

ATLAS status and operation

Lidia Smirnova

21.09.2010

SINP MSU

~3000 scientists 174 Institutions and 38 Countries, ~1000 PhD students

- Precise tracking and vertexing,
- e/π separation
- Momentum resolution:

σ/p_T ~ 3.8x10⁻⁴ p_T (GeV) ⊕ 0.015

Inner detector

- Pixel detector
 - 3 barrel layers, 2x3 disks
 - $-\sigma(r\Phi) = 10 \ \mu m, \ \sigma(z) = 115 \ \mu m$
- Silicon strip detector (SCT)
 - 4 barrel layers, 2x9 disks
 - Pairs of single-sided sensors
 - $-\sigma(r\Phi) = 17 \ \mu m, \ \sigma(z) = 580 \ \mu m$
- Transition Radiation Tracker (TRT)
 - σ(rΦ) = 130 μm
- Covers |n| < 2.5 (2.0 for TRT)
- 2 T solenoidal field

Muon spectrometer

Muon Spectrometer ($|\eta|$ <2.7) : air-core toroids with gas-based muon chambers Muon trigger and measurement

with momentum resolution < 10% up to $P_T(\mu) \sim 1 \text{ TeV}$

HAD calorimetry ($|\eta|$ <5)

Trigger and measurement of jets and missing E_T E-resolution: $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$

Lidia Smirnova QFTHEP 2010

Overall Detector Status

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.4%
SCT Silicon Strips	6.3 M	99.2%
TRT Transition Radiation Tracker	350 k	98.0%
LAr EM Calorimeter	170 k	98.5%
Tile calorimeter	9800	97.3%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	98.6%

More than 97% of channels in operation

Operation

Data collected	Integrated luminosity	Time period
Cosmic rays		2008,2009
pp collisions at 900 GeV	~ 9 µb⁻¹	NovDec.2009
pp collisions at 2.36 TeV	~ 0.7 µb ⁻¹	Dec.2009
pp collisions at 7 TeV	~ 3.46 pb^{-1} 247x10 ⁹ events	From 30 March 2010- up to now

<u>Particle multiplicities and momentum spectra in pp</u> <u>minimum-bias events at 900 GeV (PhysLettB688:21,2010)</u> <u>FIRST published results at 15 March</u>

the latest presented at ICHEP2010 – 55 reports

ATLAS status

Total fraction of good quality data (green "traffic light")

Inne D	er Track etector	king 's		Calorii	mete r s			Muon D)etector	S
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	TGC	CSC
97.7	96.4	100	94.4	98.7	99.3	99.2	98.5	98.3	98.6	98.3

Luminosity weighted relative detector uptime and good quality data delivery

during 2010 stable beams at Vs=7 TeV between March 30th and August 14th (in %)

Peak luminosity in ATLAS L ~ $1.03 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$

ATLAS operation

Decided Scenario 2010-2011

ICHEP, July 26, 2010, Steve Myers report

- Following the technical discussions in Chamonix (Jan 2010) the CERN management and the LHC experiments decided
 - Run at 3.5 TeV/beam up to a integrated luminosity of around 1fb⁻¹.
 - Then consolidate the whole machine for 7TeV/beam (during a shutdown in 2012)
 - From 2013 onwards LHC will be capable of maximum energies and luminosities

• requires a peak luminosity of $\geq 1 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ during 2011

• \rightarrow must reach ~1 x10³² cm⁻²s⁻¹ during 2010

ATLAS operation from LHC plan

ATLAS operation

13

ATLAS operation

14

Event selection

Primary vertex :

- 1) n $_{track} \ge$ 3 (p $_t >$ 150 MeV/c)
- 2) closest transverse distance to nominal interaction point
- 3) single hit in one or two MSTB wheels as trigger
- 4) selection on timing difference from EC or Fcal
 - (5 or 10 nc, respectively), or two MSTB wheels

Event with four reconstructed primary vertices the same beam-crossing \sim 10-45 tracks with p_T >150 MeV per vertex

Lidia Smirnova QFTHEP 2010

ID Alignment pre-collisions and post-collisions

ID tracking performance 100<pt<500 MeV/c (similar to it for pt > 500 MeV/c, relative to MC) 7 TeV

ATLAS performance and results

Particle Multiplicities at 0.9 and 7 TeV on η and n(ch) for pt > 100 MeV/c and $|\eta| < 2.5$; $n(ch) \ge 2$ with models predictions

•Measured over a well-defined kinematic region

- •No subtraction for single/double diffractive components
- Distributions corrected back to hadron level
- High-precision minimally model-dependent measurements
- Provide strong experimental constraints on MC models

Pt measurements for charged particles with pt>100 MeV/c |η| < 2.5; Nch≥2

(1/Nev)Nch/dη at η = 0	Pt > 0 CMS	Pt > 100 MeV/c ATLAS Nch≥2	Pt > 500 MeV/c ATLAS Nch≥1	
0.9 TeV	3.48±0.02 _{stat} ±0.13 _{syst}	3.486±0.008 _{stat} ±0.077 _{syst}	1.333±0.003 _{stat} ±0.040 _{syst}	
2.36 TeV	4.47±0.04 _{stat} ±0.16 _{syst}		1.739±0.019 _{stat} ±0.058 _{syst}	
7 TeV	5.78±0.01 _{stat} ±0.23 _{syst}	5.635±0.002 _{stat} ±0.149 _{syst}	2.418±0.004stat ±0.076syst	
ATLAC and CNC data fam abound				

ATLAS and CMS data for charged particle multiplicities at $\eta = 0$

CMS: JHEP 02(2010)041; PRL 105, 022002(2010)

Particle Density Angular Correlation

- Define the event orientation by the azimuthal angle of the track with the highest p_{T}
- Plots are reflected about $\varphi=0$; highest p_T track is not included

- Monte Carlo tunes only reproduce the general features
 - Disagreement in rates both in the transverse region (UE) and in the Toward and Away regions (MPI/Hard Core)

Diffraction enhanced events at 7 TeV

 R_{ss} —The ratio of events with hits only on one side of the MBTS scintillators to events with any hits in the MBTS scintillators.

