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RESONATING GROUP MODEL (WHEELER, 1937)

The wave function of the resonating group model is
chosen in the form:

Yain, = A{\PAI\{JA}P@)},
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The A-fermion Schrodinger equation
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results in two-body equation of another type:
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There is a possibility to rearrange it in a Schrodinger-
like form:

(NJ'T + NV, —E")e(p) =0

but the resulting Hamiltonian turn out to be non-
Hermitian one.



Introducing a new wave function:
- N1/2 =
o(p) =N, “o(p)

one can obtain the Schrodinger-like equation with
Hermitian Hamiltonian.

(N —1/2-|- N N —1/2V —1/2 )(I)(P) 0,

where the habituated orthonormalization conditions
take place:

<<|>(f))\(|)(5)> =1 - for states of discrete spectra,

<(|)E ([3)\4)9(5)} =d8(E — E"), etc. - for continuum states.



OUTGROWS OF RGM

1. A unified theory of nucleus (K. Wildermuth, Y.C. Tang).
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2. Algebraic version of RGM (G.F. Filippopv et al).
3. Generator coordinate method (H. Horiuchi).

4. Many-body RGM (M. Kamimura).

5. Approximate methods

a) Brink’s method (1957).

b) Cluster model (B.F.Beyman, A. Bohr, 1958)

c) Orthogonality conditions model (S. Saito, 1969).
d) THSR-method (1997).



6. Methods basing on non-clustered A-nucleon wave
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functions but related with GCM.
a) Antisymmetrized molecular dynamics.

b) Fermionic molecular dynamics (H. Feldmeier, T.
Neff).
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Density contours of 13C nucleus states (internal CS)



CLUSTERING IN THE SHELL MODEL (MANG ,1957)

A basic concept of the approach is the definition of
measures of clustering in arbitrary A-nucleon model
(cluster characteristics) [H.J. Mang Z. Phys. 148, 556
(1957); V.V. Balashov et al. JETP 37, 1385 (1959); a
set of works by SINP MSU and VSU groups]:

a) the spectroscopic amplitude

CIC/IIDC =<y, | A{LPD¢nI (L)Y} >

b) the projection of the nuclear wave function onto

the cluster channel — the cluster form factor and its
norm — spectroscopic factor
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MATHEMATICS OF CLUSTERING
l. Translationally- invariant shell model (TISM)

Cluster fractional parentage coefficient (FPC) is defined
as: . A -
FMIII)C =Yy [AlYp90, (0} > (1)

where: 4, (p) — wave function (WF) of the relative motion,

VY,,Ys,Y. — internal translationally-invariant wave

functions (WFs) of the mother, daughter nuclei and the
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Il. Traditional shell model
Multi-nucleon fractional parentage coefficient of the
X-nucleon configuration ¥, is defined as:

R ON) =<¥y RO Ao (R Ya}> )

where the notation: ¥, (R, ,) Stands for the WF

of the traditional shell model containing the redundant
center-of-mass (CM) coordinate.

The formalism of translationally-invariant shell model
[l.V. Kurdiumov, et al. A 145, 593 (1970)] is too
cumbersome for actual calculations. Therefore the
transformations expressing (1) through (2) were
built.



In the case that C is the X-nucleon cluster, the WFs of

tlahAn mAnthhAar AarnA +lhAa AAariAalhdAar mirAalar \OJ D \ ~A s /D N\
tne motner ana tne aaugnter nuciei ¥, (R,,) ana Y (Ry)

are superpositions of the oscillator WFs, the CM
motions of the nuclei described by these WFs are zero
oscillations the formula

i i A n/2
Func :ZFMIIDC =2.(-1) (mj X Fh/ITD(XN)
[Yu.F. Smirnov, Yu. M. Tchuvil’sky, Phys. Rev. C 15,
84 (1977)] takes place. Here first two multipliers

present the recoil factor and the multiplier

Xy =<V 1y (R >
denotes cluster coefficient. Methods of calculation of
this object for various cluster masses and nucleon
configurations are developed in many papers.



