.А., Костановский А.В., Иферов Г.А и др.// Поверхность, 2002, №11, с.65. Жиляков Л.А., Костановский А.В., Куликаускас В.С и др.// Поверхность, 2003, №4, с.6.

Взаимодействие ионов с поверхностью изолятора

Протоны с энергией от 50 до 500 эВ Ток пучка от 0.5 до 100 мкА

Зависимость смещения следа пучка на экране от отклоняющего напряжения

Фотографии следа пучка на экране

Жиляков Л.А., Костановский А.В., Иферов Г.А и др.// Поверхность, 2002, №11, с.65 Жиляков Л.А., Костановский А.В., Куликаускас В.С и др.// Поверхность, 2003, №4, с.6/

Взаимодействие ионов с поверхностью изолятора

Энергетические спектры скользящего и прямого пучков

Жиляков Л.А., Костановский А.В., Иферов Г.А и др.// Поверхность, 2002, №11, с.65

Прохождение ионов через конусные капилляры

Display Secondary electron detector Fixed to 2-axis goniometer Inlet dia.<mark>0.8mm</mark> Outlet dial 12mm Deflector 1mm^2 Scan Si SBD 6mm dia -0.8µm 2MeV He+ micro beam ~50mm Intensity Display

Схема экспериментальной установки

<u>плотность пучка out</u> =10⁴

T. Nebiki, T. Yamamoto, T.Narusava //J.Vac. Sci. Technol. 2003.A 21(5), p.1671

В НИИЯФ МГУ проводился эксперимент по прохождению протонов с энергией 0.1-0.3 МэВ через конусы (длина 50 мм, диаметр входного отверстия 1.5 мм, диаметр выходного отверстия 0.5 мм). На выходе из конуса наблюдалось увеличение плотности пучка до 5 раз по сравнению с первоначальной плотностью.

К.А. Вохмянина, Л.А. Жиляков, А.В. Константиновский и др.// Поверхность, 2005,№3, с. 55-58

Распределение заряда на стенках канала, полученное моделированием траекторий. В модели частицы двигались в поле, создаваемом зарядами ионов, ранее «упавших» на стенку.

область транспортировки

Угловое распределение частиц на выходе

L=2.5 см, d=0.1 см

Механизм транспортировки: 1.краевые эффекты

Механизм транспортировки: 1.краевые эффекты

Расположение силовых линий между двумя одноименно заряженными плоскостями (поле между конечными пластинами неоднородно)

область транспортировки

$$F_{\perp}(x,z) = 4\sigma \cdot e \frac{x}{L} \begin{cases} \frac{1}{\frac{z}{L}\left(1-\frac{z}{L}\right)}, \\ 1+\frac{zL}{\left(\frac{d}{2}\right)^2-x^2}, \end{cases}$$

z >> dпри

L >> d

npu $z \sim d$

Механизм транспортировки: 1.краевые эффекты

Зависимость потенциала от поперечной координаты в центре канала

Зависимость поперечной силы от продольной координаты (x = -0.025 см)

 $\sigma = 334 \ {\rm CFC}$ -СМ² (из эксперимента Столтерфохта) L=2.5 см, d=0.1 см

Механизм транспортировки: 2.градиентные силы

1. Осцилляции поперечной координаты х

2. Осцилляции продольной скорости

$$F_{grad}^{(2)} = \frac{1}{T} \int_{0}^{T} dt \left(-\frac{\partial}{\partial x} U(z, x) \right) = \frac{1}{\lambda} \int_{0}^{\lambda} \frac{dz}{\sqrt{1 - \frac{2U(z, x)}{mv^{2}}}} \left(-\frac{\partial}{\partial x} U(z, x) \right) =$$

$$= -\frac{1}{4E\lambda} \int_{0}^{1} dz \frac{\partial}{\partial x} U^{2}(z, x) \qquad \qquad U(z, x) \ll E$$

Механизм транспортировки: 2.градиентные силы

<u>для плоскости, состоящей из периодически</u> <u>расположенных заряженных нитей</u>, потенциальная энергия $U(z, x) = a(x) \sin(\frac{2\pi z}{\lambda})$, $a(x) = a_0 e^{-\frac{x}{\delta}}$ -амплитуда, зависящая от поперечной координаты x

 $\delta = \lambda / 2\pi$, где λ - расстояние между заряженными нитями

осцилляции
$$F_{grad}^{(1)} = \frac{\lambda^2}{16\pi^2 E\delta^3} a_0^2 e^{-\frac{2x}{\delta}}, \quad U_{grad}^{(1)} = \frac{\lambda^2 a_0^2}{32\pi^2 E\delta^2} e^{-\frac{2x}{\delta}}$$

