Ядерные данные для коллайдеров ядро-ядро

И.А.Пшеничнов Институт ядерных исследований РАН

pshenich@inr.ru

НИИЯФ МГУ Семинар ОЭПВАЯ 20.11.18

На БАК в ЦЕРНе изучаются столкновения ядер с энергиями в ~3000 раз превышающими их массу, не говоря уже об энергии связи нуклонов и энергии возбуждённых состояний ядер.

- Рекордные плотности энергии дают возможность исследовать фазовый переход между адронной материей и кварк-глюонной плазмой.
- На первый взгляд влиянием ядерной структуры в ядроядерных столкновениях можно полностью пренебречь: значение имеют только количества нуклонов в каждом их ядер и размеры ядер.
- Однако в дальнейшем будет показано, что классическая ядерная физика, физика фотоядерных реакций, ядерная структура занимают определённое место на БАК.

Содержание

- Физика электромагнитных взаимодействий на **CERN SPS и LHC. Основные понятия, теория,** модель RELDIS.
- Эксперименты по изучению ЭМД и сравнение теории с их результатами.
- Технические проблемы на LHC в результате электромагнитных взаимодействий ²⁰⁸Pb, ускорение других ядер?
- ЭМД на будущих коллайдерах: HL-LHC, HE-LHC, FCC-hh. Альтернатива ²⁰⁸Pb?

В зависимости от прицельного параметра наблюдаются либо адронные либо электромагнитные взаимодействия

Ультра-

периферические

взаимодействия

Плотности ядер перекрываются. Сильные взаимодействия.

Адронные взаимодействия

h

Нет перекрытия ядерных плотностей. Дальнодействующие электромагнитные силы. 4

Метод эквивалентных фотонов Вайцзеккера-Вильямса

I.A.P. Phys. Part. Nuclei 42(2011)215

Спектр фотонов Вайцзеккера-Вильямса

Спектр эквивалентных фотонов от ядра (A_1, Z_1) , $\gamma \gg 1$ которые поглощаются ядром (A_2, Z_2) в столкновении с прицельным параметром b

$$N_{Z_{1}}(E_{1},b) = \frac{\alpha Z_{1}^{2}}{\pi^{2}} \frac{x^{2}}{\beta^{2} E_{1} b^{2}} \left(K_{1}^{2}(x) + \frac{1}{\gamma^{2}} K_{0}^{2}(x) \right).$$

x = $E_{1}b/\gamma\beta$ α - постоянная тонкой структуры
 K_{0}, K_{1} - модифицированные функции Бесселя
Среднее число фотонов, поглощённых ядром $(A_{2}, Z_{2}):$
 $m_{A_{2}}(b) = \int_{E_{min}}^{E_{max}} dE_{1}N_{Z_{1}}(E_{1},b)\sigma_{A_{2}}(E_{1}) ,$

 $\sigma_{A_2}(E_1)$ - полное сечение фотопоглощения ядром (A_2, Z_2)

Интегрируем по прицельному параметру

Спектр эквивалентных фотонов от ядра (A_1, Z_1) которые поглощаются ядром (A_2, Z_2) в столкновении с прицельным параметром b

$$\begin{split} N_{Z_1}(E_1,b) &= \frac{\alpha Z_1^2}{\pi^2} \frac{\mathsf{x}^2}{\beta^2 b^2} \Big(K_1^2(\mathsf{x}) + \frac{1}{\gamma^2} K_0^2(\mathsf{x}) \Big). \\ \mathsf{x} &= E_1 b / \gamma \beta \qquad \alpha \text{ - постоянная тонкой структуры} \\ K_0, K_1 &- \text{модифицированные функции Бесселя} \\ K_0, K_1 &- \text{модифицированные функции Бесселя} \\ &= E_1 R / \gamma \beta \\ \text{Інтегрируем:} \quad n_{Z_1}(E_1) &= 2\pi \int_{-\infty}^{\infty} \mathrm{d} b \, b \, N(E_1,b) = \\ &= \frac{2\alpha Z_1^2}{\pi} \frac{1}{\beta^2} \Big[\xi K_0(\xi) K_1(\xi) - \frac{\beta^2 \xi^2}{2} (K_1^2(\xi) - K_0^2(\xi)) \Big] \\ \text{Полное сечение ЭМД} \\ \mathsf{в первом порядке вычислим как:} \quad \sigma^{ED} &= \int_{-\infty}^{-\infty} \frac{\mathrm{d} E_1}{E_1} n_{Z_1}(E_1) \sigma_{A_2}(E_1) \\ \sigma_{A_2}(E_1) \text{ - полное сечение фотопоглощения ядром} \quad (A_2, Z_2) \qquad 8 \end{split}$$