As an example, a general expression for the cluster

coefficients of light d, t
ullt Ay L

form:
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[Ichimura et al. Nucl. Phys. A 204, 225 (1973)]. The
SU(3)-coupling of the one-nucleon WFs is implied

here. The components of the symmetry (n0);n=3>.n,
contribute to the expression only.



MOTIVATIONS

1. A large body of experimental information concerning
cluster decay widths of resonance states is accumulated.

2. Redefinition of the cluster spectroscopic
characteristics has changed the view on clustering
significantly.

3. Supercomputing era came. Advanced approaches to
nuclear structure producing wave functions of nuclei
which make it possible to describe nuclear spectra,
moments, electromagnetic transitions, etc. with rather
high quality are created.



INTENSIONS

A global intension is to create a theory of clustering
suited to the requirement of supercomputing era.

A particular program is to build techniques for
description of the cluster observables for the wave
functions of such a type in the case that they are
representable in the form of the oscillator expansion.

Contrary to the modern approaches to clustering
concentrating attention on the strongly clustered
states we try to consider all states as the objects.



NUCLEAR PROCESSES AND MANIFESTATION
OF CLUSTERING

|. Spontaneous cluster decay.

[l. Cluster transfer reactions.

[1l. Cluster knock-out.

V. RESONANCE SCATTERING OF COMPOSITE
PARTICLES AND RESONANCE REACTIONS.

In particular studies in the framework of resonance
processes by thick target technique Iin the inverse
kinematics. The investigations are:

1. Modern, being in progress, promising.

2. Providing broad and rich spectra.
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ALPHA-PARTICLE LEVEL DENSITY PUZZLE
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FIG. 3: The excitation function for 4 C+a elastic scattering at 180° in c.m. frame for the entire

energy range measured in this experiment. The solid curve is the best R-matrix fit.

M.L. Avila et al. Phys. Rev. C 90, Ne 2, 024327 (2014).



Window of observability.



REDEFINITION OF THE CLUSTERING MEASURES.
“NEW” CLUSTER CHARACTERISTICS.

In the paper [T. Fliessbach and H.J. Mang, Nucl. Phys. A
263, 75 (1976)] the habituated view on the clustering
measures was thrown doubt. The matter is that a certain

matching procedure (point or integral) is required to
deduce the amplitude and the width of a cluster channel.

The values of one and the same sense can solely be
matched (compared).



So the cluster form factor

() =< W,y | Ay S PV (O, W >

ol

must be matched with the same projection of the
cluster channel WF. Not:

D, (p) ‘%’ f,(0),

f () — a solution of two-body problem, with the traditional
norm, but:

D (p) +— D'(p)

! A 1 !
D(P) =< Wo.c | AWy —-0(p = PV (@)} >

where:



And the channel wave function:

VYp,c = A{‘PD(P@)\PC § =

microscopic solution of A-nucleon problem which
may be RGM, OCM, etc. In the case that it is
normalized as usual:

1
(Forc [Woie) = (5(5 —E", 8(k —k"), etc.]

the WF of the relative motion must be normalized as:

(N 0(p)

where:
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As a result:
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R. Lovas et al. Phys. Rep. 294, 265 (1998).



NEW SPECTROSCOPIC FACTORIN A
CONFIGURATION MIXING SHELL MODEL

In the case that the WFs Y,Y. are presented in the
form of superposition of the oscillator WFs the
calculations of “new” characteristics can be carried out

by the following way:

1. The eigenvalues & | and the eigenfunctions fy; (©)
are found by diagonalization of the norm kernel

matrix:

IN =< P ody (B) e | A | Y oy ()P >
£ (p) = Zn: By (0) -

& =<¥pf (DY AV (DY > (3)



