МАТЕРИАЛЫ, ПОСВЯЩЕННЫЕ ШЕСТИДЕСЯТИЛЕТИЮ = ИНСТИТУТА ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ (ИТЭФ) = ЯДРА

БЕТА-ЯМР-СПЕКТРОСКОПИЯ. СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ

© 2006 г. Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров*

Институт теоретической и экспериментальной физики, Москва, Россия Поступила в редакцию 10.08.2005 г.; после доработки 31.10.2005 г.

Излагаются общие основы метода *β*-ЯМР-спектроскопии, основные типы исследований, проведенных к настоящему времени, и возможные новые направления.

PACS: 01.65.+g, 23.40.-s, 25.40.Lw

ВВЕДЕНИЕ

Угловое распределение ядерного β -излучения в случае разрешенных β -переходов, вследствие нарушения пространственной четности, скоррелировано с ядерной поляризацией:

$$w(\vartheta) = 1 + \alpha_0 P \cos \vartheta. \tag{1}$$

Здесь ϑ — угол между направлением поляризации **Р** β -активного ядра (β -ядра) и направлением вылета β -частицы, а $\alpha_0 \propto 0.1 -$ ядерная константа. Ядерная поляризация подвержена существенному влиянию сверхтонких и диполь-дипольных взаимодействий, поэтому, создавая в веществе поляризованные *β*-ядра и исследуя зависимость углового распределения их *β*-излучения от времени, внешнего постоянного и радиочастотного магнитных полей, температуры, давления и прочих экспериментально контролируемых параметров, можно изучать процессы, влияющие на окружение β -ядер. Широкое использование в подобных исследованиях внешних магнитных полей (постоянного и переменного) роднит их с ядерным магнитным резонансом (ЯМР). Впервые подобные эксперименты были предложены [1] и применены [2, 3] для изучения спинов и квадрупольных моментов β -ядер, а впоследствии метод магнитного резонанса и релаксации поляризованных β -активных ядер (β -ЯМР) стал мощным средством для исследования конденсированных сред вообще и спиновой динамики. в частности [4-9].

Существуют и другие родственные методы, использующие радиоактивные ядра как зонды для исследования конденсированных сред. Наиболее развиты среди них μ SR-спектроскопия (являющаяся частным случаем β -ЯМР, где в качестве β -ядер выступают мюоны), метод возмущенных угловых

корреляций и распределений у-излучения и эффект Мессбауэра [10, 11]. Существенное отличие этих методов (часть которых возникла несколько раньше) от β -ЯМР состоит в том, что угловое распределение ү-излучения в основном скоррелировано не с поляризацией, а с выстроенностью ядер и со спин-тензорами четвертого ранга, что делает практически невозможным исследование эффектов, связанных с перераспределением некоторых плотностей интегралов движения. Важным примером такого процесса является перенос ядерной поляризации в окружающей среде. В остальном все эти методы концептуально близки и между собой, и с методом ЯМР на стабильных ядрах. Как правило, они не конкурируют, а дополняют друг друга вследствие ограниченности числа ядер, реально доступных для исследований.

В настоящее время β -ЯМР существует в двух модификациях, определяемых способом производства β -ядер. В первой из них используются (n, γ) -реакции на тепловых поляризованных нейтронах от ядерных реакторов. Этот метод применяют группы ИТЭФ и Ганновера-Юлиха. Во второй модификации используются реакции с заряженными частицами, полученными на ускорителях. Этот метод распространен шире, соответствующие установки работают в ЦЕРНе, США, Германии, Бельгии, Японии и Китае.

К особенностям (которые, как правило, являются преимуществами) β-ЯМР на тепловых поляризованных нейтронах относятся следующие:

а) в начальном состоянии β -ядра имеют чисто дипольную поляризацию;

б) β -ядра производятся практически во всем объеме образцов;

в) падающие нейтроны не вносят существенных возмущений в исследуемые материалы.

 β -Ядра, полученные на ускорителях, при проникновении в образцы производят существенные

К ШЕСТИДЕСЯТИЛЕТИЮ ИНСТИТУТА ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ (ИТЭФ)

БЕТА-ЯМР-СПЕКТРОСКОПИЯ. СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ

© 2006 г. Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров*

Институт теоретической и экспериментальной физики, Москва, Россия Поступила в редакцию 10.08.2005 г.; после доработки 31.10.2005 г.

Излагаются общие основы метода *β*-ЯМР-спектроскопии, основные типы исследований, проведенных к настоящему времени, и возможные новые направления.

PACS:01.65.+g, 23.40.-s, 25.40.Lw

ВВЕДЕНИЕ

Угловое распределение ядерного β -излучения в случае разрешенных β -переходов, вследствие нарушения пространственной четности, скоррелировано с ядерной поляризацией:

$$w(\vartheta) = 1 + \alpha_0 P \cos \vartheta. \tag{1}$$

Здесь ϑ — угол между направлением поляризации Р *β*-активного ядра (*β*-ядра) и направлением вылета β -частицы, а $\alpha_0 \propto 0.1 - ядерная константа.$ Ядерная поляризация подвержена существенному влиянию сверхтонких и диполь-дипольных взаимодействий, поэтому, создавая в веществе поляризованные *β*-ядра и исследуя зависимость углового распределения их β -излучения от времени, внешнего постоянного и радиочастотного магнитных полей, температуры, давления и прочих экспериментально контролируемых параметров, можно изучать процессы, влияющие на окружение β -ядер. Широкое использование в подобных исследованиях внешних магнитных полей (постоянного и переменного) роднит их с ядерным магнитным резонансом (ЯМР). Впервые подобные эксперименты были предложены [1] и применены [2, 3] для изучения спинов и квадрупольных моментов β -ядер, а впоследствии метод магнитного резонанса и релаксации поляризованных β -активных ядер (β -ЯМР) стал мощным средством для исследования конденсированных сред вообще и спиновой динамики, в частности [4-9].

Существуют и другие родственные методы, использующие радиоактивные ядра как зонды для исследования конденсированных сред. Наиболее развиты среди них μ SR-спектроскопия (являющаяся частным случаем β -ЯМР, где в качестве β -ядер выступают мюоны), метод возмущенных угловых корреляций и распределений у-излучения и эффект Мессбауэра [10, 11]. Существенное отличие этих методов (часть которых возникла несколько раньше) от *β*-ЯМР состоит в том, что угловое распределение ү-излучения в основном скоррелировано не с поляризацией, а с выстроенностью ядер и со спин-тензорами четвертого ранга, что делает практически невозможным исследование эффектов, связанных с перераспределением некоторых плотностей интегралов движения. Важным примером такого процесса является перенос ядерной поляризации в окружающей среде. В остальном все эти методы концептуально близки и между собой, и с методом ЯМР на стабильных ядрах. Как правило, они не конкурируют, а дополняют друг друга вследствие ограниченности числа ядер, реально доступных для исследований.

В настоящее время β -ЯМР существует в двух модификациях, определяемых способом производства β -ядер. В первой из них используются (n, γ) -реакции на тепловых поляризованных нейтронах от ядерных реакторов. Этот метод применяют группы ИТЭФ и Ганновера-Юлиха. Во второй модификации используются реакции с заряженными частицами, полученными на ускорителях. Этот метод распространен шире, соответствующие установки работают в ЦЕРНе, США, Германии, Бельгии, Японии и Китае.