Спектры эквивалентных фотонов замечательные выражения

$$\begin{split} n(E) &= \frac{2\alpha Z^2}{\pi} \frac{1}{\beta^2} \Big[\xi K_0(\xi) K_1(\xi) - \frac{\beta^2 \xi^2}{2} (K_1^2(\xi) - K_0^2(\xi)) \Big] \\ \xi &= ER/\gamma\beta \end{split}$$
 Die in diesem Ausdruck vorkommenden Integrale können mit den modi-

fizierten Besselschen¹) Funktionen zweiter Art, nullter und erster Ordnung ausgedrückt werden. Man hat in der Tat

$$\int_{-\infty}^{\infty} \frac{\cos \omega \varkappa d \varkappa}{(1+\varkappa^2)^{3/2}} = 2 \omega K_1(\omega),$$

1924 год
$$\int_{-\infty}^{\infty} \frac{\varkappa \sin \omega \varkappa d \varkappa}{(1+\varkappa^2)^{3/2}} = -2 \omega K_0(\omega).$$

Durch diese Formeln finden wir sofort:

$$J(\nu) = \frac{8 \pi c \, \varepsilon^2 \, \nu^2}{v^4} \left\{ K_0^2 \left(\frac{2 \pi \, \nu \, b}{v} \right) + K_1^2 \left(\frac{2 \pi \, \nu \, b}{v} \right) \right\}, \qquad (4)$$

setzen wir zur Abkürzung

$$B(\boldsymbol{\omega}) = K_0^2(\boldsymbol{\omega}) + K_1^2(\boldsymbol{\omega}),$$

so finden wir

$$J(\mathbf{v}) = \frac{8 \pi c \, \varepsilon^2 \, \mathbf{v}^2}{v^4} \, B\left(\frac{2 \pi \, \mathbf{v} \, b}{v}\right). \tag{5}$$

¹) Siehe z. B. Gray, Mathews and Macrobert-Bessel Functions, London 1922, wo man auch numerische Tabellen dieser Funktionen finden kann. Über die Fouriersche Entwicklung dieser Kräfte siehe auch Bohr, l. c. O

Получены Э. Ферми в 1924 году и используются до сегодняшнего дня, когда построены и работают RHIC и LHC!

Вопрос: гигантские резонансы характеризуются определёнными мультипольностями E1, E2, M1 ...

Стоит записать так: (Winther & Alder, 1979, semiclassical approach)

$$\sigma^{ED} = \sum_{l} \int_{E_{min}}^{E_{max}} \frac{\mathrm{d}E}{E} \left[n_{El}(E) \sigma_{A}^{El}(E) + n_{Ml}(E) \sigma_{A}^{Ml}(E) \right]$$

$$n_{E1}(E) = \frac{2\alpha Z^2}{\pi} \frac{1}{\beta^2} \Big[\xi K_0(\xi) K_1(\xi) - \frac{\beta^2 \xi^2}{2} (K_1^2(\xi) - K_0^2(\xi)) \Big]$$
$$n_{M1}(E) = \frac{2\alpha Z^2}{\pi} \Big[\xi K_0(\xi) K_1(\xi) - \frac{\xi^2}{2} (K_1^2(\xi) - K_0^2(\xi)) \Big]$$

$$n_{E2}(E) = \frac{2\alpha Z^2}{\pi} \frac{1}{\beta^4} \left[2(1-\beta^2)K_1^2(\xi) + \xi(2-\beta^2)^2 K_0(\xi)K_1(\xi) - \frac{\beta^4 \xi^2}{2} (K_1^2(\xi) - K_0^2(\xi)) \right]_{10}$$

Низкие энергии

Неоднородность поля внутри мишени обеспечивает большой вклад квадрупольной компоненты

 $n_{E2} \gg n_{E1} \gg n_{M1}$

Ультрарелятивистские энергии

Ζ

В рассматриваемом ультрарелятивистском случае:

 $\gamma \gg 10, \ \beta \to 1$

И спектры для всех мультипольностей совпадают!

 $n_{E2} \approx n_{E1} \approx n_{M1} = n$

Все мультипольности входят в расчеты с одинаковым весом, используем

$$\sigma_A(E) = \sum_{\pi l} \sigma_A^{\pi l}(E)$$
$$\sigma^{ED} = \int_{E_{min}}^{E_{max}} \frac{dE}{E} n(E) \sigma_A(E)$$

О мультипольностях можно забыть и использовать выражение для спектра эквивалентного излучения, полученное Э. Ферми (оно совпадает с n_{El})!

Ограничения из кинематики процесса

Условие когерентности (излучают все заряды в ядре с радиусом *R*, ядро остается в основном состоянии) ограничивает квадрат уносимого фотоном 4-импульса :

 $Q^2 \le 1/R^2$

поэтому излучение ядра состоит из фотонов с малой виртуальностью, в отличие от таковых в реакциях (e,e') – фотоядерные реакции с реальными фотонами.