2. The “new” cluster form factor ® ', (p) is expanded
onto the eigenfunctions of the norm kernel :

D' (p) = 25_1/2 <D (p)| T,(p)>T,(p)=

25_1/2 CI(]/IIDC L P (P).

n
the “new” spectroscopic factor takes the form

| . -1 nl n'l K K
Sybe _%gk > CocCupc B Bryi-
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In the particular case that the sole value of n contributes:

S ' _ SMDC _ [FI\/TD (CN )]2
MDC o R 2
MZSM'DC MZ'[FMD(CN)]




Inserting the complete set of the resonance wave
functions

=YY, ><¥, |
|
into exp. (3) it is easy to deduce the relationship:

-1 nl n'l k pk
I=¢& 2 CMiDCCMiDC B, B,
Inn'
Performing summation over k one can obtain:

Zsllv'th =dim || K ||

|
The sum rule of the “new” spectroscopic factors
corresponding to a fixed value of n (cluster
strength in 2hw domain turn out to be unity. Thus
the statistical properties are described accurately.
That is critical for the dense spectra. In average:

SII\/I(E)DC ~ pl_l(E)



SHELL MODEL CALCULATIONS

As usual the WFs of the modern versions of the shell
model are:

a) presented in the form of a superposition of A-nucleon
oscillator WFs,

b) fulfill the factorization condition:

LPM(D)(RM(D)) = (DOOO(RM(D))\PM(D)‘

Therefore they are convenient in operating in the just
presented formalism.
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s the case foi dpplUdblleb plUpUbeu earlier
the lowest oscillator wave function of a cluster is
used in the approach:

¥ = X =4N =0[f]=[4](Au) = (00)L =0S =0T =0 >

where [f ] is the symbol of the permutation symmetry
(Young frame) and (Ap) — the SU(3) symmetry (Elliott
symbol). The problem is concentrated on the
calculation of the fractional parentage coefficient :

<P, (R AP, (Ry)W i (Ap) = (n0)} >



To do that within the shell model approach
normalized SU(3) states in are constructed by
diagonalization of the SU(3) Casimir operator. In
the explicit form these operators can be written as:

C=(Q-Q)-3L
where the projection of the Hermitian conjugated
quadrupole operator takes the form:

~ =Rl S S -
Q'=V47/53. (0} Lo Tt HHB BV (G58,))
J=l

L — operator of angular momentum.



From the technical point of v
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To determine the permutation symmetry in each state
obtained by this way the operator:

F =1/2(1+P®

is used. Its mean values are different for different Young
frames [f].



Tth apprngr‘h as a \Alhnln was hgllnrl (“Illei'nr_l\llmlnnn
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Configuration Interaction Model (CNCIM) and presented
first time in the paper [A. Volya, Yu.M. Tchuvil’sky. Phys.
Rev. C 91, 044319 (2015).

The Hamiltonian proposed in the paper [Y. Utsuno, S.
Chiba, Phys. Rev. C 83, 021301 (2011) is used.

For (s-d)-shell nuclei presented bellow the core is 160
and the size of the basis (m-scheme) is about 104x104 .

For 160 and 10Be the core is 4He. The size of the basis
is about 107°x3-107-° .
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GENERAL TRENDS OF THE SPECTROSCOPIC
FACTORS.

Spectroscopic factors of a=clusters in 32S
states
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O -cluster strength in 32S spectrum

E [MeV]



Alpha cluster spectroscopic factors in Mg

E §0u Theoretical calculations in SD shell

1 __an
L=

2y

4

L]

E [MeV]

N [ l-l -III||||I_:
L=2

23

Ejquat =Bt [MEV]

Experimental results
E. 5. Diffenderfer, et.al Phys. Rev. C 85,034311 [2012).

