ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРЕНОСА ПОЛЯРИЗАЦИИ В НЕУПОРЯДОЧЕННОЙ СИСТЕМЕ ЯДЕР ⁸Li-⁶Li ОТ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ

© 2014 г. Ю. Г. Абов^{1),2)}, А. Д. Гулько¹⁾, Ф. С. Джепаров^{1),2),3)*}, О. Н. Ермаков¹⁾, Д. В. Львов^{1),2)}, А. А. Любарев¹⁾

Поступила в редакцию 26.03.2013 г.

Проведено изучение случайных блужданий в статически неупорядоченных средах на примере делокализации ядерной поляризации ансамбля бета-активных ядер 8 Li, образованных в (n,γ) -реакции на тепловых поляризованных нейтронах в монокристаллах LiF. Процесс инициировался магнитными диполь-дипольными взаимодействиями и состоял в переносе поляризации с первично поляризованного ядра 8 Li на ближайшие (стабильные) ядра 6 Li и в дальнейшей миграции поляризации по ядрам 6 Li с возможным возвратом на ядра 8 Li. Для получения информации о поляризации ядер 8 Li измерялась асимметрия их бета-излучения относительно внешнего магнитного поля 6 Li. Процесс исследован вплоть до выхода на диффузионную асимптотику. Концентрация примеси 6 Li варьировалась от 6 Li доказано, что микроскопическая теория удовлетворительно согласуется с полученными экспериментальными результатами. Проведено сравнение с исследованиями математически родственного процесса ферстеровского электродипольного переноса локализованных экситонов.

DOI: 10.7868/S0044002714050031

1. ВВЕДЕНИЕ

Делокализация ядерной поляризации в неупорядоченной спиновой подсистеме 8 Li $^{-6}$ Li кристалла LiF представляет собой прекрасный пример проблемы случайных блужданий в неупорядоченных средах с дипольным переносом, допускающий прямое измерение поляризации ядра ⁸Li, инициирующего процесс, по анизотропии его бетаизлучения [1-3]. Изучаемый процесс выделен среди прочих спиновых релаксационных процессов ядер ⁸Li в монокристалле LiF вследствие исключительной близости гиромагнитных отношений ядер 8 Li и 6 Li – их различие составляет 0.57%. Поэтому в широком диапазоне значений внешнего статического магнитного поля $200 < H_0 < 3000$ Гс в достаточно чистых кристаллах кросс-релаксация ⁸Li-⁶Li является доминирующим процессом продольной релаксации для примесных бета-активных ядер ⁸Li при комнатной температуре. В эксперименте общее число бета-активных ядер (β -ядер) 8 Li в образце не превосходит 10^{7} , т.е. их сферы

влияния не перекрываются, и в теории можно счи-

тать, что изучаемая спиновая подсистема состоит

из одного β -ядра и стабильных ядер 6 Li, присут-

ствующих в образце как изотопическая примесь

(с концентрацией $c \ll 1$) к основному изотопу ⁷Li.

Процесс состоит в переносе поляризации с пер-

вично поляризованного ядра ⁸Li на окружающие

ядра 6 Li с последующим переносом обратно на 8 Li

и прочие ядра ⁶Li. Он с большой точностью [2]

описывается кинетическим уравнением

Здесь $p_{i0} = \langle I_i^z(t) \rangle_q$ — поляризация (в направлении внешнего постоянного статического поля \mathbf{H}_0) i-го ядра со спином I_i из подсистемы $^8\mathrm{Li}^{-6}\mathrm{Li}$ при условии, что первоначально поляризация была локализована на ядре $^8\mathrm{Li}$ (с номером i=0). Усреднение в определении $p_{i0}(t)$ представляет собой квантовостатистическое усреднение, проведенное при фиксированной конфигурации расположения примесных ядер в кристалле, для которой и записано уравнение (1). Процесс непосредственно измерим, поскольку угловое распределение β -

 $rac{dp_{i0}}{dt} = \sum_{j} (w_{ji}p_{i0} - w_{ij}p_{j0}),$ (1) $p_{i0}(t=0) = \delta_{i0}.$ Здесь $p_{i0} = \langle I_{z}^{z}(t) \rangle$ — подяризация (в направлении

¹⁾Институт теоретической и экспериментальной физики, Москва, Россия.

²⁾Национальный исследовательский ядерный университет "МИФИ", Москва, Россия.

³⁾ Московский физико-технический институт, Долгопрудный, Россия.

^{*}E-mail: dzheparov@itep.ru

излучения определяется соотношением

$$W(\theta) = 1 + ap_{00}\cos\theta,\tag{2}$$

где θ —угол между направлением вылета β -частицы и ядерной поляризацией, а ядерная константа $a\approx 0.1$. Наблюдаемой в макроскопическом образце является поляризация β -ядра, усредненная по случайному распределению спинов 6 Li по узлам кристалла:

$$P_{00}(t) = \langle p_{00}(t) \rangle_c. \tag{3}$$

В настоящей работе мы используем представление [2,4,5]

$$w_{ij} = \frac{\pi I_i \left(I_i + 1 \right)}{6} \left(\frac{g_i g_j \beta_n^2}{\hbar} \right)^2 \times \tag{4}$$

$$\times \left(\frac{1 - 3\cos^2 \vartheta_{ij}}{r_{ij}^3} \right)^2 g_{ij} \left(\Delta_{ij} \right),$$

$$g_{ij} \left(\omega \right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \cos \omega t \frac{\left\langle I_i^+ I_j^- I_j^+(t) I_i^-(t) \right\rangle_0}{\left\langle I_i^+ I_j^- I_j^+ I_i^- \right\rangle_0},$$

$$\langle \ldots \rangle_0 = \frac{\text{Tr} \left(\ldots \right)}{\text{Tr} \left(1 \right)}.$$

Здесь и далее $w_{jj}=0$, а β_n — ядерный магнетон. В (4) принято, что j-й спин расположен в узле кристалла с координатой \mathbf{r}_j , имеет g-фактор g_j , ларморовскую частоту ω_j , $\mathbf{r}_{ij}=\mathbf{r}_i-\mathbf{r}_j$, $\Delta_{ij}=\omega_i-\omega_j$, а ϑ_{ij} — угол между \mathbf{r}_{ij} и внешним магнитным полем \mathbf{H}_0 . Зависимость от времени в $\left\langle I_i^+I_j^-I_j^+(t)I_i^-(t)\right\rangle_0$ определяется гейзенберговской эволюцией вследствие диполь-дипольных взаимодействий спинов примеси со спинами матрицы [2, 4, 5], которые, как обычно в ядерной спиновой динамике, рассматриваются в высокотемпературном приближении. При разведении спинов на большое расстояние этот коррелятор факторизуется:

$$\frac{\left\langle I_{i}^{+}I_{j}^{-}I_{j}^{+}(t)I_{i}^{-}(t)\right\rangle_{0}}{\left\langle I_{i}^{+}I_{j}^{-}I_{j}^{+}I_{i}^{-}\right\rangle_{0}} \to f_{ij}(t) =$$

$$= \frac{\left\langle I_{i}^{+}I_{i}^{-}(t)\right\rangle_{0}}{\left\langle I_{i}^{+}I_{i}^{-}\right\rangle_{0}} \frac{\left\langle I_{j}^{-}I_{j}^{+}(t)\right\rangle_{0}}{\left\langle I_{j}^{-}I_{j}^{+}\right\rangle_{0}}.$$
(5)