градиентные силы

осцилляции
$$F_{grad}^{(2)} = \frac{1}{4E\delta} a_0^2 e^{-\frac{2x}{\delta}} \qquad U_{grad}^{(2)} = \frac{a_0^2}{8E} e^{-\frac{2x}{\delta}}$$

Механизм транспортировки: 2.градиентные силы

Движение ионов в плоском канале,

образованном двумя параллельными одномерными решетками

Схема для определения силы взаимодействия пролетающей частицы с зарядом на внутренней поверхности канала

в данных расчетах длина канала 2.5 см, межплоскостное расстояние d=0.1 см, ℓ =0,01 см, λ = d/4, x = - 0.025 см

Зависимость поперечной силы от продольной координаты (красным обозначена сила, обусловленная краевыми эффектами, сплошная синяя кривая—сумма вкладов краевой и быстро осциллирующей силы)

Два механизма удержания ионов в канале

Зависимость силового поля, создаваемого краевым эффектом и градиентными силами, от аспектного отношения

Плоский капилляр

Схема плоского капилляра

Плоский стеклянный капилляр в держателе

Guiding для плоского капилляра

Экспериментально измеренная зависимость проходящего тока от угла наклона капилляра: слева – до работы с большим током; справа – после модификации поверхности большим током (500 нА)

UBINB HINNAU WLA

Guiding для плоского капилляра: модель

Guiding для плоского капилляра: модель

Двойное управление пучками положительных ионов с помощью диэлектрических каналов

Схематичное изображение эффекта двойного управления пучком с помощью плоского диэлектрического капилляра при его повороте без нарушения положения плоскости на угол θ (вид сверху)

НИИЯФ МГУ, 2005 г.

Пучок протонов с энергией 100 кэВ, ток пучка 2мкА beam 1-стеклянные пластины 2- алюминиевая фольга угол смещения следа пучка, град.

ЛВИВ НИИЯФ МГУ

<u>капилляры</u>

Длина 76mm, 56mm Ширина 26mm Толщина каждой пластинки 0.8-1.0mm Расстояние между пластинами ~0.12mm

Вид спереди

Вид сзади

RIKEN, 2007 г

пучок

Вид сбоку

Вакуум ~1x10⁻⁷ Торр Напряжение отклоняющего конденсатора -/+ 1860В Расходимость пучка +/-Змрад $\Delta \theta = -1^{0}$

150мм * $tan(-1^0) = 2.6$ мм

Время экспозиции : 15 с

1

Отклоняющий конденсатор :

изменение напряжения с -1860 В до 0 В)

Double-guiding: модель

Схема расположения капилляра и экрана. R=5см, L=2.5см, d=0.01см.

Распределения заряда на верхней и нижней пластинке одинаково. Вначале для такой конфигурации вычисляется поле внутри капилляра. Затем отслеживаются траектории ионов, движущихся в этом поле. Начальные координаты выбираются случайным образом внутри области 0 < z < d и $-y_0 < y < y_0$ ($y_0 < 0.5 l$).

2y₀ – ширина пучка, *l* – расстояние между брустверами

Double-guiding: модель

Результаты компьютерного моделирования для протонов (энергия 100 кэВ), прошедших через плоский капилляр.

Распределение прошедших ионов для заданного распределения заряда, имеющего следующие параметры: l = 0,15 см , P = 0,33 см , $n_0 = 10^{14}$ см⁻² . Результаты слева $2y_0 = 0,02$ см, центр $2y_0 = 0,033$ см, и справа -- $2y_0 = 0,053$ см.

Практическое применение

(а) – тонкое выходное окно в
закрытом капилляре создавалось
путем срезания пучком ионов
Ga⁺ части стекла (стрелкой
показано направление среза);
(b) и (c) – фотографии закрытого
капилляра:
(d) – облучение биологической
клетки в жидкости пучком ионов

T. Ikeda, report at ICPEAC, July 2007

Заключение

- Диэлектрические каналы являются удобным инструментом для управления ионными пучками
- Диэлектрические каналы с тонким выходным окном позволяют вводить быстрые ионы в среду
- Это устройство может найти широкое применение в медицине, в исследовании биологических клеток, в микротехнологии и т.д.
- Плоские капилляры позволяют исследовать электрические свойства диэлектриков в процессе их облучения