Atomic Photoionization Dynamics in Intense Radiation Fields

M. Meyer LIXAM, Centre Universitaire Paris Sud, Orsay France

- Introduction
- Two-Color (XUV + NIR) Experiments
 - intense NIR
 - intense XUV
- Time-resolved Pump-Probe Experiments
- Conclusion

Free Electron Lasers in Hamburg

Free Electron Lasers in Hamburg

FLASH (Free electron LASer in Hamburg)

Ackermann et al., Nature Photonics 1, 336 (2007)

LINAC : 1 GeV 30 m fixed-gap undulator macro-bunch at 10 Hz > 30 bunches, 1 µs separation

SASE (Self Amplified Spontaneous Emission)

Ackermann et al., Nature Photonics 1 336 (2007)

FEL output builds up from spontaneous emission (photon noise)

Free Electron Laser Sources

FLASH	LCLS (Stanford, CA) SCSS (Japan)	European XFEL (Hamburg)
6 - 60 nm (0.5-1% b.w.)	0.15 – 1.5 nm	0.1 – 4.9 nm
(20 – 200 eV)	(0.8 - 8.3 keV)	(0.25 - 12.4 keV)
5 Hz (up to 60 bunches)	120 Hz / 60 Hz	10 Hz (3000 bunches)
10 - 100 µJ (average)	> 100 µJ	> 100 µJ
10 - 30 fs	1 - 100 fs / 500 fs	< 100 fs
~ 10 ¹³ photons/pulse	10 ^{12 –} 10 ¹³ photons/p	10 ^{12 –} 10 ¹⁴ photons/p
> 10 ¹¹ W / cm ²	> 10 ¹¹ W / cm ²	> 10 ¹¹ W / cm ²

SCIENCE at FLASH

- Intense Source
- $\sim 10^{12}$ 10^{13} photons/pulse

Studies on dilute targets

(HCI, m-sel. cluster, HeH+...)

- Short Pulses

Time-resolved studies (Two-Color Pump-Probe)

- $\Delta T = 10 20 \text{ fs}$
- ~ 10 100 $\mu J~~(> 10^{16}~W/cm^2)$

Non-Linear Processes (Multi-photon)

- Short Wavelengths
- 6 60 nm (20 200 eV)

Innershell Ionization

Photoionization Dynamics

 $hv_2 : fs - laser > 10^{14} W / cm^2$

 $hv_1 : FEL > 10^{12} W / cm^2$

I) Non-linear processes:

- Two-photon ionization
- Photoionization of dressed atoms

2) Dynamics in strong fields "Strong" field:

 $A + hv_1 + hv_2 \rightarrow A^+ + e^-$

One-step process !!

Relaxation Dynamics of Core Resonances

hv₂ : fs – laser >10¹⁴ W / cm² $hv_1 : FEL$ >10¹² W / cm²

3) Non-linear processes:

- Two-photon resonances
- Coupling of Autoionizing States

Photodissociation Dynamics

Time-resolved development of the electronic structure during dissociation or chemical reactions

Experiments at FLASH

FLASH + Optical Laser

Max-Born-Institut, Berlin I. Will, H. Redlin

Two-Color Photoelectron Spectroscopy

Two-color experiments

Intense optical field: Above Threshold Ionization of rare gases

Above Threshold Ionization of Rare Gases

Toma et al. PRA 62, 0618015 (2000)

Maquet/Taieb, J.Mod.Opt. 54, 1847 (2007)

Temporal resolution / Synchronization : ATI

M. Meyer et al. PRA 74 011401R (2006), P. Radcliffe, et al., APL 90 131108 (2007) A. Maquet, R. Taïeb, J. Mod. Opt. 54 1847 (2007)