В рассматриваемой примесной системе есть только два сорта спинов: $I_0=I=2$ и $I_{j\neq 0}=S=1$. Поэтому при больших r_{ij}

$$w_{ij}(r_{ij} \to \infty) = w_{ij}^0 r_0^6 \left(1 - 3\cos^2 \vartheta_{ij}\right)^2 / r_{ij}^6, \quad (6)$$

$$w_{ij}^0 = (\xi \delta_{i0} + \delta_{j0}) w_1 + (1 - \delta_{i0}) (1 - \delta_{j0}) w_0,$$

$$w_{0} = \frac{\pi S(S+1)}{6} \left(\frac{g_{(6)}^{2} \beta_{n}^{2}}{\hbar r_{0}^{3}}\right)^{2} g_{0}(0),$$

$$w_{1} = \frac{\pi S(S+1)}{6} \left(\frac{g_{(8)} g_{(6)} \beta_{n}^{2}}{\hbar r_{0}^{3}}\right)^{2} g_{0}(\Delta),$$

$$\xi = \frac{I_{0}(I_{0}+1)}{S(S+1)} = 3,$$

$$g_{0}(\Delta) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} \cos(\Delta t) f_{0}(t).$$

Здесь r_0 — минимальное расстояние между примесными спинами, а Δ — разность ларморовских частот ядер 6 Li и 8 Li. В последнем соотношении мы положили $f_{ij}(t)=f(t)$, пренебрегая малым различием g-факторов $g_{(6)}=0.822047$ и $g_{(8)}=0.82670(1)$ спинов 6 Li и 8 Li.

Расчет функции формы кросс-релаксации $g_{ij}(\Delta)$ является сложной задачей, реалистический путь для решения которой был найден в работах [4, 5] на основе исследований [5, 6] функции формы линии ядерного магнитного резонанса (ЯМР) примесных ядер. В наших расчетах использованы формулы, полученные в этих работах, и разработаны программы, обеспечивающие получение необходимых результатов. Отметим, что отличие $g_{ij}(\Delta)$ от $g_0(\Delta)$ возникает как следствие корреляции локальных полей на примесных спинах [4, 5].

Система представляет точно измеряемый уникальный пример спиновой диффузии в неупорядоченных средах. Подобные задачи с дипольными скоростями переходов $w_{ij} \sim r_{ij}^{-6}$ важны также во многих оптических исследованиях. В целом интерес к проблеме случайных блужданий в неупорядоченных средах с дипольным переносом связан как с широкими приложениями в физике конденсированных сред, оптике, спектроскопии, биологии $(\phi \text{отосинтез})[7-11]$, так и с тем, что аналитические методы дают представление о решениях этих задач только для небольших времен, и получение более детальной информации является фундаментальной проблемой неравновесной статистической механики и квантовой теории поля [12–18]. В оптических исследованиях подобный процесс называется ферстеровским резонансным переносом энергии (Förster resonance energy transfer) [11], переносом энергии электронного возбуждения (electronic energy migration)[10] или переносом локализованных экситонов.

2. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Важной особенностью изучаемой системы ядер является случайное пространственное распределе-

ние в кристалле как β -ядер 8 Li, так и стабильных ядер ⁶Li. Поэтому задача о переносе поляризации в системе ⁸Li-⁶Li относится к проблеме случайных блужданий в неупорядоченных средах (СБНС). Экспериментально наблюдаемая величина бета-асимметрии определяется поляризацией, усредненной по ансамблю β -ядер, присутствующих в образце. Вычисление такого конфигурационного среднего является одной из главных задач теории СБНС. Уравнения (1), описывающие кинетику деполяризации ядер 8 Li в системе 8 Li- 6 Li в кристалле LiF, относятся к числу простейших и в то же время наиболее фундаментальных в теории СБНС. Система ядерных спинов ⁸Li-⁶Li выгодно отличается от ее экситонных аналогов (изучаемых оптическими методами) тем, что: 1) скорость переноса поляризации между двумя спинами определяется только диполь-дипольным взаимодействием и рассчитывается весьма надежно; 2) зависимость этой скорости от внешних магнитных полей позволяет регулировать скорость процесса; 3) эта скорость сильно анизотропна; 4) имеется асимметрия скоростей переноса поляризации от ⁸Li к ⁶Li и обратно, вследствие которой автокорреляционная функция $P_{00}(t)$ при больших значениях времени t втрое больше, чем в случае переноса по тождественным примесям (донорам); 5) поляризация (возбуждение) вносится в систему в предельно локализованной форме — первоначально поляризовано одно β -ядро; 6) изучаемый процесс не зависит от температуры в широком диапазоне. Отметим исключительную важность первого из этих свойств, поскольку надежность микроскопических оценок скорости для переноса экситонов, по-видимому, значительно ниже. Второе свойство позволяет производить более разнообразное сравнение теории с экспериментом.

Кинетика процесса носит специфический неэкспоненциальный характер. Основной временной масштаб в рассматриваемой задаче выявляется при вычислении деполяризации одного из ядер в пренебрежении возвратом поляризации в пределе малых концентраций, когда $c \to 0$, но $\beta_0 t$ конечно (см., например, [16]):

$$\left\langle \exp\left(-\sum_{j} w_{jl}t\right)\right\rangle_{c} = (7)$$

$$= \delta_{l0} \exp\left(-\left(\beta_{1}t\right)^{1/2}\right) + (1 - \delta_{l0}) \exp\left(-\left(\beta_{0}t\right)^{1/2}\right),$$

$$\beta_{0} = \frac{256}{243} \left(\frac{r_{0}^{3}}{\Omega}\right)^{2} \pi^{3} c^{2} w_{0}, \quad \beta_{1} = \beta_{0} w_{1} / w_{0}.$$

Здесь $\langle \dots \rangle_c$ означает усреднение по конфигурации примесей, а Ω — объем на один узел в подрешетке лития (соответственно c/Ω представляет плотность примесных узлов). Соотношение (7) обычно называется ферстеровским законом распада, а ферстеровские константы β_0 и β_1 пропорциональны скорости переноса на среднем расстоянии $r_c = r_0/c^{1/3}$. С достаточной для дальнейшего точностью $\beta_1/\beta_0 = g_0\left(\Delta\right)/g_0\left(0\right)$. Очевидно, что в пределе малых концентраций корреляция локальных полей пропадает.