ATLAS performance and results

Mapping the Inner Detector material with $\gamma \rightarrow e^+e^-$ conversions

Goal is to know material to better than 5% (over-constraining with several methods) Present understanding: at the level of ~ 10%

Reconstructed conversion point in the radial direction of $\gamma \rightarrow e^+e^-$ from minimum bias events (sensitive to X₀)

e

e+

Data show that Pixel supports are displaced in the simulation \rightarrow to be fixed

Lidia Smirnova QFTHEP 2010

Data

Reconstructed secondary vertices due to hadronic interactions in minimum-bias events in the first layer of the Pixel detector (sensitive to interaction length $\lambda \rightarrow$ complementary to γ conversion studies)

Mapping ID material with secondary hadronic interactions

Lidia Smirnova QFTHEP 2010

Background estimation: QCD, µ

- "ABCD" method to predict background in signal region from control regions dominated by bkg (jets, π/K decays)
- Uncorrelated variables: ME_T and track Isolation/p_T
- QCD in signal region: 0.9 ± 0.3 (stat) ± 0.6 (syst)

•Remarkable agreement with theory (4% theor. uncertainty not shown)

 $\bullet \mathbb{W}^{\scriptscriptstyle +\!/\!{\scriptscriptstyle -}}$ asymmetry due to parton composition in protons observed

• Good agreement with theory

• 4% theoretical uncertainty not shown

W cross-section

L = 16.9 nb ⁻¹	Estimated N(signal)	cross-section (nb)
W(ev)	46	8.5 ± 1.3 (stat) ± 0.7 (syst) ± 0.9 (lumi)
W (μν)	72	10.3 ± 1.3 (stat) ± 0.8 (syst) ± 1.1 (lumi)
Combined	118	9.3 ± 0.9 (stat) ± 0.6 (syst) ± 1.0 (lumi)
Theory:		

$$\sigma_{W \to \ell \nu}^{NNLO} = 10.46 \text{ nb} \ (\sigma_{W^+ \to \ell^+ \nu}^{NNLO} = 6.16 \text{ nb} \text{ and } \sigma_{W^- \to \ell^- \nu}^{NNLO} = 4.30 \text{ nb})$$

Z cross-section

L = ~225 nb ⁻¹	Estimated N(signal)	cross-section (nb)	
Z(ev)	46	0.72 ± 0.11 (stat) ± 0.10 (syst) ± 0.08 (lumi)	
Ζ(μν)	79	0.89 ± 0.10 (stat) ± 0.07 (syst) ± 0.10 (lumi)	
Combined 125		0.83 ± 0.07 (stat) ± 0.06 (syst) ± 0.09 (lumi)	
Theory: σ	$NNLO Z/\gamma^* \to \ell\ell = 0.99$	nb (66 GeV < M(11) < 116 GeV)	

Measured Inclusive jet cross-section extended up to jet pt =500 GeV/c and dijet masses of 2 TeV Data are well described by fixed-order NLO pQCD, corrected for non-perturbative effects

Search for new particles decaying in dijets

- Sensitive for possible new states in dijet resonances: excited quarks q^{*}, Z', W', graviton and others
- For the term of term

28

New ATLAS limit: 400 < m_{q*} < 1290 GeV @ 95% CL (more details here: http://arxiv.org/abs/1008.2461, paper submitted to PRL)

QCD and Onia at ATLAS / Konstantin Toms 14.09.2010

Inclusive jet measurements with ID: <u>numbers of track distributions and</u> <u>fragmentation functions</u>

Number of tracks per jet with R = 0.6 for jet p_T from 15 GeV to 24 GeV. (Data are not corrected. Differences between data and Pythia MC09 are accounted for the fragmentation/underlying event systematic)

7 TeV

Corrected fragmentation function in anti- k_t jets with R = 0.6 for charged jet p_T from 15 - 24 GeV

42

Lidia Smirnova QFTHEP 2010

One soft b-tagged jet in events with two electrons, passed cuts, at 7 TeV with int. luminosity 280 nb⁻¹

> In GeV: Pt of ee 55.2/40.6 E_t^{miss} 42.4; Ht 271 GeV #jets >20 GeV - 3 b-tag jet -1

 $M_{ee} = 36.9 \text{ GeV}$

Top candidate

43

cluster ($E_T = 23$ GeV) blue circle in lego plot: b-tagged jet. Dashed line in lego plot: direction of the missing transverse energy (77 GeV)

TOP candidate

44

Conclusion

- ATLAS successfully operate with beam collisions - pp at 7 TeV from 30.03.2010
- Calibration, alignment, synchronization, reconstruction software and trigger on real data were realized and continued with improvements
- Good detector and reconstruction performance is achieved
- First physics results for Soft QCD are received
- Hard QCD and EW objects are observed (jets, W/Z, tau, bjet)
- Information on results could be found on *atlas.web.cern.ch* in Public ATLAS Results

ATLAS status, operation and performance