Polarization control in two-color photoionization

M. Meyer et al., PRL 101, 193002 (2008)

Polarization control: two-color two-photon

FLASH: 13.7 nm, 10-20 fs, 20µJ

OL: 800nm, 4ps, 70µJ, 8 x 10¹⁰ W/cm²

Two-photon ionization He 1s² + hv_{XUV} + hv_{OL} ---> He⁺ 1s + ϵ s, ϵ d

$$\sigma(\theta) = 3S_d + (5S_s + S_d) \cos^2 \theta$$

Polarization control: two-color multi-photon

Temporal Control of ATI

FLASH: 13.7 nm, 30 μJ, 50 μm focus, 20 fs Opt. Laser : 800 nm, ≤ 4 mJ, 50 μm focus, 120 fs - 4 ps

ATI : Strong NIR Dressing Field (Xe)

Optical laser: > 10¹⁴ W/cm²

Multi-photon processes

h∨(800nm) = 1.5eV ∆E(²P_{3/2} - ²P_{1/2}) = 1.3eV

ATI : Strong NIR Dressing Field (Ne)

Multi-photon processes

"Soft-Photon Approximation"

A. Maquet, R. Taieb, J. Mod. Opt. 54, 1847 (2007)

XFEL: Laser-assisted resonant Auger decay

Laser Coupling of Final Ionic States

Ne 1s²2s²2p⁶

Southworth et al. PRA 52, 1272 (1995)

XFEL: Laser-assisted resonant Auger decay

Laser Coupling of Final Ionic States

A. Kazansky, N. Kabachnik, J. Phys. B (2009)

Interference of electron emission within one cycle of the optical laser field!!!

XFEL: Laser-assisted resonant Auger decay

Two-color experiments

Intense XUV field: Multi-photon Ionization

FLASH: Non-linear Processes

FEL : 93 eV, focus 2.6 µm ----> 7.8 x 10¹⁵ W / cm² ----> Xe⁺ Xe²¹

IP(Xe 21+) ≈ 5 keV

8.7 x 10¹² W cm⁻²

2.5 x 10¹² W cm² 3.5 4.0 4.5 5.0 8 11 14

Time-of-Flight / us

0.2

Electron Spectroscopy on atomic Xe

Electron Spectroscopy on atomic Xe

Electron Spectroscopy on atomic Xe

Two-photon one-color excitation : Kr* 3d⁹ 4d

One-photon ionization: $Kr + h_V \rightarrow Kr^+ 4p^5 / 4s^1$

Two-photon ionization: $Kr + 2 h_V \rightarrow Kr^+ 4p^5 / 4p^44d$

5 μm; >10¹⁴ W/cm²

Resonant Auger Decay: Kr* 3d⁹ 4d

S. Fritzsche, P. Lambropoulos, A. Mihelic,

Kr** 3d⁹4s²4p⁶4d (J=0,2) ---> Kr⁺ 3d¹⁰4s²4p⁴4d + e⁻

Dissociation dynamics of H₂

Dissociation Dynamics in H₂

FEL: 13.7 nm, 90.5 eV **Opt.Las. : 800 nm, 1.55 eV** 400 nm, 3.1 eV $H^{*}(n=2)$: E(bind) = 3.4 eV H*(n=3) : E(bind) = 1.5 eV $H^{*}(n=4) : E(bind) = 0.8 eV$ E (kin.) < 1.5 eV

Photoionization of excited atomic fragments

Ultra-fast molecular dissociation

400 nm Laser

800 nm Laser

Fast fragmentation < 100 fs

Summary

- Above threshold ionization (ATI) of rare gases

- Beyond Soft-Photon Approximation
- Non-linear (multi-photon) processes
 - Auger dynamics in dressed atoms (2-colour)
 - Ionization mechanisms (1-colour)
- Resonant two-photon excitation
 - 1-colour vs. 2-colour
- Molecular dissociation dynamics
 - Excitation of core resonances

Atomic Photoionization Dynamics in Intense Radiation Fields

Experiment

- LIXAM (Orsay, France) D. Cubaynes, M. Meyer
- DESY (Hamburg, Germany)
 - S. Düsterer, W.-B. Li, A. Azima, P. Radcliffe, H. Redlin, J. Feldhaus
- Dublin City University (Dublin, Ireland)
 - J. Dardis, P. Hayden, P. Hough, M. Kelly,
- V. Richardson, E.T. Kennedy, J.T. Costello