Отметим, что в важном предельном случае большого магнитного поля, когда $\beta_1/\beta_0\ll 1$, в главном порядке по этому малому параметру

$$P_{00}(t) = Q(t) = \left\langle \exp\left(-\sum_{j} w_{j0}t\right)\right\rangle_{c} =$$
$$= \exp\left(-\left(\beta_{1}t\right)^{1/2}\right).$$

Актуальность проведенного эксперимента обусловлена наличием пространственного беспорядка в исследуемой системе. Так, если бы примесные ядра были расположены упорядоченно, образуя какую-либо правильную подрешетку, то задача переноса поляризации по ним решалась бы точно. При этом длинновременная асимптотика делокализации поляризации была бы диффузионной (пропорциональной $t^{-3/2}$).

Первые точные результаты по асимптотике в изучаемой нами системе были получены на основе численно-аналитического исследования в работах [19, 14], где было доказано, что она также диффузионна. Далее эти результаты были обобщены до полного численного моделирования $P_{00}(t)$ при всех t [20]. Гипотеза о существовании диффузионной асимптотики $P_{00}(t)$ была впервые адекватно сформулирована в рамках полуфеноменологической теории [2, 21], которая предсказывает несколько стадий делокализации поляризации β ядер ⁸Li во времени. Вначале, при $\beta_0 t \leqslant 1$, это квазиферстеровский процесс, когда поляризация β ядра пропорциональна $\exp\left(-\sqrt{\beta_1 t/(\xi+1)}\right)$. На больших временах, при $\beta_0 t>20-25$, наступает диффузионная стадия, когда поляризация пропорциональна $t^{-3/2}$. На этой стадии можно измерить коэффициент спиновой диффузии в неупорядоченной системе ядер. При концентрации ⁶Li порядка 10% выход на диффузионный режим происходит за 2-3 с. Хотя в образцах с меньшей концентрацией ⁶Li измерение коэффициента диффузии оказывается невозможным, так как время выхода на диффузионный режим существенно превышает

время жизни β -ядра ⁸Li, тем не менее экспериментальные результаты для таких образцов позволяют проследить процесс делокализации возбуждения при промежуточных значениях $\beta_0 t$, и проверить предсказания теории в этой области.

Основные элементы современной теории переноса ядерной поляризации по подсистеме примесных спинов таковы. При значениях $\beta_0 t \sim 1$ удовлетворительное решение задачи нахождения функции $P_{00}(t)$ получается на основе первых членов концентрационного разложения [22] в кумулянтной форме [2]:

$$P_{00}(t) \approx \exp\left(-(\beta_1 t/(\xi+1))^{1/2} - \alpha \beta_1 t\right).$$
 (8)

Параметр α зависит от внешнего магнитного поля и протабулирован в [2] в функции от отношения w_0/w_1 , в частности, при $H_0=200$ Гс он мал: $\alpha=0.0147$.

В результате сшивки первых двух членов асимптотик малых и больших $\beta_0 t$ получена полуфеноменологическая формула [2, 21]:

$$P_{00}(t) = F(t) =$$

$$= Q(t) + \frac{\xi (1 - Q(t))}{(\mu \beta_0 (t + \tau))^{3/2}} \left(1 + \frac{\varphi}{(\mu \beta_0 (t + \tau))^{1/2}} \right),$$

$$Q(t) = \exp\left(- (\beta_1 t)^{1/2} \right).$$
(9)

Фигурирующие здесь параметры μ , τ и φ рассчитываются в теории [2, 21] и связаны с тензором диффузии, поскольку на диффузионной стадии

$$P_{00}(t \to \infty) = \frac{\xi}{(\mu \beta_0 t)^{3/2}} = (10)$$
$$= \xi \frac{\Omega}{c} \prod_{\alpha=1}^{3} \frac{1}{(4\pi D_{\alpha} t)^{1/2}},$$

где D_{α} — главные значения тензора диффузии. В частности, условие сшивки формул (8) и (9) дает значение $\mu\beta_0\tau=5.11$, а коэффициент $\varphi=2.09$ определяется поведением $w_{ij}(r_{ij}\to\infty)$, в котором корреляция локальных полей пропадает. В работах [14, 20, 23] сформулированы предсказания для тензора диффузии, из которых следует, что μ приблизительно линейно возрастает от значения 0.711 при $c\to0$ до 0.761 при c=10%. Отметим, что для $c\approx3\%$ $\beta_0\approx1$ c^{-1} , а при $c\approx10\%$ $\beta_0\approx10$ c^{-1} .

Формула (9) построена так, что она точна до членов порядка $(\beta_1 t)^{1/2}$ включительно при малых $\beta_0 t$ и до членов порядка $(\beta_0 t)^{-2}$ при больших $\beta_0 t$.

Численное моделирование [20] показывает, что формула (9) удовлетворительно передает общий

ход зависимости $P_{00}(t)$, но для более точного описания необходим корректирующий множитель

$$P_{00}(t) = F(t)G(\beta_0 t),$$
 (11)

причем $G(0)=G(\infty)=1$, а в промежуточной области 0.85 < G(t) < 2. В пределе малых концентраций множитель $G(\beta_0 t)$ должен быть таким, чтобы сохранялось вышеуказанное совпадение главных членов асимптотик малых и больших времен $P_{00}(t)$ и F(t). Но при конечных концентрациях и наличии корреляций локальных полей это условие уже будет нарушаться в области небольших $\beta_1 t$, тогда как для больших $\beta_1 t$ оно остается верным.

Метод численного расчета $P_{00}(t)$ достаточно подробно описан в [20], а метод расчета элементарных скоростей переходов w_{ij} изложен в [4, 5]. Для формулировки результатов численного моделирования, проведенного в настоящей работе, было применено представление

$$G(x) = 1 - (12)$$

$$- \frac{b_0 x^{1/2} + (0.138 + b_1) x - d_0 x^{3/2} - d_1 x^2}{\left(1 + f_0 x^{1/2} + f_1 x + f_2 x^{3/2}\right)^2} +$$

$$+ c_1 \exp\left(-\frac{1}{2} \left(\frac{\ln\left(x^2 + h^2\right) - \ln\left(a_1^2 + h^2\right)}{\ln b}\right)^2\right),$$

где $x=\beta_0 t,\, d_1=1,\, a\, h=0.1,\, и$ получены значения остальных параметров, приведенные в таблице. При их получении использованы значения тензора диффузии, приведенные в [20], поскольку влияние корреляции локальных полей на них оказалось несущественным. Напротив, поведение при малых $\beta_0 t$ претерпело заметное изменение, выразившееся в необходимости введения члена $(b_0 x)^{1/2}$ и коэффициента b_1 , наличие которых определяет качественное отличие формулы (12) от аналогичной формулы (22) из [20]. Отметим, что эта формула, как и (9), не предназначена для точного отражения зависимости $P_{00}(t)$ при $(1+\xi)w_0t<1$, где она линейна. Поведение при столь малых временах не проявляется в нашем эксперименте.