Обозначим 4-импульс фотона
$$q^{\mu}=(E_{\gamma},ec{q})=-Q^{\mu}$$

Считаем, что движущееся со скоростью $v, \gamma = 1/(1 - v^2)^{1/2} \gg 1$ ультрарелятивистское ядро осталось в своем основном состоянии а фотон унес пренебрежимо малую часть кинетической энергии ядра. Вместе с условием когерентности это дает:

$$q_{\parallel} \approx E_{\gamma} < \frac{\gamma}{R}, \ q_{\perp} < \frac{1}{R}.$$

Столкновения ядер на RHIC и LHC

- Тяжёлые ядра Z ~ 80
- Огромное Лорентц-сжатие: $\gamma_{eff} = 2\gamma_{beam}^2 1$
- Для LHC: $\gamma_{eff} = 1.7 \times 10^7$

«Сжатие железнодорожного состава до толщины листа бумаги»

 $\begin{array}{l} \mbox{RHIC:} E_{\gamma} < 300 \, {\rm GeV} \\ \sqrt{s}_{\gamma N} < 24 \, {\rm GeV} \end{array}$

LHC: $E_{\gamma} < 200 \,\mathrm{TeV}$ $\sqrt{s_{\gamma N}} < 600 \,\mathrm{GeV}$

Распределение Пуассона. Средние числа поглощённых фотонов приближаются к единице при малых *b: многофотонные процессы*

I.A.P., Proc. EMIN-2003, p.234 14

Спектр эквивалентных фотонов и процессы фотопоглощения на ядрах:

Поглощение фотонов ядрами:

Возбуждение гигантских резонансов (GDR), E_{γ} <30 МэВ

- Квазидейтронное поглощение: $\gamma + (pn) \rightarrow p + n, E_{\gamma} < 140 \text{ МэВ}$
- Возбуждение Δ-изобары
- Множественное рождение пионов

Необходима совершенная модель фотоядерных реакций!

C. Scheidenberger, I.A.P. et al., Phys. Rev. Lett. 88 (2002)042301

Для описания взаимодействия фотонов с ядрами создана модель RELDIS: Relativistic ELectromagnetic DISsociation

- RELDIS опирается на модель фотоядерных реакций (ИЯИ, И.А.П., А.С. Ильинов, с 1995 года)
- Поглощение фотонов ядрами рассматривается как многостадийный процесс:
 - поглощение фотона на внутриядерном нуклоне или на квазидейтонной паре (учитывается свыше 100 каналов при энергиях фотонов несколько ГэВ)
 - внутриядерный каскад образовавшихся адронов
 - статистический распад возбужденного <u>остаточного</u> <u>ядра:</u> конкуренция между испарением нуклонов и делением.
- Модель RELDIS: И.А.П, И.Н.Мишустин, Я.Бондорф, А.С.Ботвина

Различные маханизмы взаимодействия фотонов с ядрами

Распад возбуждённых ядер: испарение, деление, мультифрагментация

GDR

Из тяжелых ядер при низких возбуждениях испаряются преимущественно нейтроны

n

Statistical multifragmentation model (SMM): J.P.Bondorf et al., Phys. Rept. 257(1995)133, включает испарение и деление

 π^+ π^0 I.P., Phys. Part. Nuclei 42(2011)215 Мультфрагментный распад возможен для легких ядер см. I.P., I. Mishustin, J. Bondorf et al., PRC 57 (1998) 1920 18

I.A.P. et al., Eur. J. Phys. A 24(2005)69

Эволюция энергии возбуждения остаточного ядра с ростом Е_ү

• $< E^* >$ растёт с увеличением E_{γ}

- Доля энергии фотона, переходящая в $\langle E^* \rangle$ в среднем падает
- Переход от коллективных возбуждений ядра к возбуждению отдельных нуклонов (Δ-изобара и другие барионные резонансы)

 <*E**>/*A*_{RN} < 1.5 МэВ. Для тяжёлых ядер доминирует испарение нуклонов и деление 19

Развал легких ядер под действием ЭМ полей

ЭМ диссоциация 200А ГэВ ¹⁶О в фотоэмульсии

	Доля %				
Мода распада		Эксперимент			
	RELDIS	G.Baroni et al.,1990	G.Singh et al., 1992		
¹⁵ N+p	46.7	56.08+/-3.93	49.45+/-6.62		
¹² C+α	13.7	25 58±/ 2 61	23 01+/ / 80		
¹² C+2d	43.2	23.307/-2.01	23.01+/-4.80		
¹¹ B +α+p					
⁸ Be+α+2d	6.26	4.42+/-1.10	10.62+/-3.06		
⁸ Be+ ⁷ Li+p					
⁷ Li+2α +p			4.42+/-1.98		
7 Li+ α +2d+p	0.95	2.49+/-0.83			
⁷ Li+4d +p					
4α					
3α+2d	3.0	0.01 / 1.40	10.00+/.0.01		
2α+4d		8.01+/-1.49	12.39+/-3.31		
α+6d					

I.A.P. et al., Phys. Rev. C 57(1998)1920

Поглощение одного или двух фотонов приводящее к одиночной диссоциации

Наблюдаем за разрушением одного из ядер!