К особенностям (которые, как правило, являются преимуществами) β-ЯМР на тепловых поляризованных нейтронах относятся следующие:

а) в начальном состоянии β -ядра имеют чисто дипольную поляризацию;

б) β-ядра производятся практически во всем объеме образцов;

в) падающие нейтроны не вносят существенных возмущений в исследуемые материалы.

 β -Ядра, полученные на ускорителях, при проникновении в образцы производят существенные

^{*}E-mail: dzheparov@itep.ru

Рис. 1. Блок-схема *β*-ЯМР-спектрометра ИТЭФ.

повреждения, а их спиновая матрица плотности в начальном состоянии содержит тензорные поляризации. В то же время на ускорителях можно произвести β -ядра большего числа химических элементов, и этот метод, безусловно, удобен для исследования поверхностей. Здесь необходимо подчеркнуть, что радиационные дефекты всегда сопутствуют исследованиям с радиоактивными ядрами. Они важны и в β -ЯМР на поляризованных нейтронах. Этот вопрос будет несколько подробнее рассмотрен ниже.

К преимуществам β-ЯМР перед стандартным ЯМР можно отнести:

а) высокую чувствительность метода, позволяющую вести измерения на $N \sim 10^6 - 10^8 \beta$ -ядрах в образце;

б) независимость чувствительности метода от величины внешнего магнитного поля, что особенно проявляется в возможности проведения релаксационных исследований в любых полях, в том числе и малых;

в) отсутствие необходимости применения радиочастотных полей для релаксационных измерений, что исключительно важно при работе с металлическими образцами и образцами, помещенными в металлические контейнеры;

г) наличие у ряда β -ядер квадрупольных моментов при отсутствии их у ядер стабильных изотопов (например, ²⁰F, ¹⁰⁸Ag, ¹¹⁰Ag).

Настоящий обзор в основном посвящен исследованиям в рамках реакторного β -ЯМР. Главное внимание уделено работам, выполненным в ИТЭФ.

1. НАЧАЛЬНОЕ СОСТОЯНИЕ *β*-ЯДЕР

Пусть β -ядра образуются в (n, γ) -реакции на тепловых поляризованных нейтронах, причем длительность реакции τ_R много меньше, чем все существенные времена деполяризации, вследствие взаимодействия β -ядра с его окружением. Примеры таких реакций: ⁷Li $(n, \gamma)^8$ Li, ¹¹B $(n, \gamma)^{12}$ B, ¹⁹F $(n, \gamma)^{20}$ F, ¹⁰⁹Ag $(n, \gamma)^{110}$ Ag. Тепловой нейтрон вступает в реакцию с нулевым орбитальным моментом. Начальную матрицу плотности системы ядро + нейтрон можно записать как $\rho_{\rm in} = \rho_N \rho_n$, где ρ_N и ρ_n — матрицы плотности ядра и нейтрона соответственно. Единственный векторный параметр в задаче — это поляризация нейтрона $\mathbf{p}_n =$ = Tr { $\mathbf{S}\rho_n$ }, входящая в спиновую часть $\rho_s = (1 + 4\mathbf{p}_n \cdot \mathbf{S})/2$ нейтронной матрицы. В результате реакции система оказывается в состоянии $\rho_f = R\rho_{\rm in}R^+$, где R — унитарная матрица, дающая полное описание реакции. Поэтому спиновое состояние β -ядра сразу после этого процесса имеет вид

$$\rho_0 = \operatorname{Tr} \{\rho_f\}_A = \frac{1}{2I+1} \left(1 + 3\mathbf{I} \cdot \mathbf{P} / [I(I+1)]\right).$$
(2)

Здесь **I** – спин β -ядра, а Tr {...}_A означает взятие следа по всем переменным, кроме **I**. Отсюда очевидно, что поляризация β -ядра **P** = Tr {**I** ρ_0 } = $a\mathbf{p}_n$ пропорциональна поляризации нейтрона в силу линейности связи ρ_0 и ρ_{in} . Расчет по более детальным формулам из [1] показывает, что, как правило, *P* близко к значению $P_{\text{max}} = (I + 1)/3$, которое является максимально возможным для дипольно-поляризованных состояний: при $P > P_{\text{max}}$ правая часть (2) не является неотрицательно-определенной. Для сравнения укажем, что, например, поляризация ядер ⁸Li в поле $H_0 = 10^4$ Гс при T = 300 K составляет $P_T = 2 \times 10^{-6} = 2 \times 10^{-6} P_{\text{max}}$.

Для дальнейшего обсуждаемое угловое распределение β -излучения ансамбля β -ядер, созданных в момент времени t = 0, удобно представить в виде

$$w(\vartheta, t) = 1 + \alpha P_0(t) p_n \cos \vartheta. \tag{3}$$

Здесь ядерная поляризация $P_0(t)$ нормирована условием $P_0(t=0) = 1$, а p_n есть проекция нейтронной поляризации на внешнее постоянное магнитное поле, направленное вдоль оси z.

2. β-ЯМР-СПЕКТРОМЕТР НА ПОЛЯРИЗОВАННЫХ НЕЙТРОНАХ

Блок-схема β -ЯМР-спектрометра ИТЭФ, расположенного в настоящее время на горизонтальном канале реактора МИФИ [8, 12], представлена на рис. 1. Показаны следующие элементы: 1 коллиматор нейтронов, расположен в канале реактора и имеет длину 1 м при поперечном сечении 8×1.5 см; 2 - поляризатор нейтронов, состоит из двух намагниченных кобальтовых зеркал, каждое длиной 2 м и высотой 11 см, обращенных друг к другу отражающими зеркальными поверхностями; 3 - поглотитель прямого пучка и γ -квантов, сделан из нержавеющей стали; 4 - прерыватель пучка поляризованных нейтронов, обеспечивает

импульсное нейтронное облучение образца; 5спин-флиппер, предназначен для переориентации поляризации нейтронов, состоит из поворотного магнита, образующего ведущее магнитное поле $\sim 50 \ \Gamma c$ (которое адиабатически поворачивает спин нейтрона на $\pm 90^{\circ}$ от вертикального направления), и фольги с током, создающей быстрое, неадиабатическое, изменение направления ведущего магнитного поля на 180°; эффективность реверса поляризации – практически 100%; 6 – коллиматоры, ограничивающие отраженные нейтроны и магниты, которые создают ведущее магнитное поле, поддерживающее заданную ориентацию нейтронных спинов; 7 — электромагнит с зазором 14 см, создающий на образце постоянное внешнее магнитное поле H_0 ; 8 — образец, расположенный в центре зазора электромагнита между β -счетчиками 9; для приложения радиочастотного поля на образец наматывается проволочная катушка; при необходимости образец помещается в криостат или термостат; 9-два сцинтилляционных счетчикателескопа для регистрации электронов, испущенных *β*-ядрами вдоль и против направлений ядерной поляризации; каждый счетчик состоит из толстого (20 мм) и тонкого (1 мм) сцинтилляционных детекторов, включенных на совпадения для уменьшения фона; *10* – анализатор пучка нейтронов, отраженных от поляризатора, представляет собой намагниченное кобальтовое зеркало длиной ≈ 20 см, находящееся, как и поляризатор, в магнитном поле ≈600 Гс; 11 – счетчик нейтронов для измерения пространственного распределения нейтронного пучка, измерения его поляризации и мониторирования.