Для основных параметров, определяющих скорость процесса, получены следующие значения:

$$\beta_{0} = 1.122\beta_{0G},$$

$$\beta_{1}(H = 0.2 \,\mathrm{K}\Gamma c) = 1.029\beta_{0G},$$

$$\beta_{1}(H = 0.691 \,\mathrm{K}\Gamma c) = 0.4341\beta_{0G},$$

$$\beta_{1}(H = 1.21 \,\mathrm{K}\Gamma c) = 0.09389\beta_{0G},$$

$$\beta_{0G}(c = 0.1006) = 10.83 \,\mathrm{c}^{-1},$$

$$\beta_{0G}(c = 0.053) = 3.057 \,\mathrm{c}^{-1},$$

$$\beta_{0G}(c = 0.033) = 1.193 \,\mathrm{c}^{-1},$$

Таблица

c	H_0 , к I	Te	a_1		b		c_1		d_0
0.1	0.2	0.2		57.13		3	0.08185		17.88
	0.691	L	84.61		3.824		0.4875		-1.376
	1.21		113.2		19.93		0.3928		-1042
0.053	0.2	0.2		64.29		3	0.04227		4.343
	0.691	0.691		82.72		3.034	0.3585		4.218
	1.21	1.21		98.37		3.22	0.6161		-48.99
0.033	0.2	0.2		47.39		1.81	0.2797		957.0
	0.691	0.691		44.11		4.348	0		13.19
	1.21	1.21		72.79		5.75	0.6101		-61.76
c	H_0 , к Γ с	f	f_0	f_1		f_2	b_0		b_1
0.1	<i>H</i> ₀ , кГс 0.2		f ₀ .65	f_1 -1.1		f_2 0.2152	b_0 -8.95	3	b_1 41.55
		10			70				
	0.2	10	.65 .473	-1.1	70 920	0.2152	-8.95		41.55
	0.2 0.691	10 3 748	.65 .473	-1.1' $-0.1!$	70 920 1	0.2152 0.1244	-8.95 -1.40	4	41.55 1.989
0.1	0.2 0.691 1.21	10 3 748 8	.65 .473 .9	-1.1 -0.19 -47.7	70 920 1 54	0.2152 0.1244 1.018	-8.95 -1.40 7461	40	41.55 1.989 -40120
0.1	0.2 0.691 1.21 0.2	10 3 748 8	.65 .473 .9 .024	-1.1 -0.1 -47.7 -1.0	70 920 1 54 265	0.2152 0.1244 1.018 0.1905	-8.95 -1.40 7461 -0.13	40	41.55 1.989 -40120 6.356
0.1	0.2 0.691 1.21 0.2 0.691	10 3 748 8 6	.65 .473 .9 .024 .893	-1.1 -0.19 -47.7 -1.09 -0.89	70 920 1 54 265	0.2152 0.1244 1.018 0.1905 0.1454	-8.95 -1.40 7461 -0.13 -2.33	40 4	41.55 1.989 -40120 6.356 6.572
0.1	0.2 0.691 1.21 0.2 0.691 1.21	10 3 748 8 6 181 144	.65 .473 .9 .024 .893	-1.1 -0.1 -47.7 -1.0 -0.8 -9.4	70 920 1 54 265 01	0.2152 0.1244 1.018 0.1905 0.1454 0.1683	-8.95 -1.40 7461 -0.13 -2.33 -536.3	40 44	41.55 1.989 -40120 6.356 6.572 396.5

где β_{0G} представляет параметр β_0 , вычисленный по формулам (6) и (7) в предположении, что функция формы кросс-релаксации является гауссовой:

$$g_0(\Delta) = g_{0G}(\Delta) = \frac{1}{(4\pi M_2)^{1/2}} \exp(-\Delta^2/(4M_2)).$$

Здесь M_2 — второй момент линии ЯМР ядер ⁸Li, вычисленный с учетом влияния на него замещения спинов ⁷Li спинами ⁶Li.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Суть метода β -ЯМР заключается в циклическом создании в исследуемом образце ансамбля поляризованных бета-активных ядер-зондов (например, при захвате ядрами образца тепловых поляризованных нейтронов) и измерении временной эволюции поляризации этих ядер путем измерения угловой (0°—180°) асимметрии их бета-излучения [1, 5, 24].

Бета-активные поляризованные ядра ⁸Li с периодом полураспада 0.84 с образуются в монокристалле LiF при радиационном захвате поляризованных тепловых нейтронов ядрами изотопа ⁷Li.

Испускаемые в этой реакции γ -кванты порождают вблизи β -ядра дефекты решетки, которые при комнатной температуре отжигаются столь быстро, что не влияют на изучаемый процесс [24]. Неполяризованные ядра изотопа ⁶Li присутствуют в образце в малой (до 10%) концентрации и распределены случайным образом. Уникальность системы ядер 8 Li $^{-6}$ Li состоит в том, что они имеют очень близкие значения g-факторов. Поэтому в магнитных полях 200-3000 Гс доминирующим механизмом деполяризации β -ядер 8 Li является кросс-релаксация с ядрами ⁶Li, инициируемая магнитными дипольдипольными взаимодействиями. За счет кроссрелаксации первоначально поляризованное ядро 8 Li передает поляризацию ближайшим ядрам 6 Li, которые в свою очередь могут передать ее другим ядрам ⁶Li либо вернуть обратно ядру ⁸Li. Кроссрелаксация ⁸Li с ядрами матрицы ⁷Li и ¹⁹F оказывается при этом подавлена [1]. Поляризация ансамбля β -ядер 8 Li наблюдается по угловой асимметрии вылета электронов распада.

Бета-ЯМР-спектрометр на поляризованных нейтронах (рис. 1) включает в себя два основ-

Рис. 1. Блок-схема β -ЯМР-спектрометра ИТЭФ, расположенного на реакторе МИФИ. Узел для получения поляризованных нейтронов: 1,3,6 — коллиматоры нейтронов; 2 — зеркала-поляризаторы нейтронов; 4 — прерыватель пучка поляризованных нейтронов; 5 — спин-флиппер для переориентации направления поляризации пучка нейтронов, падающих на образец; 10 — зеркало-анализатор; 11 — детектор нейтронов. Узел для измерения асимметрии вылета электронов распада бета-ядер: 7 — электромагнит; 8 — исследуемый образец; 9 — сцинтилляционные счетчики-телескопы для регистрации электронов распада.

ных узла — устройство для получения и анализа поляризованного пучка тепловых нейтронов и устройство для измерения поляризации ансамбля β -ядер (асимметрии электронов распада).

В эксперименте измеряется асимметрия бета-излучения

$$a_{\text{exp}} = (N_{+} - N_{-}) / (N_{+} + N_{-}) = AP\Omega_{s}$$
 (14)

путем регистрации чисел электронов распада, вылетающих по (N_+) и против (N_-) направления ядерной поляризации. Средняя (по процессу измерения, см. ниже) поляризация β -ядер P пропорциональна поляризации пучка нейтронов, A=-1/3- константа, определяемая ядерными параметрами бета-распада, коэффициент Ω_s есть функция телесного угла, в котором происходит регистрация β -электронов β -счетчиком. Максимальный расчетный коэффициент асимметрии для β -распада ядер 8 Li $|PA|\approx 0.14$. В нашем опыте с учетом поляризации нейтронов ($\approx 90\%$) и $\Omega_s\approx 0.8$ максимальное значение коэффициента асимметрии для электронов распада 8 Li $a_0\approx 0.10$.

