Влияние α-кластеризации на предравновесную эмиссию α-частиц в реакциях с тяжёлыми ионами.

Light Particle Emission Mechanisms in Heavy-Ion Reactions at 5-20 MeV/u

 $\begin{array}{l} \mbox{PRE-EQUILIBRIUM} \ \alpha \mbox{--} \mbox{PARTICLE EMISSION AS A PROBE TO STUDY} \ \alpha \mbox{--} \\ \mbox{CLUSTERING IN NUCLEI} \end{array}$

NUCL-EX COLLABORATION

LNL - INFN - Identity Card

MULTI TASK MULTI DISCIPLINARY But mainly Nuclear Physics Based User Oriented Laboratories

in Dissipative Collisions

Systems studied

Reaction	E _{BEAM} MeV/u	E _{CM} MeV	E* _{CN} MeV	V _{BEAM} cm/ns	V _{CN} cm/ns
⁶⁴ Ni+ ⁶⁸ Zn	4.7	155	100	3.01	1.46
⁶⁴ Ni+ ⁶⁸ Zn	6.3	206	151	3.48	1.69
⁶⁴ Ni+ ⁶⁸ Zn	7.8	258	203	3.89	1.88
¹⁶ О+ ¹¹⁶ Sn (130 МэВ)	8.1	114	100	3.96	0.48
¹⁶ O+ ¹¹⁶ Sn (250 МэВ)	15.6	220	206	5.49	0.67

α , ¹⁶O+¹¹⁶Sn, E_O=250 MeV_(start)

			250 МэВ		σ=	1637		N=			1				Np=18	Nh=0
Ν	00 tot	n	р	α	n/tot	p/tot	αltot	1.4-(p+a)	n/p	nlα	p/α.	Ключ	а	Δ		/M/**2
1	1633.87	712.2	586.26	335.41	0.436	0.359	0.205	0.836	1.215	2.123	1.748	4,5	A/8	Grudz		
2	1636.64	761.83	622.31	252.5	0.465	0.380	0.154	0.865	1.224	3.017	2.465	2,3	A/8	12/A**.5		
3	1636.55	750.24	612.48	273.83	0.458	0.374	0.167	0.858	1.225	2.740	2.237	0,1	A/8	0	400	8.45E-07
4	1636.66	731.19	609.29	296.18	0.447	0.372	0.181	0.847	1.200	2.469	2.057	6,7	Grudz	0		
5	1636.66	691.07	583.45	362.14	0.422	0.356	0.221	0.822	1.184	1.908	1.611	8,9	Grudz	Grudz		
6	1636.65	695.94	583.64	357.07	0.425	0.357	0.218	0.825	1.192	1.949	1.635				600	1.27E-06
7	1636.67	689.87	583.40	363.40	0.422	0.356	0.222	0.822	1.182	1.898	1.605	2			350	7.40E-07
8	1636.67	683.97	583.05	369.65	0.418	0.356	0.226	0.818	1.173	1.850	1.577				100	2.11E-07
9	1636.53	700.90	583.70	351.93	0.428	0.357	0.215	0.828	1.201	1.992	1.659				800	1.69E-06
	Ξ	N 5										<e>,</e>	<e>_p</e>	<e>_a</e>	Np	Nh
10	1636.66	681.91	576.19	378.56	0.417	0.352	0.231	0.817	1.183	1.801	1.522	18.856	27.776	35.346	15	1
11	1636.67	672.21	568.29	396.17	0.411	0.347	0.242	0.811	1.183	1.697	1.434	18.893	27.821	35.406	14	2
12	1636.66	651.01	550.37	435.28	0.398	0.336	0.266	0.798	1.183	1.496	1.264	18.906	27.847	35.463	12	4
5	1636.66	691.07	583.45	362.14	0.422	0.356	0.221	0.822	1,184	1.908	1.611	18.800	27.710	35.266	16	0
13	1636.66	699.96	581.02	355.68	0.428	0.355	0.217	0.828	1.205	1.968	1.634	17.796	26.602	34.104	16	1
14	1636.57	758.66	565.13	312.78	0.464	0.345	0.191	0.864	1.342	2.426	1.807	12.690	21.017	28.314	16	8
15	1635.79	791.66	555.88	288.25	0.484	0.340	0.176	0.884	1.424	2.746	1.928	10.691	18.841	26.114	16	12
16	1636.66	430.40	475.32	730.94	0.263	0.290	0.447	0.663	0.905	0.589	0.650	45.322	55.540	61.923	4	0
17	1636.66	458.50	467.60	710.56	0.280	0.286	0.434	0.680	0.981	0.645	0.658	34.728	45.181	52.874	4	3
		err	err	err								err	err	err	4	12
		err	err	err								err	err	err	4	4