Вся работа спектрометра, включая сбор и первичную обработку данных, управляется с помощью ЭВМ. Последние измерения проводились согласно описанной ниже временной программе.

При определенном направлении нейтронной поляризации на время $au_{
m irr} \sim T_{1/2}$ открывается прерыватель пучка, и нейтронное облучение производит в образце β -ядра. Одновременно регистрируется *β*-излучение счетчиками-телескопами, передающими информацию на многоканальный временной анализатор с шириной окна $\Delta t \sim 0.1 T_{1/2}$. Затем прерыватель перекрывает пучок, образование β -ядер прекращается, и происходит только их распад. Регистрация *β*-излучения продолжается еще в течение времени $au_{obs} \sim (4-5)T_{1/2}$ после прерывания пучка. Данные заносятся в память ЭВМ. Далее, с помощью спин-флиппера направление поляризации нейтронов изменяется на противоположное и описанный полуцикл измерения повторяется. При этом данные накапливаются в других ячейках памяти ЭВМ. Так, например, в случае работы на β -ядрах ⁸Li ($T_{1/2} = 0.84$ с) полный цикл измерения

ЯДЕРНАЯ ФИЗИКА том 69 № 10 2006

(два полуцикла) занимает 16 с. Эксперимент продолжается до достижения необходимой статистической точности в измеряемых параметрах.

Асимметрия β -излучения за интервал времени измерения $\Delta t_k = t_k - t_{k-1}$ составляет

$$\varepsilon_k = \left(N_{\uparrow}^k - N_{\downarrow}^k\right) / \left(N_{\uparrow}^k + N_{\downarrow}^k\right), \qquad (4)$$

где $N^k_{\uparrow(\downarrow)}$ — количество β -частиц, попавших за это время в счетчик, если нейтроны имели поляризацию вдоль (против) поля **H**₀. Если в образце есть только один сорт β -ядер, то

$$N_{\uparrow}^{k} + N_{\downarrow}^{k} = b_{1} \int_{-\infty}^{t_{k}} j_{n}(\tau) d\tau \int_{t_{k-1}}^{t_{k}} e^{-\lambda(t-\tau)} \vartheta(t-\tau) dt,$$
(5)

$$N_{\uparrow}^{k} - N_{\downarrow}^{k} = b_{2} \int_{-\infty}^{t_{k}} j_{p}(\tau) d\tau \int_{t_{k-1}}^{t_{k}} e^{-\lambda(t-\tau)} P_{0}(t-\tau) \times \vartheta(t-\tau) dt.$$

Здесь $P_0(t)$ определено в (3); $\vartheta(t) - функция Хэвисайда; <math>b_1$ и b_2 – числовые константы; $j_n(\tau)$ – поток нейтронов на образце, $j_p(\tau)$ – вносимый им поток нейтронной поляризации, а λ – скорость β -распада. Если образуется несколько сортов β -активных ядер, то используется очевидное обобщение этих формул.

В отсутствие переменных магнитных полей вся зависимость $P_0(t)$ определяется релаксационными процессами, и в простейшем случае экспоненциальной кинетики $P_0(t) = \exp(-t/T_1)$. Количество β -ядер всегда столь мало, что теоретическое описание строится для одного β -ядра в образце. В частности, все представления спин-температурной теории имеют здесь очень ограниченное применение; поэтому T₁ может существенно отличаться от времени продольной релаксации в обычном ЯМР. Один из ярких примеров — спин-решеточная релаксация в изоляторах. Существенный вклад в нее вносит релаксация через парамагнитные примеси, реализующаяся путем спин-диффузионного переноса намагниченности. Для *β*-ядер этот процесс практически отсутствует. Тем не менее и при наличии переменного резонансного поля в случае однородного магнитного уширения деполяризация моноэкспоненциальна: $P_0(t) = \exp(-(W + t))$ $(+1/T_1)t)$, причем скорость насыщения определяется стандартной формулой $W = \pi \omega_1^2 g(\Delta)$, где ω_1 — амплитуда вращающегося монохроматического поля, Δ – отклонение его частоты от резонансной, а $g(\Delta) - функция формы линии резонан$ са. На основе данного соотношения эта функция

была впервые детально измерена в уникально широкой области $g(\Delta) \ge 10^{-5}g(0)$ [7, 13, 14]. Как обычно [15], в правильном кубическом кристалле

$$g(\Delta) = \int_{-\infty}^{\infty} dt \exp(i\Delta t) \operatorname{Tr} \left\{ I_0^+(t) I_0^- \right\} / \operatorname{Tr} \left\{ I_0^+ I_0^- \right\},$$
(6)

где зависимость спина β -ядра I_0 от времени определяется секулярной частью диполь-дипольных взаимодействий. Вблизи вершины при $\Delta \lesssim \omega_l$ форма линии была почти гауссовой: $g(\Delta) =$ $=\exp(-\Delta^2/(2\omega_l^2))/(\sqrt{2\pi}\omega_l)$, причем ω_l^2 не отличалась от теоретического значения второго момента, но по мере роста Δ/ω_l зависимость $q(\Delta)$ переходила в простую экспоненту. Этот результат послужил основой для изучения вклада коллективных движений в экспоненциальное крыло линии [7, 14, 16]. Однако существует много случаев, когда деполяризация β -ядер не моноэкспоненциальна. К простейшим примерам относится резонансная деполяризация при наличии неоднородного уширения или расщепления спектра. Среди сложных примеров — деполяризация при спин-диффузионном переносе поляризации в неупорядоченной системе ⁸Li-⁶Li. Этот процесс важен с концептуальной точки зрения и будет далее рассмотрен подробнее.

3. ВЛИЯНИЕ РАДИАЦИОННЫХ ДЕФЕКТОВ

Диапазон характерных энергий γ -переходов, существенных в (n, γ) -реакциях, составляет от десятков кэВ до нескольких МэВ. Поэтому в момент своего образования β -ядра могут приобрести энергию отдачи порядка сотен эВ (как в случае ядра ⁸Li) или оказаться в состоянии с ободранной электронной оболочкой, если ү-переходы имеют немалый коэффициент внутренней конверсии, как, например, у ядер ¹⁰⁸Аg и ¹¹⁰Аg. Типичная энергия, необходимая для образования диамагнитного точечного дефекта типа вакансии или междоузлия, обычно оценивается в 25 эВ. Ядро с ионизованной электронной оболочкой притягивает к себе соседние электроны, что может вести к сложной перестройке структуры вещества в его окрестности. В результате производство *β*-ядер в конденсированных средах всегда сопровождается образованием вблизи них радиационных дефектов. В свою очередь дефекты посредством сверхтонких взаимодействий влияют на зависимость ядерной поляризации от времени и прочих контролируемых параметров. Поэтому всякое исследование *β*-ЯМР должно начинаться с выяснения вопроса о роли этих послераспадных эффектов (aftereffects). Так, например, исследования, проведенные

группой ИТЭФ в 1970–1980 гг., показали, что послераспадные эффекты в кристаллах LiF проявляются при достаточно низких температурах и практически отсутствуют при комнатных и более высоких температурах [5, 17, 18]. Это определило возможность дальнейших работ группы ИТЭФ по исследованию коллективных эффектов в ядерной спиновой динамике при комнатной температуре.