Измерительный цикл состоит из двух полуциклов с противоположными направлениями поляризации нейтронов. Полуцикл включает в себя n=99 тактов временного счетчика-анализатора. Длительность измерительного такта и интервал между тактами задаются программой измерения. По этой программе осуществляется управление спин-флиппером и прерывателем пучка нейтронов. Сеанс измерений заключается в следующем. В момент времени t=0 начинает работать многоканальный временной счетчик-анализатор, и одновременно спин-флиппером задается определенное направление поляризации нейтронов (счет бетадетектора $N_+(n)$). Длительность такта временного анализатора 0.102 с, причем время регистрации

импульсов 0.1 с, а время списывания информации 0.002 с. Затем через заданное число тактов открывается прерыватель пучка поляризованных нейтронов (на 2.4 с) и происходит облучение образца, в процессе которого происходит образование β ядер и их распад. После перекрытия прерывателем пучка нейтронов образование β -ядер прекращается и происходит только их распад. Регистрация β -излучения в этой фазе происходит в течение времени 7.3 с. Затем направление поляризации нейтронного пучка меняется на противоположное и начинается второй полуцикл (счет бета-детектора $N_{-}(n)$). Полный цикл измерения (два полуцикла) занимает около 20 с. Такие циклы повторяются большое число раз и суммируются для набора необходимой статистической точности в измерении β -асимметрии. Экспериментальная асимметрия для каждого такта и каждого их двух детекторов вычисляется по формуле (14).

Излучение, регистрируемое двумя счетчикамителескопами в каждом n-м такте временного анализатора, представляет собой смесь парциальных излучений β -активных изотопов $^8\mathrm{Li}$, $^{20}\mathrm{F}$ и фона. Парциальная асимметрия a_8 β -излучения ядер $^8\mathrm{Li}$ для каждого такта временного анализатора вычислялась из экспериментально наблюдаемых значений асимметрии a_{exp} на основе представления

$$a_{\text{exp}} = a_8 \frac{S_8}{S} + a_{20} \frac{S_{20}}{S} + a_b \frac{S_b}{S},$$

$$S = N_+ + N_- = S_8 + S_{20} + S_b,$$
(15)

где a_{20} — асимметрия бета-электронов, испущенных ядрами 20 F; a_b — асимметрия фона, а S_8 , S_{20} и S_b — интенсивности бета-излучения 8 Li, 20 F и фона соответственно. Таким образом, в (15) S — сумма отсчетов β -счетчика (потактовая) для двух ориентаций поляризации нейтронов (+ и —) относительно

Рис. 2. Разложение интенсивности S на парциальные составляющие (образец LiF с концентрацией 6 Li 0.35%). Обозначения: I — форма нейтронного импульса облучения; 2 — интенсивность счета бета-детектора S в течение измерительного полуцикла; 3 — интенсивность S_8 ; 4 — интенсивость S_{20} ; 5 — интенсивность S_b .

магнитного поля, включающая в себя парциальные интенсивности β -излучений ядер 8 Li, 20 F и фона.

Для вычисления асимметрии a_8 необходимо знать асимметрии a_{20} , a_b и отношения (S_8/S) , (S_{20}/S) и (S_b/S) . Значения асимметрий a_{20} и a_b определялись экспериментально, причем асимметрия фона равнялась нулю, а асимметрия фтора эффективно была уменьшена выбранной длительностью полуциклов. Для определения отношений сумм следует разложить экспериментальную функцию S(n), где n — номер такта, на ее парциальные составляющие фитированием по методу наименьших квадратов. Для этого необходимо знать реальные теоретически ожидаемые аналитические зависимости каждой парциальной суммы от номера такта (т.е. от времени). Функция $S_b(n)$ фона является величиной постоянной, хотя и различной для фазы облучении образца нейтронами и для фазы, когда облучение прекращено. Для вычисления поканальной зависимости функций $S_8(n)$ и $S_{20}(n)$ необходимо теоретически рассчитать кинетику накопления и распада β -ядер каждого сорта излучений в реальном измерительном

Рис. 3. Относительные парциальные интенсивности S_i/S (образец LiF с концентрацией ⁶Li 0.35%). Обозначения: I — нейтронный импульс облучения; 2 — отношение S_8/S ; 3 — отношение S_{20}/S ; 4 — отношение S_b/S .

цикле и с учетом реальной формы нейтронного импульса облучения, а затем провести усреднение этой полученной функции по времени измерения активности в каждом n-м такте анализатора. В результате получим необходимые для разложения S(n) функции $S_i(n)$. В частности, для нейтронного импульса облучения прямоугольной формы накопление ядер (активность изучения) в фазе облучения происходит по закону $S(t) \propto [1 - \exp(-\lambda t)]$, где λ — вероятность распада β -ядер, t — время от начала фазы облучения (при трапециевидной форме импульса вводится корректирующая поправка). После конца фазы облучения (в фазе закрытия) число β -ядер (активность излучения) уменьшается по экспоненте $S(t) \propto \exp(-\lambda t)$, где время отсчитывается от конца фазы облучения (начало фазы закрытия). Измеренные нами вероятности распадов λ_8 и λ_{20} для ядер 8 Li и 20 F согласуются с литературными значениями [25] и [26] соответственно и принимались равными $\lambda_8 = 0.8268$ с⁻¹ и $\lambda_{20} = 0.063$ с⁻¹. Результат разложения интенсивности S(t) на парциальные составляющие показан на рис. 2 и 3.

Из полученных таким образом для каждого β -счетчика значений $a_8(n)$ для сравнения с теорией бралось среднее.

Далее полученную временную зависимость $a_8(t)$ необходимо описать теоретически. Задача состоит в проверке соответствия полученным экспериментальным результатам "релаксационной" функции $P_{00}(t)$.

Если образование β -ядер в образце и измерение их поляризации происходят мгновенно (т.е. форма нейтронного импульса пропорциональна δ -функции $\delta(t)$), то функция P, определяющая поляризацию β -ядер в образце, может быть представлена как $P=P_0P_{00}(t)$, где P_0 — значение поляризации при отсутствии релаксации β -ядер 8 Li, $P_{00}(t)$ — функция, описывающая кинетику деполяризации (релаксацию) мгновенно (δ -образно) созданных β -ядер и нормированная на 1 при t=0. Тогда $a_8(t)=AP(t)\Omega_s=AP_0P_{00}(t)\Omega_s=a_0P_{00}(t)$, где $a_0=AP_0\Omega_s=a_8(t=0)$ — предельное значение асимметрии при отсутствии релаксации β -ядер. Соответственно, непосредственно из измеренных величин получится, что $P_{00}(t)=a_8(t)/a_0$.