		Ξ	N 5		Np=16	Nh=1		250 MəB					6		
1	V	*Е	*E**2	ROR	ARD	ROC	W0	*Е	*E**2	R01	AID	NPD	8	IRAD	
n	47.01	-0.267	-0.002	1.273	0.660	0.000	9.520	-0.053	0	1.278	0.48	250	SURF	1	0
p	55.842	-0.550	0	1.250	0.650	1.250	13.500	0.000	0	1.250	0.47	250	SURF	1	1
α	189.057	-0.248	0	1.245	0.774	1.300	3.955	0.200	0	1.570	0.59	250	VOL	1	d
n	53.391	-0.32	0	1.17	0.75	0.00	11.545	-0.25	0	6.415	0.580	250	SURF	1	new
р	61.466	-0.32	0	1.17	0.75	1.25	13.255	-0.25	0	6.720	0.595	250	SURF	1	
α	170.039				4										
р	61.13														
(and the safe	and the second second			a											
Ν	σ _{tot}	n	р	α	n/tot	p/tot	α/tot	1.4-(p+a)	n/p	n/α	p/α	<e>,</e>	<e>_p</e>	<Ε> _α	
Nev	1636.66	692.10	572.32	372.24	0.423	0.350	0.227	0.823	1.209	1.859	1.538	15.030	22.941	34.097	250
Old	1636.66	699.96	581.02	355.68	0.428	0.355	0.217	0.828	1.205	1.968	1.634	17.796	26.602	34.104	

Motivation

Our recent work, based on the results from the GARFIELD + HECTOR experiment at LNL, Legnaro and related to the α -particles emission in the 250 and 130 MeV ¹⁶O+¹¹⁶Sn reactions, brought to the conclusion that a pronounced production of α - particle have been observed which can be ascribed to α clustering in the projectile nucleus. These are linked to the production of secondary alpha particles during non-equilibrium stage of fusion nuclear reaction

Illustration

E(¹⁶O)=250 MeV

O+116**Sn**

p,53°-67° **p**, 29° - 41° S S E,MeV E,MeV **p**, 41° - 53° **p**, 67°-82° S S Exp otal ° Pre-eq. -1 E,MeV E,MeV

Illustration

¹⁶O+¹¹⁶Sn

code PACE

$$\begin{array}{l} A_{k}(E,J) & & \\ T_{k} = \sum_{k} \sigma_{k}(E,J) & T_{k}(E,J) = \sum_{k} <^{T} c_{k} > + \\ T_{inisk}(E',J) & T_{inisk}(E',J) \\ \hline T_{inisk}(E',J) & T_{inisk}(E',J) \\ \hline T_{k}(E,J) < < T_{k-1}(E',J) & T_{inisk}(E',J) \\ \hline T_{k-1}(E',J') & A_{k-2}(E'',J'') \\ \hline A_{k-2}(E'',J'') & A_{k-2}(E'',J'') \\ \hline A_{k-2}(E'',J'') & A_{k-1}(E',J) + \\ T_{k-1}(E',J') & T_{k-1}(E',J') \\ \hline T_{i} = \sum_{k} \tau_{k}(E,J), \quad (1) \\ \hline T_{i} = \sum_{k} \tau_{k}(E,J), \quad (2) \\ \end{array}$$

- в зависимости от вида регистрируемых частиц.
- среднее смещение $<S_{\perp}>$ (b)