Лидирующий порядок (LO) 98-99%

Следующий к лидирующему (NLO) 1-2%

О упругий процесс

неупругий процесс

Одиночная электромагнитная диссоциация

Сечение электромагнитной диссоциации (LO) с развалом ядра А по каналу *i*: $\sigma_{A_2}^{\text{SED}}(i) = 2\pi \int^{\infty} db \, b \, P_{A_2}(b, i),$ b_c E_{max} $P_{A_2}(b,i) = e^{-m_{A_2}(b)} \int dE_1 N_{Z_1}(E_1,b) \sigma_{A_2}(E_1) f_{A_2}(E_1,i),$ E_{min} $\sigma_{A_2}(E_1)$ - полное сечение фотопоглощения Mutual EMD Beam A and C Single EMD Single EMD of beam A of beam C C Вычисляется С С С методом Монте-Карло

Эмиссия нейтронов в электромагнитной диссоциации ядер золота и свинца

Фиксированные мишени ~10-30 b

Пучки ионов: RHIC& LHC ~100-200 b

M.B. Golubeva, ..., I.A.P. et al., Phys. Rev. C 71(2005)024905

Эксперимент ALICE-Iumi Эмиссия нейтронов вперед Pb 30 ГэВ/нуклон @SPS

ИЯИ-Турин-ЦЕРН

Электромагнитные процессы $\sim Z^2_{target}$

Прямое измерение эмиссии нейтронов вперед

Кривые — результаты RELDIS

M.B. Golubeva, ..., I.A.P. et al., Phys. Rev. C 71(2005)024905

Эмиссия нейтронов вперед: предсказания модели RELDIS.

Малые поперечные импульсы нейтронов, $P_t < 0.1 \ {\Gamma }$ SB/c, от электромагнитной диссоциации — эффективно регистрируются с помощью ZDC (см. далее)

M.B. Golubeva, ..., I.A.P. et al., Phys. Rev. C 71(2005)024905

Полное сечения изменения заряда ядра

электромагнитное взаимодействие -RELDIS

адронное взаимодействие – модель abrasion-ablation

На тяжёлых мишенях вклады сопоставимы!

Точки - эксперименты: C. Scheidenberger et al., S. Cecchini et al., NPA 707 (2002) 513

C. Scheidenberger, I.A.P. et al., Phys. Rev. C 70(2004)014902

Вывод: электромагнитный вклад доминирует во взаимодействиях ядер с небольшими изменениям заряда при ү>>10

электромагнитная фрагментация доминирует в каналах ΔZ =-2, -1, 0, +1

адронная фрагментация

I.A.P. et al., Phys. Rev. C 70(2004)014902

Эксперимент: H. Dekhissi et al., NPA662 (2000) 207 28

Трансмутация ядер 208 Pb на LHC

	нуклиды	$\sigma_{EMD}(Z)(b)$
Z=82	¹⁸⁸⁻²⁰⁸ Pb	144.7
Z=81	¹⁸⁵⁻²⁰⁷ Tl	29.9
Z=80	¹⁸¹⁻²⁰⁶ Hg	13.
Z=79	$^{178-205}Au$	6.2
всего Z=79-82		193.8

Одно ядро золота образуется в результате ЭМД почти так же часто, как происходит адронное взаимодействие Pb-Pb!
Мечта средневековых алхимиков реализована на БАК ...

Зависимость сечения ∆Z=+1 от ядрамишени при разных энергиях

C. Scheidenberger, I.A.P. et al., Phys. Rev. Lett. 88 (2002)042301

Сопоставим со спектром эквивалентных фотонов

C. Scheidenberger, I.A.P. et al., Phys. Rev. Lett. 88 (2002)042301

Образование ₈₃Ві из ²⁰⁸82РЬ под действием эквивалентных фотонов

 γ n -> p $\pi^$ фоторождение π^- на нейтроне, протон отдачи захватывается ядром, а π^- его покидает

Примеры вычислений RELDIS для Е_γ=190, 260, 520 и 960 МэВ

C. Scheidenberger, I.A.P. et al., Phys. Rev. C 70(2004)014902

Учет ЭМ механизма для ∆Z=+1 требует пересмотра прежних аппроксимаций_____

Tsao, Silberberg, Barghouty, Astrophys. Journ. 501 (1998) 920

Следует учитывать ЭМ процесс ΔZ=+1 для взаимодействий средних и тяжелых ультрарелятивистских ядер с γ >> 10

Точки: Geer'95, Cummings'90, Waddington'00

C. Scheidenberger, I.A.P. et al., Phys. Rev. C 70(2004)014902

Взаимная электромагнитная диссоциация: в одном столкновении разрушаются оба ядра

В столкновениях с малыми

 $b \sim R_1 + R_2$ поглощается в среднем один фотон на каждое ядро – вероятны поглощения 2 и 3 фотонов!