Theory

- LCP-MR (Paris, France)
 - R. Taïeb, A. Maquet
- State University Moscow (Russia)
 - E.V. Gryzlova, S.I. Strakhova, A.N. Grum-Grzhimailo
- FORTH (Heraklion, Crete)
 - P. Lambropoulos
- Jozef Stefan Institute (Ljubljana, Slov.) A. Mihelic
- GSI (Darmstadt, Ger.) / Univ. Oulu (Finl.) S. Fritzsche

Photoexcitation of excited molecules

F. Guimaraes, F. Gel'mukhanov, H. Agren et al. (KTH, Stockholm)

Vibrational wavepackets

F. Guimaraes, F.Gel'mukhanov et al. Phys. Rev. A72, 12714 (2005)

Pump: laser Probe: FEL

OL: 2 x 10¹² W/cm² , 100fs X-ray: 5 fs

Two-Color Pump-Probe Studies

- photoionization
- core electrons

Short fs pulses

Intense pulses

Atoms Molecules

Model systems

- electron correlation
- electron/nuclear dynamics

Basic processes Fundamental laws UV/Vis/NIR 400-800nm < 100 fs 1-5 mJ < 10¹⁵ W/cm²

Opt. laser

FLASH (Free electron LASer in Hamburg)

Ackermann et al., Nature Photonics 1, 336 (2007)

LINAC : 1 GeV 30 m fixed-gap undulator macro-bunch at 10 Hz > 30 bunches, 1 µs separation

FLASH + Optical Laser

Max-Born-Institut, Berlin I. Will, H. Redlin

ATI : Strong NIR Dressing Field (Ne)

Multi-photon processes

"Soft-Photon Approximation"

A. Maquet, R. Taieb, J. Mod. Opt. 54, 1847 (2007)

XFEL : Dynamics of Innershell Resonances

M. Martins et al. JPB 39, 2006

Next: Laser-assisted Auger decay

Nov. 2009 LCLS : Ne 1s at $h_V > 870 eV$

Next: Laser-assisted Auger decay

Dynamics in strong fields

- angular distribution
- $\Delta T(XUV) \approx \Gamma(Nat)$
- resonant Auger
- coupling of ionic states
- control of decay

Nov. 2009 LCLS : Ne 1s at $h_V > 870 \text{ eV}$

Strong XUV + NIR Fields

Sequential Two-Photon Double-Ionization

FEL: 46 eV, 20 μJ, 30fs OL: 800nm, 1.8mJ, 3ps

Photoionization of dressed ionic states

Ne²⁺ 2p⁴ ¹S₀ Ne^{+*} 2p⁵nl ${}^{1}D_{2}$ ³P_{0,1,2} **XUV**

Two-photon resonances

 $I(^{1}D_{2}) / I(^{3}P_{0,1,2}) = 0.67$

Self-Amplified Spontaneous Emission

... for X-ray wavelength

- no efficient reflectors exist
- lasing in a ,single-pass'
- amplified spontaneous emission

Two-color experiments

Two-photon resonant excitation

Next: Photodissociation dynamics

U. Hergenhahn, J.Phys.B37, R89 (2004)

Two-photon resonance : Kr* 3d⁹ 4d

Resonant Auger Spectrum (Two-Photon)

Two-photon resonance : Kr* 3d⁹ 4d

P. Lambropoulos, A. Mihelic

Ponderomotive shift "S" of resonance positions

Two-photon resonance : Kr* 3d⁹ 4d

Next: Laser-Coupling of Autoionization States

Temporal resolution / Synchronization

Average Mode: Cross Correlation Curve

Single Shot Mode:

Photoelectron spectra

M. Meyer et al. PRA **74** 011401R (2006), P. Radcliffe, et al., APL **90** 131108 (2007) A. Maquet, R. Taïeb, J. Mod. Opt. **54** 1847 (2007)