Рассмотрим типичные проявления радиационных дефектов, создаваемых β -ядрами ⁸Li в кристалле LiF. Время полураспада $T_{1/2} = 0.84$ с. Пусть нейтроны падают на образец короткими импульсами с длительностью $\tau_{\rm irr} \sim 0.2$ с, а в промежутках между этими импульсами измеряется асимметрия $\varepsilon(t)$ с временным разрешением $\Delta t \approx$ ≈ 0.1 с. Здесь время $t \sim 1$ с отсчитано от конца нейтронного импульса. Наблюдаемая зависимость имеет вид

$$\varepsilon(t) = \varepsilon_0 \exp(-t/T_1),\tag{7}$$

причем оказалось, что как ε_0 , так и T_1 зависят от температуры Т и внешнего магнитного поля H₀. Наличие зависимости $T_1(T, H_0)$ не удивительно с точки зрения стандартного магнитного резонанса, а существование зависимости $\varepsilon_0(T, H_0)$ является новым эффектом, означающим, что в системе проходит еще один (быстрый) релаксационный процесс на масштабе $t \lesssim \tau_0 \ll \tau_{\rm irr}$. Существенно, что при комнатной температуре $\varepsilon_0(T = 300 \text{ K})$ практически не зависит от H_0 , а $\varepsilon_0(H_0 = 3 \text{ кГс})$ не зависит от температуры, причем $\varepsilon_0(T = 300 \text{ K}) =$ $= \varepsilon_0 (H_0 = 3 \text{ кГс})$. Поэтому быстрая релаксация произведена радиационными дефектами, которые: а) при комнатной температуре отжигаются за время, много меньшее, чем характерное время вызываемой ими релаксации, и б) частота, соответствующая их взаимодействиям с *β*-ядрами, много меньше ларморовской частоты в поле 3 кГс [5, 17]. Реальная картина явления была осложнена влиянием кросс-релаксационных процессов, причем в области $50 < H_0 < 150$ Гс преобладала трехспиновая кросс-релаксация ⁸Li-¹⁹F, изученная впервые для стабильных ядер в [19], а при больших полях $150 < H_0 < 5000$ Гс была существенна двухспиновая флип-флоп кросс-релаксация ⁸Li-⁶Li, которая, по-видимому, наблюдалась впервые при столь больших Н₀. Действительно, измерения двухспиновой кросс-релаксации для стабильных ядер возможны только в очень малых полях $H_0 \lesssim 30$ Гс вследствие большой разности д-факторов ядер, участвующих в переходе, а для ядер ⁸Li и ⁶Li разность g-факторов уникально мала: $\Delta g/g \approx 0.006$.

Для получения более детальных выводов были проведены измерения спектров β -ЯМР [5, 18] и

сравнение экспериментальных результатов с предсказаниями теоретических моделей [20–23]. По совокупности проведенных исследований был сделан вывод, что в кристалле LiF вблизи β -ядер образуются диамагнитные дефекты — вакансии лития и фтора, были оценены константы квадрупольного электрического взаимодействия с ними и параметры отжига этих дефектов. В силу кубической симметрии кристалла предполагалась простейшая форма для гамильтониана квадрупольного взаимодействия с точечным дефектом:

$$H_Q = \beta_Q \left(\mathbf{I} \cdot \mathbf{n} - \frac{1}{3} I(I+1) \right), \tag{8}$$

где единичный вектор **n** направлен от β -ядра к дефекту. Для взаимодействий с ближайшими вакансиями фтора и лития были получены значения $\beta_{QF} = 2\pi \cdot 47(5)$ кГц [5, 17] и $\beta_{QL} = 2\pi \cdot 11.7(4)$ кГц [5, 18] соответственно. Эти дефекты отжигались практически уже при T = 200 К.

Радиационные дефекты, производимые ядрами ²⁰F во фторидах щелочноземельных металлов, были изучены в работах [4, 24, 25]. Энергия отдачи для этих ядер достигает 1.2 кэВ. Авторы [4, 24, 25] пришли к выводу, что в кубических кристаллах CaF₂, SrF₂ и BaF₂ вблизи β -ядер ²⁰F образуются точечные дефекты, влияние которых было заметно даже при комнатной температуре, а наведенное ими сверхтонкое взаимодействие имело порядок 0.3–1 кГс. В частности, в CaF₂ реализуется $\beta_Q =$ $= 2\pi \cdot 250(13)$ кГц.

Существенное влияние радиационных дефектов было зафиксировано при гелиевых температурах и в галоидах серебра [5, 26, 27]. Исследования при более высоких температурах оказались невозможны вследствие очень быстрой спин-решеточной релаксации.

Теоретические оценки влияния квадрупольных электрических взаимодействий, наведенных дефектами, проводились на основе ряда аппроксимаций. Точное решение подобных задач невозможно до сих пор. Основные ограничения состояли в том, что взаимодействия с дефектами рассматривались либо в рамках теории возмущений, либо взаимодействие учитывалось точно, но только для дефектов, попадающих в положение ближайшего соседа к *β*-ядру [17, 21]. Подобные ограничения существуют и в расчетах влияния магнитных сверхтонких взаимодействий [20, 22, 23]. В то же время экспериментальные исследования всегда недостаточно полны, поэтому было бы интересно провести аналогичные исследования на современном уровне с большей детализацией полевых, температурных и ориентационных зависимостей. Существенно, что современные компьютеры представляют намного

ЯДЕРНАЯ ФИЗИКА том 69 № 10 2006

большие возможности для моделирования необходимых процессов, чем те, что были доступны в 70-е годы. Возможно, что при этом удалось бы однозначно решить вопрос о том, действительно ли отжиг вакансий фтора не замораживается при гелиевых температурах [5, 18]. Другой задачей, которая, на наш взгляд до сих пор не получила исчерпывающего решения, является полное убедительное описание дефектообразования в галоидах серебра [5, 23, 27].