Взаимная диссоциация 6.2 барн @LHC Также три и четыре фотона: 1.5 барн и 0.23 барн

I.A.P. Proc. EMIN-2003 p.234 I.A.P. et al., Phys. Rev. C 64(2001)024903 34

Моделирование взаимной диссоциации

Сечение электромагнитной диссоциации (LO) с развалом ядер A_1 и A_2 по каналам *i* и *j*, соответственно:

$$\sigma_{LO}^{\text{MED}}(i|j) = 2\pi \int_{b_c}^{\infty} db \, b \, P_{A_1}(b,i) \, P_{A_2}(b,j)$$

Каждое излучение фотона можно рассматривать независимо от остальных:

Энергия фотонов ограничена: $E_1, E_2 < E_{max} = \gamma/R$

Полная энергия излучающего фотон ядра: $E_A = \gamma M_A$ Отношение $\frac{E_{max}}{E_A} = \frac{1}{RM_A} < 10^{-4}$ для тяжелых ядер достаточно мало!

Импульс и энергия ядра практически не меняются в процессе излучения. Последовательность излучения фотонов для вычисления сечений не важна.

Взаимная электромагнитная диссоциация

Полные сечения различных порядков с развалом ядер

$$\begin{split} \sigma_{\rm LO}^{\rm MED} &= 2\pi \int_{b_c}^{\infty} db \, b \, m_A^2(b) e^{-2m_A(b)}, \\ \sigma_{\rm NLO_{12}}^{\rm MED} &= 2\pi \int_{b_c}^{\infty} db \, b \, \frac{m_A^3(b)}{2} \, e^{-2m_A(b)}, \\ \sigma_{\rm NLO_{22}}^{\rm MED} &= 2\pi \int_{b_c}^{\infty} db \, b \, \frac{m_A^4(b)}{4} \, e^{-2m_A(b)}, \\ \sigma_{\rm tot}^{\rm MED} &= 2\pi \int_{b_c}^{\infty} db \, b \, [1 - e^{-m_A(b)}]^2. \end{split}$$

A.J. Baltz, ..., I.A.P. et al., Phys. Reports 458(2008)1

Во взаимной диссоциации значителен вклад множественных возбуждений

2.75+2.75 А ТэВ	Сечение			
PbPb @ LHC	(барны)			
LO	3.92			
NLO ₁₂ +NLO ₂₁	1.50			
NLO ₂₂	0.23			
Тройные	0.56			
возбуждения				
Всего	6.21			

Тройные возбуждения ГДР: еще не открыты !

A.J. Baltz, ..., I.A.P. et al., Phys. Reports 458(2008)1

Множественные возбуждения во взаимной электромагнитной диссоциации характеризуются относительно малыми b

A.J. Baltz, ..., I.A.P. et al., Phys. Reports 458(2008)1

 2.75+2.75 A ТэВ
 Сечение

 PbPb @ LHC
 (барны)

 LO
 3.92

 NLO12+NLO21
 1.50

 NLO22
 0.23

 Тройные
 0.56

 возбуждения
 6.21

С помощью ZDC можно изучать эффекты ядерной структуры в столкновениях ядер при ультрарелятивистских энергиях

I.A.P., Proc. EMIN-2003, p.234

ZDC в эксперименте ALICE

ZDC позволяют изучать эмиссию нейтронов и протонов вперёд ядрами каждого из пучков. 39

ALICE Zero Degree Calorimeters (ZDC)

Детектор ALICE, в отличие от CMS и ATLAS оснащён не только нейтронными, но и протонными ZDC, что позволяет оценить выходы определённых элементов (Pb, Tl, Hg и Au) в ЭМД.

beam pipes

view from IP

Регистрация нейтронов вперед-назад в совпадении

Большие множественности нейтронов в результате поглощения фотонов высоких энергий

A.J. Baltz, ..., I.A.P. et al., Phys. Reports 458(2008)1

Измерения выходов нейтронов вперёд от ЭМД ²⁰⁸Рb

Зависимость от энергии столкновений: SPS vs LHC vs RELDIS

$$\gamma_{eff} = 2\gamma_{beam}^2 - 1$$

Данные хорошо описываются **RELDIS в диапазоне** шести порядков γ_{eff} . Гладкая и монотонная зависимость позволяет с уверенностью экстраполировать результаты для данного ядра к большим энергиям

SPS: ALICE-LUMI experiment, PRC 71 (2005) 024905

LHC: ALICE Collaboration, PRL **109** (2012) 252302 43

Практическое применение: мониторинг светимости коллайдеров

Количество нейтронов в единицу времени + теоретическое значение сечения взаимной диссоциации => светимость

Следует использовать наиболее достоверное (стабильное) значение: сумму сечений эмиссии одного или двух нейтронов !