Для получения оптимальной статистики облучение образца нейтронами (т.е. создание β -ядер) необходимо проводить конечное время (порядка $(2-3)T_{1/2}$). Измерение асимметрии также проводится за конечное время. Этот факт усложняет алгоритм обработки экспериментальных данных и определение функции $P_{00}(t)$. Поскольку величина экспериментально измеренной за время такта асимметрии является величиной уже усредненной методически, такую же процедуру необходимо проделать и с функцией $P_{00}(t)$. Тогда сравнение экспериментально измеренной кинетики деполяризации с теоретически ожидаемой будет процедурой адекватной.

Итак, задается теоретическое выражение для функции $P_{00}(t)$, например, описываемое формулами (11) и (12). Затем, аналогично вычислению теоретически ожидаемых функций сумм S, делаются два усреднения функции $P_{00}(t)$. Первое усреднение учитывает форму и длительность нейтронного импульса при создании β -ядер в образце и закон накопления и распада β -ядер в процессе облучения. В результате получаем функцию $P_1(t)$. Второе усреднение учитывает конечное время измерения активности электронов распада ядер ⁸Li при измерении асимметрии. Получаемая при этом функция $P_2(n)$ есть средняя поляризация ансамбля β -ядер в n-м такте временного анализатора за время измерения β -асимметрии. Она является результатом усреднения функции $P_1(t)$ по активности S(t). При использованной нами длительности измерительного такта $P_2(n)$ мало отличается от $P_1(t)$. Эта функция $P_2(n)$, умноженная на параметр a_0 (асимметрию при отсутствии кросс-релаксации), есть теоретически ожидаемое значение β -асимметрии

Рис. 4. Схема алгоритма описания экспериментальных данных по кинетике деполяризации функцией $P_{00}(t)$. Образец LiF с концентрацией изотопа 6 Li 5.30% в поле $200\,$ Гс. Кривые: I — нейтронный импульс облучения; 2 — функция $P_{00}(t)$; 3 — функции P_1 и P_2 первого и второго усреднения функции $P_{00}(t)$ (в нашем случае практически совпадают); 4 — произведение $a_0P_2(n)$; точки — экспериментальные данные с ошибкой.

распада ядер 8 Li при экспериментальном режиме измерения. Таким образом, именно $P_2(n)$ фигурирует в качестве P в формуле (14). Произведение $a_0P_2(n)$ как функция номера такта временного анализатора сравнивается с экспериментальными результатами (потактно измеренной асимметрией искомого β -распада) по методу наименьших квадратов. Критерием правильности выбора $P_{00}(t)$ является оптимальность значений χ^2/n . Отметим, что асимметрия a_0 может быть как свободным параметром, так и быть фиксирована (определена экспериментально).

На рис. 4 и 5 показан результат применения описанной выше схемы сравнения эксперимента с теорией для образца LiF с концентрацией изотопа $^6{
m Li}~c=5.30\%$ в поле $200~{
m Fc}$.

Образцы представляли собой пластинкимонокристаллы LiF толщиной около 3 мм. Для ускорения процесса кросс-релаксации с целью более быстрого приближения к диффузионной стадии процесса переноса, что существенно вследствие короткого времени жизни β -ядер,

Рис. 5. Учет излучений 20 Г и фона при вычислении асимметрии 8 Li, т.е. преобразование измеренной асимметрии (треугольники) в асимметрию бета-распада ядер 8 Li (кружки). Образец LiF с концентрацией изотопа 6 Li 5 S30% в поле 200 Гс.

использовались монокристаллы LiF с ориентацией оси [111] параллельно магнитному полю \mathbf{H}_0 на образце. Именно в этой ориентации реализуется наиболее узкая линия ЯМР для спинов ⁸Li [5, 6] и ⁶Li и, соответственно, наибольшее значение β_0 . Образцы были приготовлены с различным изотопным содержанием ядер ⁶Li: $(3.30\pm0.03)\%$, $(5.30\pm0.02)\%$ и $(10.06\pm0.04)\%$. Содержание ⁶Li определялось по пропусканию тепловых нейтронов через монокристаллические образцы-пластинки LiF заданной толщины и измеренной плотности.

4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ранее [1, 3] измерения кинетики деполяризации β -ядер ⁸Li в монокристаллах LiF были проведены при $\beta_0 t \leqslant 15$. В настоящей работе приводятся результаты аналогичных исследований в более широком интервале концентраций ⁶Li, с большей статистикой и до больших значений $\beta_0 t \approx 50$. Предварительные результаты настоящей работы (в меньшем диапазоне концентраций и без учета корреляции локальных полей при теоретической обработке результатов) изложены в [27–30].

Рисунки 6-8 демонстрируют полученные экспериментальные результаты по зависимости наблюдаемой асимметрии β -распада $a_8(t)$ ансамбля ядер $^8{\rm Li}$ от времени (точки с ошибками) и их описание теоретическими зависимостями (сплошные кривые) на основе численного моделирования, описанного в разд. 2. Содержание изотопа $^6{\rm Li}$ в образцах LiF и напряженность магнитного поля на образцах указаны в подписях к рисункам.

Облучение образца поляризованными нейтронами происходило в интервале времени 0-2.5 с, затем облучение прерывалось. Этим объясняется специфическая (со "ступенькой") форма зависимости асимметрии от времени.

Ожидаемая теоретическая зависимость асимметрии от времени есть произведение $a_0P(t)$, где параметр a_0 — предельная величина асимметрии при отсутствии кросс-релаксации, а P(t) — поляризация β -ядер, являющаяся результатом двух усреднений функции $P_{00}(t)$, как описано выше.

Обработка результатов проводилась методом наименьших квадратов по формулам (9), (11), (12) с параметрами, рассчитанными, как описано в разд. 2, и приведенными в таблице и в соотношениях (13). В качестве подгоночных параметров использовались значения начальной (при t=0) асимметрии a_0 бета-излучения и концентрация cизотопа ⁶Li. Отметим, что подгонка по концентрации с проводилась с учетом измеренных независимо значений, указанных в разд. 3. Эти значения c вводились как измеренные точки со своей погрешностью. Вариации значений параметра a_0 в разных измерениях объясняются методическими факторами и принципиального значения не имеют. Полученные значения χ^2/n вполне удовлетворительны с учетом того, что погрешности теории имеют порядок 1% уже на уровне уравнений (1)[2]. Кроме того, из рис. 9 видно, что погрешности численного моделирования больше экспериментальных в той области, где экспериментальные данные имеют наибольшую точность, т.е. при $\beta_0 t < 10$.

Для проверки теории наиболее представительными являются результаты, полученные на образцах с концентрацией c=0.1006, поскольку для них реализуются наибольшие значения $\beta_0 t$ и наибольшее влияние корреляции локальных полей на скорости элементарных переходов.