4. ДЕЛОКАЛИЗАЦИЯ ЯДЕРНОЙ ПОЛЯРИЗАЦИИ В МОДЕЛЬНОЙ НЕУПОРЯДОЧЕННОЙ СПИНОВОЙ СИСТЕМЕ ⁸Li—⁶Li

Гиромагнитные отношения ядер ⁸Li и ⁶Li уникально близки — $\Delta q/q = 0.006$. Поэтому в кристалле LiF при комнатной температуре в полях 150—5000 Гс деполяризация β -ядер ⁸Li происходит в основном путем флип-флоп-переходов со стабильными ядрами ⁶Li, которые присутствуют с малой концентрацией $c \ll 1$ как изотопическая примесь в матрице ⁷Li¹⁹F. Эти переходы сопровождаются переносом поляризации по ядрам ⁶Li и частичным ее возвратом назад на ⁸Li. Спинспиновые (кросс-релаксационные) перевороты с другими ядрами (⁷Li и ¹⁹F) заметны в меньших полях, но при $H_0 > 150$ Гс они практически ненаблюдаемы. В типичных условиях ядра ⁸Li и ⁶Li распределены по узлам литиевой подрешетки кристалла случайным образом. Поэтому система ядер ⁸Li-⁶Li в LiF является прекрасной модельной системой для изучения процесса делокализации ядерной поляризации в неупорядоченной среде. Этот факт был выявлен в работах [17, 28], а первое теоретическое исследование процесса проведено в [29]. В настоящее время наиболее интересной представляется область концентраций изотопов ⁶Li c = 3 - 10%. При таких концентрациях: а) процесс имеет эффективную скорость β (определенную ниже в (14)), достаточно большую для того, чтобы на временах $t \sim T_{1/2}$ существенно проявилась неэкспоненциальность деполяризации β -ядер ⁸Li, и б) флуктуации скоростей переходов заметно превышают их средние значения, поэтому система является существенно неупорядоченной.

В работе [30] было показано, что рамках современных представлений при фиксированной конфигурации примесей процесс должен с высокой точностью описываться кинетическими уравнениями, сформулированными в [29]:

$$\frac{\partial p_{i0}}{\partial t} = -\sum_{k} (\nu_{ji} p_{i0} - \nu_{ij} p_{j0}), \qquad (9)$$

$$p_{i0}(t=0) = \delta_{i0}$$

где $p_{i0} = \langle I_i^z \rangle$ — квантово-статистическое среднее значение *z*-компоненты спина (поляризация) *i*-го ядра из системы ⁸Li-⁶Li. Здесь принято, что β -ядро ⁸Li со спином $I_0 \equiv I = 2$ находится в узле $\mathbf{r}_0 = 0$, а ядра ⁶Li со спинами $I_{j\neq/0} \equiv S = 1$ расположены в узлах $\mathbf{r}_j \neq 0$. Суммирование в (9) ведется только по примесным ядрам ⁶Li и ⁸Li. Скорости ν_{ij} элементарных переходов имеют вид:

$$\nu_{j0} = \nu_1 \left(\frac{1 - 3\cos^2 \theta_{j0}}{(r_j/d)^3} \right)^2, \quad \nu_{0j} = \xi \nu_{j0}, \quad (10)$$
$$\nu_1 = \frac{\pi}{6} S(S+1) \left(\frac{g_I g_S \beta_n^2}{\hbar d^3} \right)^2 g_{j0}(\Delta),$$

$$\nu_{ij} = \nu_0 \left(\frac{1 - 3\cos^2\theta_{j0}}{(r_{ij}/d)^3}\right)^2, \qquad (11)$$
$$\nu_0 = \frac{\pi}{6}S(S+1) \left(\frac{g_S^2\beta_n^2}{\hbar d^3}\right)^2 g_{ij}(0), \quad i \neq 0 \neq j,$$

причем $\nu_{jj} = 0.3$ десь $\xi = I(I+1)/[S(S+1)]; g_I = 0.8267$ и $g_S = 0.8220 - g$ -факторы ядер ⁸Li и ⁶Li соответственно; β_n – ядерный магнетон; θ_{ij} – угол между внешним полем H_0 и $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j; d = 2.84$ Å – минимальное расстояние между ядрами Li в LiF; $\Delta = \omega_I - \omega_S$ – разность ларморовских частот ⁸Li и ⁶Li, а функция формы кросс-релаксации

$$g_{ij}(\Delta) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} \cos(\Delta t) \frac{\langle I_i^+(t)I_j^-(t)I_i^-I_j^+\rangle_0}{\langle I_i^+I_j^-I_i^-I_j^+\rangle_0}, \quad (12)$$
$$\langle \dots \rangle_0 = \operatorname{Tr} \{\dots\} / \operatorname{Tr} \{1\},$$
$$I_j^\pm(t) = e^{iH_d t} I_j^\pm e^{-iH_d t},$$

где H_d — секулярная часть диполь-дипольных взаимодействий [15]. Функция $g_{ij}(\Delta)$ определяет вероятность поглощения энергии Δ при флип-флоппереходе. Ее зависимость от \mathbf{r}_{ij} обсуждалась в работе [7], на современном этапе исследований она еще не существенна, поскольку приводит к небольшим изменениям $g_{ij}(\Delta)$ в области вершины.

При упрощении описания системы от исходной гамильтоновой динамики до кинетического уравнения (9) в [30] использованы как регулярные общие свойства системы, так и некоторые случайные совпадения. Из наиболее существенных общих свойств отметим тот факт, что как амплитуды локальных полей, создаваемых ядрами матрицы ⁷Li¹⁹F на спинах примеси ⁸Li-⁶Li, так и скорость их флуктуаций существенно превышают скорость самого процесса делокализации. Экспериментально наблюдаемой величиной является $P_{00}(t) = \langle p_{00}(t) \rangle_c$ — поляризация β -ядер, усредненная по случайному распределению примесей ⁸Li⁻⁶Li в кристалле. Вычисление такого конфигурационного среднего относится к проблеме случайных блужданий в неупорядоченных средах (СБНС) — одному из сложнейших современных разделов статистической физики, что и определяет актуальность экспериментального исследования, проводящегося в ИТЭФ вплоть до настоящего времени. Для пояснения статуса задачи отметим, что ее теоретическое решение при малой концентрации примесей можно связать [31] с вычислением следующего функционального интеграла:

$$\mathcal{P}_{xy}(t) = \int_{\mathbf{q}(0)=\mathbf{x}}^{\mathbf{q}(1)=\mathbf{y}} D\mathbf{p}(\tau) D\mathbf{q}(\tau) \times \qquad (13)$$
$$\times \exp\left[i \int_{\mathbf{x}}^{\mathbf{y}} \mathbf{p} d\mathbf{q} + n \int d^3 z \times \right]$$
$$\times \left(\exp\left(-t \int_{0}^{1} d\tau A^z(\mathbf{q}(\tau), \mathbf{p}(\tau))\right) - 1\right),$$

где $n = c/\Omega$ – плотность примесей, Ω – объем элементарной ячейки кристалла; $A^{z}(\mathbf{q},\mathbf{p}) =$ $= \nu_{zq} \left(1 - e^{-i\mathbf{p} \cdot (\mathbf{z} - \mathbf{q})} \right), \text{ a } \nu_{xz} = \nu_{ij} (\mathbf{r}_i = \mathbf{x}, \mathbf{r}_j = \mathbf{z}).$ Формула (13) имеет некоторое сходство с интегральными представлениями в задачах о поляроне [32], но значительно сложнее их. Существуют также суперполевые представления, демонстрирующие связь СБНС с общими проблемами современной теории поля [31]. Отметим, что уравнения (9) встречаются и во многих других областях физики. Например, после минимальных изменений (но с сохранением дипольного дальнодействия) они описывают пространственный некогерентный перенос локализованных электронных возбуждений (соответствующие измерения проводятся такими методами современной оптики, как нестационарная селективная лазерная спектроскопия [33] и четырехволновое смешение света [34, 35]), а при $\ln(\nu_{ij}) \propto r_{ij}$ их применяют в теории прыжковой проводимости.