Среднее время <T> (а),

Experimental results and theoretical estimations for $\langle d\chi \rangle$ (fig. a) and $\langle T \rangle$ (fig b) of compound nuclei formed in the ${}^{12}C+{}^{28}Si \rightarrow {}^{40}Ca$ fusion reaction. These experimental data were obtained using the blocking of both evaporation residues

and low-energy α particles

Краткое описание моделей

In the Griffin's exciton model of nuclear reactions, relaxation of the compound to equilibrium is described by the master equation: METOЛ A

$$\frac{d}{dt}q(n,t) = \sum_{m=n-2}^{m=n+2} \lambda_{m\to n}q(m,t) - q(n,t) \left(w(n) + \sum_{m=n-2}^{m=n+2} \lambda_{n\to m}\right), (1)$$
METOJ B
The generalized
master equation
takes form :

$$\frac{d}{dt}q(n,\Omega,t) = \sum_{m=n-2}^{m=n+2} \lambda_{m\to n} \int d\Omega' G(\Omega,\Omega') q(m,\Omega',t)$$

$$(2)$$

$$G(\Omega,\Omega') = \frac{d\sigma'}{d\Omega'} \left(\int d\Omega' \frac{d\sigma'}{d\Omega'}\right)^{-1} \qquad (3) \qquad -q(n,\Omega,t) \left(w(n) + \sum_{m=n-2}^{m=n+2} \lambda_{n\to m}\right), \qquad (2)$$

 $d\sigma/d\Omega$ is the free differential nucleon-nucleon scattering cross section

The initial condition for this equation is (where H is the Heavyside function)

$$q(n, \Omega, t=0) = N \delta_{n,n_0} \pi^{-1} \cos(\beta \theta_{lab}) H(\pi/2 - \beta \theta_{lab}),$$

where $\beta = \frac{\pi}{4\theta_{max}}$, and $\theta_{max} = 2\pi/(kR)$. (4)

k is the incident nucleon momentum and R is the nuclear radius.

Illustration

п

β parameter What affect this value? (Case B)

Case A (angular dependency by optic. model)

Сечение выхода р в лс (в относительных единицах) (метод А)

Result for a

Result for **p**

Possible α clustering configurations in ¹⁶O nucleus

B.Buck, C.B.Dover, J.P.Vary, Phys.Rev.C, 11, 1803 (1975) B.Buck, A.C.Merchant, S.M.Perez, Phys.Rev.C, 45, 2247 (1992) Yu.A.Berezhnoy, V.P.Mikhailyuk.Phys.Elem.Part and Nucl., 39, 437, (2008)

but En_{α} - ? and En_{c} - ?

PHYSICAL REVIEW C, VOLUME 62, 034604

Precompound Monte-Carlo model for cluster induced reactions

M. Blann¹ and M. B. Chadwick²

Blann model (2000) $e = E(1 - (1 - x)^{1/(n-1)}).$

e – clusters energy, and x – random number

Preliminary Result for a

Preliminary Result for **p**

¹⁶O+⁶⁵Cu \rightarrow ⁸¹Rb, E_O=240 MeV (15 MeV/u); E*=196,0MeV ¹⁹F+⁶²Ni \rightarrow ⁸¹Rb, E_F=285 MeV (15 MeV/u); E*=225,4MeV (in lab)

α

α

Спасибо за внимание

Experimental setup

REACTIONS

15 MeV/u (240 MeV) ¹⁶O+⁶⁵Cu->⁸¹Rb* E*=196.0 MeV 13 MeV/u (247 MeV) ¹⁹F+⁶²Ni->⁸¹Rb* E*=196.3 MeV OR 15 MeV/u (240 MeV) ¹⁶O+⁶⁵Cu->⁸¹Rb* E*=196.0 MeV

15 MeV/u (285 MeV) ¹⁹F+⁶²Ni->⁸¹Rb* E*=225.4 MeV

BEAMS

Pulsed 1pnA ¹⁶O and ¹⁹F beams Estimated time: 3 days for each reaction + 1 day for calibration

SETUP

GARFIELD Camera Forward (for LCP evap+pre-eq) + [GARFIELD Camera Backward (for LCP evap)] + RING or PHOS or PPAC (for ER)

IMPORTANT!

Discrimination between CF and ICF (TOF) is absolutely necessary for this experiment

Illustration

E=15 MeV/u

¹⁶O+⁶⁵Cu ¹⁹F+⁶²Ni

General ARray for Fragment Identification and for Emitted Light particles in Dissipative Collisions

G. AR. F. I. E. L.

GARFIELD - 4π complex multidetector apparatus for particle detection -Double stage Δ E-E (CsI(TI)-MSGC) telescopes

-In the experiment the angular coverage is 29°- 151° in θ and 4π in ϕ

-Charge resolution from Z=1 to Z=28

-Typical energy resolution for CsI(Tl) crystal is 3.0% for 5.5 MeV α

-Identification threshold is 0.9 MeV/u