Отметим, что корреляция локальных полей несущественно повлияла на тензор диффузии. Она гораздо заметнее проявляется в общей зависимости кинетик от внешнего магнитного поля и приводит к лучшему согласию теории и эксперимента, чем простая аппроксимация функции формы линии кросс-релаксации на основе формулы (5).

Исторически первое измерение $P_{00}\left(t\right)$ в задачах магнитодипольного переноса в неупорядоченных

Рис. 6. Результаты для кристалла с концентрацией c=0.1006(4). Представлены зависимости наблюдаемой асимметрии β -распада $a_8(t)$ ядер ⁸Li в полях 200, 691 и 1200 Гс (в порядке перечисления снизу вверх). Соответствующие значения: $\chi^2/n=99/64, 96/64, 92/64$; подгоночные параметры: $c=10.10(4)\%, \ a_0=10.62(6)\%$; $c=9.97(6)\%, \ a_0=11.56(8)\%$; $c=10.09(6)\%, \ a_0=10.82(5)\%$.

Рис. 7. Результаты для кристалла с концентрацией c=0.0530(2). Представлены зависимости наблюдаемой асимметрии β -распада $a_8(t)$ ядер ⁸Li в полях 200, 691 и 1200 Гс (в порядке перечисления снизу вверх). Соответствующие значения: $\chi^2/n=74/64,\ 69/64,\ 95/64;$ подгоночные параметры: $c=5.32(2)\%,\ a_0=10.05(5)\%;\ c=5.32(2)\%,\ a_0=10.43(4)\%;\ c=5.33(2)\%,\ a_0=10.86(3)\%$

Рис. 8. Результаты для кристалла с концентрацией c=0.0330(3). Представлены зависимости наблюдаемой асимметрии β -распада $a_8(t)$ ядер ⁸Li в полях 200, 691 и 1200 Гс (в порядке перечисления снизу вверх). Соответствующие значения: $\chi^2/n=125/64,\,55/64,\,168/64;$ подгоночные параметры: $c=3.43(3)\%,\,a_0=9.86(4)\%;\,c=3.25(3)\%,\,a_0=10.33(4)\%;\,c=3.40(3)\%,\,a_0=10.29(3)\%.$

средах было проведено в работе [31]. Оно инициировало теоретический анализ [32] (в этой работе, в частности, были сформулированы уравнения (1)), на основе которого в [21] было сформулировано первое правильное предсказание о форме длинновременной диффузионной асимптотики (10). Для оптических измерений в математически родственной проблеме электродипольного переноса локализованных экситонов привлекаются три разных метода. По-видимому, исторически первым из них является метод измерения деполяризации флуоресценции [33], который активно используется и в наши дни [10]. Но первые признаки отклонения от квазиферстеровского поведения (8) к диффузионному (10) были обнаружены в работе [34], выполненной методом нестационарной селективной лазерной спектроскопии. Авторы проинтерпретировали свой результат как наблюдение выхода на диффузионную асимптотику и измерение коэффициента диффузии. Далее в работе [35] тем же методом было показано, что сначала реализуется предсказанное в [21] (и описываемое формулой (9)) "переколебание", а выход на асимптотику происходит позже. Прямое оптическое измерение коэффициента диффузии возможно также на основе метода четырехволнового смешения [36]. Переколебание состоит в том, что при малых

временах $P_{00}(t) < P_{\text{diff}}(t) = \xi/(\mu\beta_0 t)^{3/2}$, а при выходе на длинновременную асимптотику, наоборот, $P_{00}(t) > P_{\text{diff}}(t)$, и, соответственно, в процессе эволюции зависимости $P_{00}(t)$ и $P_{\text{diff}}(t)$ сначала пересекаются и расходятся, а затем снова сближаются. Наши результаты показывают, что в действительности амплитуда переколебания, определенная как $\max (P_{00}(t) - P_{\text{diff}}(t)) / P_{\text{diff}}(t)$, почти вдвое больше, чем предсказывается формулой (9), и предасимптотическая стадия является довольно долгой. Это видно как из графиков функции $G(\beta_0 t)$, построенных в [20] без учета корреляции локальных полей, так и из рис. 9, построенного с учетом этой корреляции с параметрами, указанными в таблице. Поэтому выводы о параметрах тензора диффузии в данном круге задач можно делать только на основе надежного теоретического анализа. Отметим, что теория, использованная в работе [10], совершенно непригодна для этой цели. В этой работе для определения коэффициента диффузии авторы измеряли не $P_{00}(t)$, а использовали совершенно иной метод, основанный на измерении кинетики тушения люминесценции, вызываемой доставкой возбуждения к так называемым акцепторам, осуществляющим необратимый захват возбуждений. Подобный процесс реализуется в спиновой динамике при ядерной релаксации через парамагнитные центры. Адекватная теория этого процесса развита

Рис. 9. Результат численного моделирования зависимости $G\left(\beta_0 t\right)$ при $c=0.1,\,H_0=200$ Гс, и ее аппроксимация формулой (12).

только для случая, когда миграция возбуждения осуществляется диффузионно (т.е. в однородной среде с малым шагом) (см., например, [37]) или при прыжковом переносе (т.е. в однородной среде с большой длиной прыжка) [38]. В обоих случаях наблюдаемый сигнал $\Phi(t)$ зависит от времени как простая экспонента: $\ln{(1/\Phi(t))} \sim t$. Именно это соотношение было положено в основу анализа результатов в [10]. Но если миграция происходит в неупорядоченной среде, как в [10], то можно показать, что $\ln(1/\Phi(t)) < \text{const} \cdot t^{1/2}$. Этот вывод легко следует из результатов работы [32] и въявь сформулирован и проанализирован в [38], но был проигнорирован в [10]. В целом, насколько нам известно, в оптических исследованиях не получено убедительного согласия теоретических и экспериментальных значений коэффициента диффузии.

5. ЗАКЛЮЧЕНИЕ

Экспериментальные результаты по деполяризации β -ядер 8 Li в неупорядоченной системе ядер 8 Li— 6 Li в кристалле LiF с таким широким диапазоном концентраций изотопа 6 Li и значений магнитного поля получены впервые. Примененная теория переноса спинового возбуждения в изучаемой ядерной системе в целом удовлетворительно описывает экспериментальные результаты в исследованном временном диапазоне, содержащем выход на длинновременную диффузионную асимптотику.

СПИСОК ЛИТЕРАТУРЫ

1. Ю. Г. Абов, М. И. Булгаков, С. П. Боровлев, А. Д. Гулько, ..., Ф. С. Джепаров и др., ЖЭТФ **99**, 962 (1991)[Sov. Phys. JETP **72**, 534 (1991)].