Для прогноза экспериментальных исследований при концентрациях примеси c < 0.1 использовалась формула, предложенная в работе [36] на основе полуфеноменологической теории (см. также [30]):

$$P_{00}(t) = F(t) = \exp(-\sqrt{\beta_1 t}) +$$
(14)
+ $\xi \frac{1 - \exp(-\sqrt{\beta_1 t})}{(\mu\beta(t+\tau))^{3/2}} \left(1 + \frac{\varphi}{\sqrt{\mu\beta(t+\tau)}}\right),$

Рис. 2. β -Асимметрия $\varepsilon(t)$ для делокализации ядерной поляризации в модельной системе ⁸Li⁻⁶Li в монокристалле LiF с ориентацией **H**₀||[111]. Концентрация ядер ⁶Li c = 0.101. Момент времени t = 0 соответствует началу нейтронного импульса с длительностью $t_p = 2.5$ с. Верхняя и нижняя кривые – результаты расчета по формулам (5), (15) и (5), (14) соответственно при $\beta = 10.8$ с⁻¹, $\beta_1 = 10.2$ с⁻¹ и $\mu = 0.761$ (учтена расчетная зависимость тензора диффузии от c). Подгоночные параметры: u = 0.054(3), v = 0.111(6).

где (для системы ⁸Li-⁶Li)

$$\beta_1 = \frac{256}{243} \pi^3 c^2 \nu_1 d^6 / \Omega^2;$$

c — концентрация примесей (вероятность обнаружить ⁶Li в узле литиевой подрешетки); $\beta = \beta_1 \nu_0 / \nu_1$; $\xi = 3$, $\varphi = 2.09$; $\mu \beta \tau = 5.11$. В теории ожидается, что (при современном значении $\mu = 0.71$, полученном по результатам расчета тензора спиновой диффузии [37], проведенного на основе предложенного в [38] метода численного моделирования) эта формула должна быть точна до членов $\sim (\beta t)^{1/2}$ включительно при $\beta t \lesssim 1$ и до членов $\sim (\beta t)^{-2}$ включительно при больших βt и качественно верна в промежуточной области.

В процессе исследований было выявлено, что соотношение (14) не противоречит эксперименту при $\beta_1 t \leq 10$ [39, 40] и при $\beta_1 t \leq 15$ [41]. Однако по мере набора статистики последние измерения группы ИТЭФ показали, что при $\beta t \sim 25$ необходима коррекция формулы (14), простейшая форма которой при малых магнитных полях имеет вид:

$$P_{00}(t) = F(t)G(t),$$
(15)

$$G(t) = G_{\exp}(t) = \left(1 - \frac{(1/8 + \alpha)\beta_1 t - u(\beta_1 t)^2}{(1 + v\beta t)^3}\right).$$

Здесь F(t) определено в (14), $\alpha = \alpha(\omega)$ вычислено в [30], причем $\alpha(\omega \to 0) = 0.013$, а u и v – пара-

ЯДЕРНАЯ ФИЗИКА том 69 № 10 2006

Рис. 3. Результат численного моделирования функции G(t) (тонкая кривая со статистическими погрешностями) и $G_{\exp}(t)$ (жирная кривая) для тех же условий, что и на рис. 2.

метры, подлежащие определению в эксперименте. Формула (15) точна вплоть до членов $\sim \beta t$ при малых βt и до членов $\sim (\beta t)^{-2}$ включительно при больших βt . На рис. 2 представлен пример экспериментальной зависимости асимметрии β -распада от времени [42].

Для детального количественного описания процесса была развита новая версия метода [38], и коррекция G(t) была рассчитана для всех $\beta t \le \le 1000$, стартуя прямо с уравнения (9), что дало относительную погрешность $\varepsilon \le 0.05$ в расчете G(t)для системы ⁸Li⁻⁶Li (см. рис. 3), и $\varepsilon \le 0.01$ для оптических систем [43]. В результате проблема случайных блужданий в неупорядоченных средах с дипольными скоростями переходов получила полное численное решение.

5. ДРУГИЕ РЕЛАКСАЦИОННЫЕ ПРОЦЕССЫ

Основные исследования были проведены в литийсодержащих веществах.

В работах [40, 44] обнаружено, что в LiF при температуре $T \ge 540$ К кросс-релаксация ⁸Li-⁶Li претерпевает существенное ускорение вследствие влияния трансляционной диффузии ядер Li. В указанных работах была развита теория процесса в форме, достаточной для использования данного явления с целью детектирования трансляционной диффузии ядер с частотой прыжков $w_h \sim 1 \text{ c}^{-1}$.

Другой интересный процесс в модельной неупорядоченной системе ⁸Li⁻⁶Li развивается при воздействии на нее переменного поля с частотой $\omega = \omega_I + \omega_S$, равной сумме ларморовских частот ядер ⁸Li и ⁶Li [40, 45]. Эволюция спиновой системы под влиянием этого поля описывается кинетическими уравнениями

$$\frac{\partial p_{i0}}{\partial t} = -\sum_{k} (\nu_{ji} p_{i0} - \nu_{ij} p_{j0}) - (16)$$
$$-\sum_{k} (\mu_{ji} p_{i0} + \mu_{ij} p_{j0}), \quad p_{i0}(t=0) = \delta_{i0},$$

причем основное отличие резонансных скоростей μ_{ij} от кросс-релаксационных ν_{ij} состоит в том, что $\mu_{ij} \propto \gamma \nu_{ij}$, где $\gamma = (H_1/H_0)^2 \ll 1$. Зависимости же от r_{ij} одинаковы: $\mu_{ij} \propto \nu_{ij} \propto r_{ij}^{-6}$. При умеренно больших временах (когда $\beta t \lesssim 1$) зависимость наблюдаемой поляризации β -ядер от времени имеет вид

$$P_{00}(t) = \exp(-(\beta_e t/(\xi+1))^{1/2}).$$

Существенно, что формула (14) дает такую же зависимость от времени в этой области с эффективной скоростью процесса $\beta_e = \beta_1$. Здесь рассматривается случай малой концентрации с ядер ⁶Li. Основной предсказанный и обнаруженный эффект состоит в том, что зависимость β_e от малого γ неаналитическая: $\beta_e - \beta_1 \propto c^2 \gamma^{1/2}$. Это явление полностью обусловлено неупорядоченностью в положениях спинов, и его объяснение состоит в том, что при умеренно больших временах эволюция определяется процессами в небольших изолированных кластерах. Но при $\gamma = 0$ в каждом кластере сохраняется $\sum_j p_{j0} = 1$. Поэтому в *n*-спиновом кластере поляризация ⁸Li не может стать меньше, чем $\xi/(\xi+n)$. При $\gamma \neq 0$ этот немалый остаток убывает только под влиянием резонансного воздействия, что и приводит к указанной неаналитической зависимости.

Исследование [46] разрешило долгий спор о том, возможна ли в металлическом литии пространственная диффузия ядер Li в отсутствие дефектов решетки. Было показано, что вся наблюдаемая диффузия реализуется с участием моновакансий.