	$E_{\gamma} \leq 24 \text{ M}_{\Im}B$	эВ Е _γ ≤140 МэВ		Весь диапазон Е _г	
Сечение (мб)	LO	LO		LO+NLO	
	RELDIS Pn ^{dir} =0	GNASH	RELDIS P _n ^{dir} =0	RELDIS P _n ^{dir} =0	RELDIS P _n ^{dir} =0.26
$\sigma_{m}^{ED}(1nX 1nY)$	519	488	544	727	805
$\sigma_{m}^{ED}(1nX 2nY)+$	154	220	217	525	496
$\sigma_{m}^{ED}(2nX 1nY)$					
$\sigma_{m}^{ED}(2nX 2nY)$	11	24	22	96	77
Bcero: $\sigma_m^{ED}(LMN)$	684	732	783	1348	1378
P.Cortese,,	I.A.P. et al., J. Phy	vs. G Nucl. F	Part. Phys. 3	30(2004)15	17 44 //

Соотношение между адронными и ЭМ взаимодействиями на БАК:

beams	E/A (TeV)	E/Z (TeV)	$\sigma_{had}^{a)}$ (b)	$\sigma_{\rm EMD}^{\rm c)}$ (b)	σ _{вFPP} (b)	σ _{tot} (b)	$\sigma_{had}^{\prime}/\sigma_{tot}^{\prime}$
$^{40}Ar^{18+}$	2.93	6.5	2.689	1.7	~0.016	4.4	61
$^{40}Ca^{20+}$	3.25	6.5	2.69	2.	0.034 ^{d)}	4.7	57
⁶³ Cu ²⁹⁺	2.99	6.5	3.65	5.8	~0.46	9.9	36
⁷⁸ Kr ³⁶⁺	3.00	6.5	4.19	12.4	~0.85	17.4	24
⁸⁴ Kr ³⁶⁺	2.79	6.5	4.38	13.4	~0.85	18.6	24
$^{115}\text{In}^{49+}$	2.77	6.5	5.34	40.4	~7.4	53.	10
$^{129}\mathrm{Xe}^{54+}$	2.72	6.5	5.61 ^{b)}	50.6	~14.6	71.	8
$^{208}\text{Pb}^{82+}$	2.51	6.36	7.66 ^{b)}	211.4	271.8 ^{d)}	491.	1.6
$^{238}U^{92+}$	2.51	6.5	8.37	299.	602.2 ^{d)}	910.	0.9

^{a)} Modified abrasion-ablation (Glauber-like) model, C. Scheidenberger, et al., PRC **70** (2004) 014902 ^{b)}Glauber MC 3.0 C. Loizides et al., **arXiv:1710.07098**

^{c)} RELDIS,. I.P., Phys. Part. Nucl. **42** (2011) 215

^{d)} H. Meier et al., PRA **63** (2001) 032713, 1s-3s, 2p states, оценивалось как ~Z⁷ для других ядер

Весьма вероятны ЭМ процессы, приводящие к небольшим изменениям А и Z

- Bound-free e^+e^- pair production (BFPP) (~270 b): ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \rightarrow ({}^{208}Pb + e^-_{1s,2s,2p(1/2)2p(2/3),3s})^{81+} + {}^{208}Pb^{82+} + e^+$
- Электромагнитная диссоциация (ЭМД): ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \rightarrow {}^{208}Pb^{82+} + {}^{207}Pb^{82+} + n$ (~100 b) $\rightarrow {}^{208}Pb^{82+} + {}^{206}Pb^{82+} + 2n$ (~20 b) $\rightarrow {}^{208}Pb^{82+} + {}^{205}Pb^{82+} + 3n$ (~6 b) $\rightarrow {}^{208}Pb^{82+} + {}^{205}Pb^{82+} + 3n$ (~6 b)

→ другие каналы, например с эмиссией протонов

46

- Как ВFPP так и ЭМД меняют magnetic rigidity: *p*/*Z*e=*B*ρ, где ρ радиус траектории в магнитном поле *B* БАК.
- $B\rho \to B\rho (1+\delta)$ в результате УПВ $A_0 \to A, Z_0 \to Z$ $\delta = \frac{Z_0}{A_0} \frac{A}{Z} 1$

R. Bruce et al., Phys. Rev. ST Accel. Beams 12 (2009) 071002
C. Bahamonde Castro et al., TUPMW006, Proc. of IPAC2016, Busan, Korea
J.M. Jowett et al., TUPMW028, Proc. of IPAC2016, Busan, Korea
P.D. Hermes et al., Nucl. Instr & Meth. A 819 (2016) 73