- 2. Ф. С. Джепаров, ЖЭТФ **99**, 982 (1991) [Sov. Phys. JETP **72**, 546 (1991)].
- 3. F. Dzheparov, A. Gul'ko, P. Heitjans, D. L'vov, *et al.*, Physica B **297**, 288 (2001).
- 4. F. S. Dzheparov and S. V. Stepanov, Hyperfine Interactions C 1, 609 (1996).
- 5. Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров и др., ЭЧАЯ **26**, 1654 (1995) [Phys. Part. Nucl. **26**, 692 (1995)]
- 6. М. И. Булгаков, А. Д. Гулько, Ф. С. Джепаров и др., Письма в ЖЭТФ **58**, 614 (1993) [JETP Lett. **58**, 592 (1993)].
- 7. P. T. Rieger, S. P. Palese, and R. J. D. Miller, Chem. Phys. **221**, 85 (1997).
- 8. E. N. Bodunov, M. N. Berberan-Santos, E. J. Nunes Pereira, and J. M. G. Martinho, Chem. Phys. **259**, 49 (2000).
- 9. C. Sissa, F. Terenziani, A. Painelli, *et al.*, Chem. Phys. **404**, 9 (2012).
- 10. K. A. Colby, J. J. Burdett, R. F. Frisbee, *et al.*, J. Phys. Chem. A **114**, 3471 (2010).
- 11. A. R. Clapp, I. L. Medintz, and H. Mattoussi, Chem. Phys. Chem. 7, 47 (2006).
- 12. Ф. С. Джепаров, В. Е. Шестопал, Изв. вузов. Физика **30** (6), 77 (1987) [Sov. Phys. J. **30**, 509 (1987)].
- 13. Ф. С. Джепаров, В. Е. Шестопал, ТМФ **94**, 496 (1993) [Theor. Math. Phys. **94**, 345 (1993)].
- 14. Ф. С. Джепаров, Д. В. Львов, В. Е. Шестопал, ЖЭТФ **114**, 2166 (1998) [JETP **87**, 1179 (1998)].
- 15. R. Metzler and J. Klafter, Phys. Rept. 339, 1 (2000).
- F. S. Dzheparov, J. Supercon. Novel Magnet. 20, 161 (2007).
- 17. F. S. Dzheparov, in *Encyclopedia of Complexity* and *Systems Science*, Ed. by Robert A. Meyers (Springer, 2009).
- 18. F. S. Dzheparov, J. Phys. Conf. Ser. **324**, 012004 (2011).
- 19. Ф. С. Джепаров, Д. В. Львов, К. Н. Нечаев, В. Е. Шестопал, Письма в ЖЭТФ **62**, 639 (1995) [JETP Lett. **62**, 662 (1995)].
- 20. Ф. С. Джепаров, Письма в ЖЭТФ **82**, 580 (2005) [JETP Lett. **82**, 521 (2005)].
- 21. Ф. С. Джепаров, в сб.: *Радиоспектроскопия*, вып. 13 (Перм. гос. ун-т, Пермь, 1980), с. 135.
- 22. Ф. С. Джепаров, И. С. Смелов, В. Е. Шестопал, Письма в ЖЭТФ **32**, 51 (1980) [JETP Lett. **32**, 43 (1980)].
- 23. F. S. Dzheparov, D. V. L'vov, and V. E. Shestopal, J. Supercon. Novel Magnet. 20, 175 (2007).
- 24. Ю. Г. Абов, А. Д. Гулько, Ф. С. Джепаров, ЯФ **69**, 1737 (2006) [Phys. Atom. Nucl. **69**, 1701 (2006)].
- 25. X. Fléchard, E. Liénard, O. Naviliat-Cuncic, *et al.*, Phys. Rev. C **82**, 027309 (2010).
- 26. D. E. Alburger and F. P. Calaprice, Phys. Rev. C 12, 1690 (1975).
- 27. А. Д. Гулько, О. Н. Ермаков, С. В. Степанов, С. С. Тростин, Инженерная физика, № 2, 94 (2007).
- 28. A. D. Gul'ko, O. N. Ermakov, S. V. Stepanov, and S. S. Trostin, J. Supercon. Novel Magnet. **20**, 169 (2007).

- 29. А. Д. Гулько, Ф. С. Джепаров, О. Н. Ермаков и др., Поверхность. Рентгеновские, синхротронные и нейтронные исследования, № 12, 43 (2008) [J. Surface Investigation: X-Ray, Synchrotron and Neutron Techniques 2, 856 (2008)].
- F. S. Dzheparov, A. D. Gulko, O. N. Ermakov, *et al.*, Appl. Magn. Reson. 35, 411 (2009).
- 31. М. И. Булгаков, С. П. Боровлев, А. Д. Гулько, Ф. С. Джепаров и др., Препринт ИТЭФ-150 (Москва, 1976).
- 32. Ф. С. Джепаров, А. А. Лундин, ЖЭТФ **75**, 1017 (1978) [Sov. Phys. JETP **48**, 514 (1978)].
- 33. В. М. Агранович, М. Д. Галанин, Перенос энергии электронного возбуждения в конденсированных средах (Наука, Москва, 1978).

- 34. М. Х. Ашуров, Т. Т. Басиев, А. И. Бурштейн и др., Письма в ЖЭТФ **40**, 98 (1984) [JETP Lett. **40**, 841 (1984)].
- 35. В. П. Гапонцев, Ф. С. Джепаров, Н. С. Платонов, В. Е. Шестопал, Письма в ЖЭТФ 41, 460 (1985) [JETP Lett. 41, 561 (1985)].
- 36. L. Gomez-Jahn, J. Kasinski, and R. J. D. Miller, Chem. Phys. Lett. **125**, 500 (1986).
- 37. Ф. С. Джепаров, Ж.-Ф. Жакино, С. В. Степанов, ЯФ **65**, 2113 (2002) [Phys. Atom. Nucl. **65**, 2052 (2002)].
- 38. В. П. Сакун, ФТТ **21**, 662 (1979) [Sov. Phys. Solid State **21**, 230 (1979)].

INVESTIGATION OF DEPENDENCE OF POLARIZATION TRANSPORT IN DISORDERED NUCLEI SYSTEM ⁸Li-⁶Li ON EXTERNAL MAGNETIC FIELD

Yu. G. Abov, A. D. Gulko, F. S. Dzheparov, O. N. Ermakov, D. V. Lvov, A. A. Lyubarev

Random walks in disordered media are studied on the example of delocalization of nuclear polarization of an ensemble of beta-active nuclei 8 Li created in (n,γ) reaction on thermal polarized neutrons in LiF single crystals. The process is initiated by magnetic dipole—dipole interactions and consists in transport of polarization from initially polarized nucleus 8 Li to the nearest (stable) nuclei 6 Li and in consequent delocalization of the polarization among 6 Li with possible returning back to 8 Li. To detect variation of 8 Li polarization asymmetry (relative to external magnetic field \mathbf{H}_0) their β irradiation was measured. The process was studied up to diffusion asymptotics. Concentration of 6 Li was varied from 3% to 10%, and field \mathbf{H}_0 — from 200 to 1200 Gs. It is shown that microscopic theory is in satisfactory agreement with the results. A comparison is fulfilled with studies of mathematically related process of electrodipole (Förster) transfer of localized excitons.