Применение β-ЯМР привело к существенному уточнению представлений о диффузии Li в Li₃N [47].

Интересные результаты были получены при исследовании спин-решеточной релаксации в пиролитическом графите, интеркалированном литием [48]. Были выявлены вклады как релаксации Корринги, так и релаксации вследствие трансляционной диффузии, причем последняя имела характерные признаки двумерной диффузии в графитовых плоскостях.

Перспективные исследования были проведены на жидких сплавах типа $\text{Li}_x M_{1-x}$ (M == Si, Ge, Sn, Pb) [49, 50]. Было показано, что как скорость продольной релаксации, так и найтовский сдвиг имеют характерные особенности в зависимости от *x*. Продолжение подобных исследований особенно интересно для физики систем с переменной валентностью.

Исследования магнетиков проводились в рамках ускорительного β -ЯМР. Изучались позиции, в которые попадают β -ядра после внедрения в вещество, и сверхтонкие взаимодействия. Типичный пример представлен в работе [51], где показано, что для ядер ⁸Li, внедренных в ферромагнитный Ni, масштаб локального поля составляет 5 кГс, а спин-решеточная релаксация является корринговской с $T_1T \sim 400$ с K. Близкое значение для T_1T реализуется в меди [52] и литии [53].

6. МНОГОСПИНОВЫЕ И МНОГОКВАНТОВЫЕ РЕЗОНАНСЫ

Функция $g_{ij}(\Delta)$ формы линии кросс-релаксации (12) зависит только от *z*-компонент локальных полей. Поэтому процесс делокализации поляризации в системе ⁸Li-⁶Li можно ускорить, если сузить $g_{ij}(\Delta)$, поскольку тогда ее значение в вершине возрастет. Для этой цели естественно применить хорошо известный метод Блоха, в котором к окружающим ядрам прикладывается сильное резонансное поле с амплитудой, большей, чем локальное поле. Однако при проведении этой программы было выявлено, что в кристалле LiF β -ядра ⁸Li резонируют на частотах вида

$$\omega = j\omega_I + f\omega_F + l\omega_L + s\omega_S \tag{17}$$

(где $\omega_I, \omega_F, \omega_L$ и ω_S — ларморовы частоты ядер ⁸Li, ¹⁹ F. ⁷Li и ⁶Li соответственно, а j, f, l и s – целые числа), и были измерены ширины ряда резонансов и их факторы запрета, представляющие отношение интенсивности конкретного резонанса к интенсивности резонанса $\omega = \omega_I [54]$. Все эти резонансы являются следствием несекулярных членов дипольдипольных и сверхтонких взаимодействий и реализуются путем одновременного перехода в группе спинов. Ускорение переноса в системе ⁸Li-⁶Li методом Блоха оказалось неэффективным, поскольку рядом с ларморовским резонансом $\omega = l\omega_L$ оказался резонанс $\omega = f\omega_F - l\omega_L - \omega_I$, который полностью менял кинетику процесса. В работе [55] была построена теория этого круга явлений, а также ее обобщение на случай сильных переменных полей, которая прошла проверку в работе [56]. На этой основе были подобраны параметры двух переменных полей с частотами $\tilde{\omega}_F \approx \omega_F$ и $\tilde{\omega}_L \approx \omega_L$ и амплитудами ω_{1FF} и ω_{1LL} соответственно, с помощью которых было достигнуто почти трехкратное ускорение переноса в системе ⁸Li-⁶Li [39, 40]. В подобных условиях резонанс имеет место при

$$k\tilde{\omega}_F + n\tilde{\omega}_L + j\omega_I + f\omega_{Fe} + l\omega_{Le} = 0, \qquad (18)$$

 $0 \neq |j| \le 2I,$

$$\omega_{Fe} = [(\tilde{\omega}_F - \omega_F)^2 + \omega_{1FF}^2]^{1/2}, \qquad (19)$$
$$\omega_{Le} = [(\tilde{\omega}_L - \omega_L)^2 + \omega_{1LL}^2]^{1/2},$$

где k, n, j, f, l — целые числа.

7. СТРУКТУРНЫЕ ИССЛЕДОВАНИЯ

В работе [57], обобщившей более ранние исследования [54, 58], были изучены источники резонансной деполяризации β -ядер ⁸Li в кристаллах LiF под влиянием переменного магнитного поля на двойной ларморовской частоте при комнатной температуре. Использовались бездефектные порошкообразные образцы, состоящие из кристаллитов, полученных химическим осаждением. Они имели ожидаемую бездефектную ширину линии β -ЯМР на ларморовской частоте $\omega = \omega_I$, а резонанс на удвоенной ларморовской частоте $\omega = 2\omega_I$ не наблюдался. После обработки этих образцов давлением 190 МПа проявился хорошо выраженный пик при $\omega = 2\omega_I$, хотя резонансная линия $g(\Delta)$ на ларморовской частоте не претерпела заметных изменений при $\Delta \lesssim \omega_l$. Была построена количественная теория для расчета интенсивности и формы линии резонанса $\omega = 2\omega_I$ при наличии градиента электрического поля, наведенного дислокациями, и было показано, что результаты находят удовлетворительное количественное объяснение в предположении, что обработка кристаллитов давлением приводит к образованию линейных дислокаций. По величине амплитуды резонанса был сделан вывод о том, что в каждом кристаллите векторы Бюргерса всех дислокаций должны быть преимущественно ориентированы в одном направлении. Форма линии резонанса $\omega = 2\omega_I$ определялась дипольдипольными взаимодействиями.

8. ЗАКЛЮЧЕНИЕ

Представленные примеры демонстрируют, что β -ЯМР на поляризованных тепловых нейтронах является мощным инструментом исследования конденсированных сред. В ближайшем будущем следует ожидать новых результатов, полученных с применением этого метода в физике магнетиков, ионных проводников, ВТСП и в биологических объектах.

Работа выполнена при поддержке РФФИ (проект № 03-02-17126) и Программы поддержки ведущих научных школ (проект НШ-1907.2003.2)