Основные проблемы создают ядра, близкие к ²⁰⁸Pb: ^{206,207}Pb, ^{204,205,206,207}Tl, ^{202,204}Hg

47

Моделирование траекторий таких ядер внутри БАК

Distance from IP2 (ALICE)

Courtesy of Tom Mertens, John Jowett (CERN)

48

Вторичные ядра от ЭМД не могут быть зарегистрированы напрямую на БАК, но можно детектировать нейтроны и протоны посредством ZDC

Оценка сечений образования ₈₂Pb посредством регистрации нейтронов и протонов: RELDIS

Exclusive EMD channel		Inclusive pro given 1	oduction of a nuclide	Emission of a given number of neutrons	
Channel	σ (b)	Nuclide	σ (b)	Neutron multiplicity	σ (b)
207 Pb + 1n	101.6	$^{207}Pb + X$	103.3	1n + 0p	103.8
206 Pb + 2n	20.34	$^{206}Pb + X$	21.3	2n + 0p	22.06
$^{205}Pb + 3n$	5.99	$^{205}Pb + X$	6.77	3n + 0p	7.53
$^{204}Pb + 4n$	2.88	$^{204}Pb + X$	3.45	4n + 0p	4.30

В основном процессы с мягкими фотонами, без других частиц и легких фрагментов 50

Оценка сечений образования ₈₁ TI посредством регистрации нейтронов и протонов: RELDIS

Exclusive EM	D channel	Inclusive pro given r	oduction of a nuclide	Emission of certain numbers of n and p	
Channel	σ (b)	Nuclide	σ (b)	Multiplicity	σ (b)
206 Tl + 1n + 1p	2.57	206 Tl + X	3.82	1n + 1p	3.64
205 Tl + 2n + 1p	2.57	205 Tl + X	3.87	2n + 1p	3.51
204 Tl + 3n + 1p	2.27	204 Tl + X	3.46	3n + 1p	3.11
203 Tl + 4n + 1p	1.87	203 Tl + X	2.93	4n + 1p	2.75

Надежная верхняя оценка сечений образования Tl. Однако помимо 206 Tl + n + p, канал 206 Tl + d также возможен с меньшей вероятностью.

Scope of FCC Study

International FCC collaboration (CERN as host lab) to study:

pp-collider (FCC-hh) \rightarrow main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e^+e^- collider (*FCC-ee*), as potential first step
- p-e (FCC-he) option, integration one IP, e from ERL
- **HE-LHC** with *FCC-hh* technology ۲
- CDR for end 2018

FCC Study Status and Plans Michael Benedikt 3rd FCC Week, Berlin, 29 May 2017

http://cern.ch/foc

FCC-pp collider parameters

CirCol

parameter	FCC-hh		HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	100)	27	14	14
dipole field [T]	16		16	8.33	8.33
circumference [km]	97.7	′5	26.7	26.7	26.7
beam current [A]	0.5	j	1.12	1.12	0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25	25
synchr. rad. power / ring [kW]	2400		101	7.3	3.6
SR power / length [W/m/ap.]	28.4	4	4.6	0.33	0.17
long. emit. damping time [h]	0.5	4	1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.20	0.55
normalized emittance [µm]	2.2 (0).4)	2.5 (0.5)	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	5	1
events/bunch crossing	170	1k (200)	~800 (160)	135	27
stored energy/beam [GJ]	8. 4		1.3	0.7	0.36

M. Benedikt and F. Zimmermann, Future Circular Collider Study: http://cern.ch/fcc Status and Plans, 3rd FCC week, Berlin, 2017 53

Следующие 25 лет физики высоких энергий в ЦЕРНе

²⁰⁸Pb в FCC-hh

FCC-hh Physics YR 3, 635–692, arXiv:1605.01389 M. Schaumann, Phys. Rev. ST Accel. Beams 18 (2015) 9, 091002, arXiv:1503.09107

Сравнимые с БАК ЭМД сечения, но энергия Пучков в восемь раз выше.

M. Schaumann at al., FCC week Berlin, 30.05.2017 https://indico.cern.ch/event/556692/contributions/2484258/

Преимущества менее тяжелых ядер для FCC-hh

Какие ядра сталкивать на FCC-hh?