,.-
=
=
==

8.3 1'3'"' Jl o
0 II" "nl-"! n T J‘ 1 .er

J..J'ﬂ rl'; ’hlu'r’ll

(B+) B 2 2 +
(a) znwn:-" s Mg*.x r!'I*In.:{lﬂ' )

300 - U:’J

r Mg*-?*EUNﬂE ™

da® > Ne(6
10 |::¢_:| z"-- ! E’{ .] 33_.4.
. 2712
S0 f
L Ji j'.'"ﬁl'| h
|::| 1 1 1 | 1 1 1 _I_:-'\R.n-"l_' ]‘\_
16 18 20 22 24 2f| I-'d 10
Excitation Encrgy [MeV¥)
7 M E:i e 5 Rotationzl Struciures
usda SM -
6T n v "'-: {:\\L“ i‘lzg |
K=4 I‘-"J. "‘- -
5+ . e T m |
4 - ca =
3 Ea =
4t 8.
"K=2 + 7t
F t o -Q 1
3 B e .r*;? L0201
2 oy o
e ““F‘ —'m, .
1rF W=0" e "'-J- Gy N
- !_5'1 o,
0 -ﬁ*‘-' i 1.21
o 1 2 3 4 &6 6 7 & 8 10 11 12 13

JIH]



CLUSTER-NUCLEON CONFIGURATION

ERACTION MODEL AND DESCRIPTION
EXPERIMENTAL DATA
O -clustering in the ground states of (s-d)-shell
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O -clustering in 160
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O=clustering in 10Be

|72 sy | EF | I | EYT [ T57 | &) |80
07 [0.686] 0.000 0

27 [0.563] 3.330 3.368

0+ [0.095] 4244 6.197

2+[0.049] 5.741 5.958

2+ [0.052] 6.123 (@)

17 [0.027] 6.290 5.96

37 |0.098] 6.926 7371 0.427%
27|0.016] 7.650 [3-107F 7.542 [5-1077 1.1™9 [ 0.19
0% [0.023] 8.068 [ 17

47]0.049] 8933 47

15 [0.045] 9755 | 180 10.57

35 [0.046] 9897 | 61

2+]0.027[10.819| 50 _ e

2+ ]0.023[11.295] 43 936 141 0.074
0+ [0.153]11.403] 800

4+ [0.370[11.426] 180 10.15  [185%'| 1.5 [ 0.38
57[0.148[11.440] 150 11.93 200 0.20
17 [0.013[12.650 76

61 [0.013[13.134] 24

55 [0.128]13.545] 250 | 13.54%0 | 99 1.0 [0.051
2+,|0.040]13.789| 240

4+[0.011]13.992] 20 _
47[0.022(14.233] 40 1176 | 121 0.066
0 [0.018]14.252] 120

3; [0.014[14.468] 77

5; [0.059]14.992] 180

4+ [0.161[15.071] 800 [15.3(67 )| 800" 0.16
2t,|0.046[15.534] 330

‘@ The existence of this state is suggested by the existence of
8.070 MeV state in '°B which could be the isobaric analog,
see conceptual discussion in Ref. [20];

®) Widths deduced from the isobaric analog channel

OB —SLi(0*)+a [21,22];

) results from Ref. [22];

@) results from Ref. [23].

© Total width [*".

') In Ref. [22] the state was assigned spin-parity 6*.



1.

2.

CONCLUSIONS

A theoretical approach and mathematics making
possible to calculate cluster spectroscopic
amplitudes, form factors and spectroscopic factors
of arbitrary nuclear states in advanced versions of
the shell model including no-core one is built.

It iIs proved that this the expedient allows one to
describe accurately the statistical properties of
dense cluster spectra.

3. Using this approach pioneering descriptions of the

spectroscopic characteristics of dense spectra of
highly excited states of nuclei are obtained.

The example demonstrating that the cluster
observables may be a tool of the test on the quality
of a dynamical model is found.



5. The approach already built looks promising for
applications in various areas of the cluster
physics.

6. We see ways of great improvement of the
developed approach such as: involving of realistic
cluster wave functions, description of heavy
cluster channels, creation of hybrid models, etc.
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