ЯДЕРНАЯ ФИЗИКА том 69 № 10 2006

СПИСОК ЛИТЕРАТУРЫ

- 1. Ф. Л. Шапиро, УФН **65**, 133 (1958).
- 2. D. Connor, Phys. Rev. Lett. 3, 429 (1959).
- 3. Y. G. Abov, O. N. Yermakov, A. D. Gulko, et al., Nucl. Phys. **34**, 505 (1962).
- 4. H. Ackermann, P. Heitjans, and H.-J. Stöckmann, Top. Curr. Phys. **31**, 291 (1983).
- Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров, С. С. Тростин, Некоторые проблемы современной ядерной физики, под ред. И.С. Шапиро (Наука, Москва, 1989), с. 193.
- 6. P. Heitjans, W. Faber, and A. Schirmer, J. Non-Cryst. Sol. **131-133**, 1053 (1991).
- Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров и др., ЭЧАЯ 26, 1654 (1995).
- Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров и др., Современные проблемы ядерной физики, физики и химии конденсированных сред. Материалы Первой Московской международной школы физики ИТЭФ, под ред. Ю. Г. Абова, А. Л. Суворова, В. Г. Фирсова (УФН, Москва, 1999), с. 155.
- 9. П. Хайтйанс, А. Ширмер, см. [8], с. 161.
- Н. Н. Делягин, Б. А. Комиссарова, Л. Н. Крюкова и др., Сверхтонкие взаимодействия и ядерные излучения (МГУ, Москва, 1985).
- 11. D. Forkel-Wirth, Rep. Prog. Phys. 62, 527 (1999).
- 12. http://www.nti.org/db/nisprofs/russia/fulltext/mifi /irt2.htm
- М. И. Булгаков, А. Д. Гулько, Ю. А. Оратовский, С. С. Тростин, ЖЭТФ 61, 667 (1971).
- 14. М. И. Булгаков, А. Д. Гулько, Ф. С. Джепаров и др., Письма в ЖЭТФ **58**, 614 (1993).
- 15. А. Абрагам, М. Гольдман, *Ядерный магнетизм*. Порядок и беспорядок (Мир, Москва, 1982), т. 1.
- В. Е. Зобов, А. А. Лундин, О. Е. Родионова, ЖЭТФ 120, 619 (2001).
- 17. М. И. Булгаков, С. П. Боровлев, А. Д. Гулько и др., Препринт № 150, ИТЭФ (Москва, 1976).
- М. И. Булгаков, С. П. Боровлев, А. Д. Гулько и др., Письма в ЖЭТФ 27, 481 (1978).
- 19. P. S. Pershan, Phys. Rev. 117, 109 (1960).
- Ф. С. Джепаров, И. Г. Ивантер, Препринт № 79, ИТЭФ (Москва, 1974).
- Ф. С. Джепаров, И. Г. Ивантер, Препринт № 81, ИТЭФ (Москва, 1975).
- Ф. С. Джепаров, И. Г. Ивантер, Препринт № 108, ИТЭФ (Москва, 1975).
- 23. Ф. С. Джепаров, И. Г. Ивантер, ЯФ 23, 530 (1976).
- 24. H.-J. Stöckmann, D. Dubbers, M. Grupp, *et al.*, Z. Phys. B **30**, 19 (1978).
- 25. W. Buttler, H.-J. Stöckmann, K. Dorr, *et al.*, Z. Phys. B **45**, 273 (1982).
- А. Д. Гулько, С. С. Тростин, А. Худоклин, ЖЭТФ 52, 1504 (1967).
- 27. K. Dorr, H.-J. Stöckmann, H. Ackermann, *et al.*, J. Phys. C **15**, 4437 (1982).
- 28. F. Fujara, H.-J. Stöckmann, H. Ackermann, *et al.*, Z. Phys. B **37**, 151 (1980).
- 29. Ф. С. Джепаров, А. А. Лундин, ЖЭТФ **75**, 1017 (1978).

- 30. Ф. С. Джепаров, ЖЭТФ **99**, 982 (1991).
- Ф. С. Джепаров, В. Е. Шестопал, Изв. вузов. Физика **30** (6), 77 (1987).
- 32. R. P. Feynman, *Statistical Mechanics* (W. A. Benjamin, Reading, Mass., 1972).
- В. П. Гапонцев, Ф. С. Джепаров, Н. С. Платонов, В. Е. Шестопал, Письма в ЖЭТФ 41, 460 (1985).
- 34. L. Gomez-Jahn, J. Kasinski, and R. J. D. Miller, Chem. Phys. Lett. **125**, 500 (1986).
- 35. P. T. Rieger, S. P. Palese, and R. J. D. Miller, Chem. Phys. **221**, 85 (1997).
- Ф. С. Джепаров, в сб.: Радиоспектроскопия, вып. 13, 135 (1980).
- 37. F. S. Dzheparov, D. V. L'vov, and V. E. Shestopal, Preprint № 46, ITEP (Moscow, 1999).
- Ф. С. Джепаров, Д. В. Львов, В. Е. Шестопал, ЖЭТФ 114, 2166 (1998).
- Ю. Г. Абов, М. И. Булгаков, С. П. Боровлев и др., Изв. АН СССР. Сер. физ. 52, 460 (1988).
- Ю. Г. Абов, М. И. Булгаков, С. П. Боровлев и др., ЖЭТФ 99, 962 (1991).
- 41. F. Dzheparov, A. Gul'ko, P. Heitjans, *et al.*, Physica B **297**, 288 (2001).
- 42. F. S. Dzheparov and A. D. Gul'ko, in *Proceed*ings of the 7th International Moscow School of *Physics "Nuclear Physics, Physics and Chemistry* of Condensed Matter, Ed. by A. L. Suvorov et al. (Академпринт, Москва, 2004), р. 65.
- 43. Ф. С. Джепаров, Письма в ЖЭТФ 82, 580 (2005).
- Ю. Г. Абов, М. И. Булгаков, С. П. Боровлев и др., Изв. АН СССР. Сер. физ. 52, 1699 (1988).

- 45. Ю. Г. Абов, М. И. Булгаков, С. П. Боровлев и др., Изв. АН СССР. Сер. физ. **50**, 2354 (1986).
- 46. A. Schirmer, P. Heitjans, G. Majer, and A. Seeger, Defect and Diffusion Forum **143-147**, 1317 (1997)
- 47. B. Bader, P. Heitjans, H.-J. Stockmann, *et al.*, J. Phys.: Condens. Matter. **4**, 4779 (1992).
- 48. A. Schirmer, and P. Heitjans, Z. Naturforsch. Teil A **50**, 643 (1995).
- 49. P. Heitjans, G. Kiese, C. van der Marel, *et al.*, Hyperfine Interact. **15-16**, 596 (1983).
- 50. W. Geertsma and C. van der Marel, J. Phys.: Condens. Matter. **7**, 8867 (1995).
- 51. Y. Nojiri, K. Ishiga, T. Onishi, *et al.*, Hyperfine Interact. **120/121**, 415 (1999).
- 52. F. Ohsumi, K. Matsuta, M. Mihara, *et al.*, Hyperfine Interact. **120/121**, 419 (1999).
- 53. A. Korblein, P. Heitjans, H.-J. Stoeckmann, *et al.*, J. Phys. F **15**, 561 (1985).
- 54. Ю. Г. Абов, М. И. Булгаков, А. Д. Гулько и др., Письма в ЖЭТФ **35**, 344 (1982).
- Ф. С. Джепаров, С. В. Степанов, Препринт № 139, ИТЭФ (Москва, 1982).
- 56. Ю. Г. Абов, М. И. Булгаков, А. Д. Гулько и др., Изв. АН СССР. Сер. физ. **47**, 2299 (1983).
- 57. Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров и др., ЯФ 65, 2056 (2002).
- 58. M. I. Bulgakov, A. D. Gul'ko, F. S. Dzheparov, *et al.*, Hyperfine Interact. **61**, 937 (1990).

BETA-NMR SPECTROSCOPY. MODERN STATE AND FUTURE PERSPECTIVES

Yu. G. Abov, A. D. Gulko, F. S. Dzheparov

The review contains description of basic ideas of β -NMR together with main directions of existing investigations and possible future ways of studies.