beams	E/A (TeV)	E/Z (TeV)	$\sigma_{had}^{a)}$ (b)	$\sigma_{\rm EMD}^{\rm c)}$ (b)	σ _{вFPP} (b)	σ _{tot} (b)	$\sigma_{had}^{\prime}/\sigma_{tot}^{\prime}$
$^{40}Ar^{18+}$	22.5	50.	2.764	2.2	~0.02	5.	55
⁴⁰ Ca ²⁰⁺	25.	50.	2.767	2.7	0.042 ^{d)}	5.5	50
⁶³ Cu ²⁹⁺	23.	50.	3.74	7.8	~0.6	12.4	31
⁷⁸ Kr ³⁶⁺	23.	50.	4.29	16.6	~1.	22.	20
⁸⁴ Kr ³⁶⁺	21.4	50.	4.5	18.	~1.	23.5	19
$^{115}\text{In}^{49+}$	21.3	50.	5.47	53.8	~9.4	68.7	8
129 Xe ⁵⁴⁺	20.9	50.	5.89	67.9	~18.5	92.3	6
$^{208}\text{Pb}^{82+}$	19.7	50.	7.9 ^{b)}	284.2	344. ^{d)}	636.	1.2
²³⁸ U ⁹²⁺	19.3	50.	8.53	402.	761. ^{d)}	1171.	0.7

^{a)} Modified abrasion-ablation (Glauber-like) model, C. Scheidenberger, et al., PRC **70** (2004) 014902 ^{b)}Glauber MC 3.0 C. Loizides et al., **arXiv:1710.07098**

^{с)} RELDIS см. I.P., Phys. Part. Nucl. **42** (2011) 215

^{d)} H. Meier et al., PRA **63** (2001) 032713, $\sigma_{\text{в FPP}} = A ln \gamma_c + B$, оценивалось как $\sim Z^7$ для других ядер

Какие ядра сталкивать на FCC-hh?

- В идеале моноизотопы, например, ¹⁹⁷Au (RHIC)
- Или изотопически чистые вещества выделенные для зарядки ECR ионного источника: например 10 г чистого ²⁰⁸Pb стоят € 9700, и около 1.3 г расходуется за две недели сеанса на БАК, см. Cian O'Luanaigh, *Heavy metal: Refilling the lead source for the LHC,* CERN Accelerating science, 4 Feb 2013, http://cds.cern.ch/record/1997797
- Приемлемые химические свойства, безопасность для окружающей среды. Удобны благородные газы, некоторые металлы.
- ¹¹⁵In может подойти. Были проведены измерения на CERN SPS, результаты сопоставлены с RELDIS.

Исследования ЭМД ¹¹⁵In на CERN SPS: валидация данных и модели для LHC, FCC-hh

E.V. Karpechev et al., Emission of forward neutrons by 158A GeV¹¹⁵In in collisions with Al, Cu, Sn and Pb, NPA **921** (2014) 60

Важны также надежные аппроксимации полных сечений: ГДР и выше ^{0.6}E γр

Bianchi 1996 Brookes 1973 Michalowski 1977 10⁹ 10¹⁰ 10⁷ 10⁸ 10¹ E_v (MeV) Caldwell 1979 Bianchi 1994 Lepretre 1981 Brookes 1973 Arakelian 1978 10⁷ 10⁸ 10⁹ 10¹ 10¹⁰ E_v (MeV)

10⁷

10⁶

10⁹

10¹

E_v (MeV)

10¹

- Ограниченные данные только от 5 до 10 МэВ
- Оценённые данные TENDL-2014 ENDF library

"Очень жаль, что растет стена между ядерной физикой и физикой высоких энергий" В.В. Балашов

- Я слышал это от Всеволода Вячеславовича в 80-х когда был студентом физфака.
- Возможно это было сказано потому, что В.В. чувствовал, что физика теряет единство (ср.: теорминимум Ландау)
- В этом выступлении я пытался пробить такую стену:

(1) продемонстрировав, что эффекты структуры ядер проявляют себя в столкновениях ядер высоких энергий;
(2) показав, что ядерные данные необходимы для физики коллайдеров (LHC, HL-LHC, HE-LHC, FCC-hh).

«Поединок», В. Тарасевич Word Press Photo Prize, 1963

Спасибо за внимание!

LHC	нуклиды	$\sigma_{EMD}(Z)$ (b)
Z=82	¹⁸⁸⁻²⁰⁸ Pb	144.7
Z=81	¹⁸⁵⁻²⁰⁷ Tl	29.9
Z=80	¹⁸¹⁻²⁰⁶ Hg	13.
Z=79	¹⁷⁸⁻²⁰⁵ Au	6.2
всего Z=79-82		193.8

Дополнительные слайды

Photoneutron cross sections measured in different laboratories may diverge. Evaluated nuclear data have to be used.

Cracow model

M.Klusec-Gawenda et al., PRC 94 (2014) 054907

It is important to use reliable data and models to describe EMD of Au and Pb at RHIC and LHC

RELDIS model to describe photoabsorption and EMD

I.P. et al., Eur. J. Phys. A 24(2005)69 fission of heavy nuclei by photons

-²³⁷Np

²³⁸U

235₁₁

233_U

²³²Th

E_v (GeV)

nuclear

EM

100 125 150 175 200

1

C. Scheidenberger, I.P. et al., Phys. Rev. C 70(2004)014902

Electromagnetic dissociation at SIS (GSI), AGS (BNL), **CERN SPS**