Strong QCD from the N^{*} Structure Studies with CLAS and CLAS12

Skobeltsyn Nuclear Physics Institute Seminar

V.I. Mokeev, Nuclear Physics Seminat in SINP at MSU, Russia, Moscow, May 23, 2017

1

- N* structure in exploration of the strong QCD dynamics.
- Current status of the results on $\gamma_{r,v}$ pN* electrocouplings from the CLAS data
- Accessing dressed quark mass function.
- High-lying N* electrocouplings and further insight to strong QCD dynamics
- Future of the N* Program with the CLAS12.
- Request for support from SINP at MSU.

 N^*/Δ^* spectrum in 2016

Major Directions in the Studies of N*-Spectrum and Structure with CLAS

The experimental program on the studies of N* spectrum and structure in exclusive meson photo- and electroproduction with CLAS seeks to determine:

- γ_vNN* electrocouplings at photon virtualities up to 5.0 GeV² for most of the excited proton states through analyzing major meson electroproduction channels.
- extend knowledge on N*-spectrum and on resonance hadronic decays from the data for photo- and electroproduction reactions.

A unique source of information on many facets of strong QCD in generating different excited nucleon states.

Review papers:

- 1. I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).
- 2. I.G. Aznauryan et al., Int. J. Mod. Phys. E22,1330015 (2013).
- 3. V.I. Mokeev, Few Body Syst. 57, 909 (2016).
- 4. C.D. Roberts, J. Phys. Conf. Ser. 706, 022003 (2016).

Joint activity on experimental studies of the N* structure with CLAS/CLAS12 between OEPVAYa group under Prof. B.S. Ishkhanov leadership and Hall-B at JLAB under Dr. V.D. Burkert leadership.

Excited Nucleon States and Insight to Strong QCD Dynamics

Extraction of γ_vNN* Electrocouplings from the Exclusive Meson Electroproduction off Nucleons

 Consistent results on γ_vNN* electrocouplings from different meson electroproduction channels and different analysis approaches demonstrate reliable extraction of these quantities.

Tefferson Pab

Summary of the Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables	 dσ/dΩ–CM angular distributions 	
π ⁺ n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	dσ/dΩ dσ/dΩ dσ/dΩ, A _b dσ/dΩ	• A _b ,A _t ,A _{bt} -longitudinal beam, target, and beam-target asym- metries	
π ⁰ p	1.1-1.38 1.1-1.68 1.1-1.39	0.16-0.36 0.4-1.8 3.0-6.0	dσ/dΩ dσ/dΩ, A _b ,A _t ,A _{bt} dσ/dΩ	 P⁰, P' –recoil and transferred polarization of strange baryon 	
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ]	
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P ⁰ , P'	Almost full coverage of the final hadron	
$K^+\Sigma^0$	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P'	πN, π ⁺ π ⁻ p, ηp, KY electroproduction	
π ⁺ π⁻p	1.3-1.6 1.4-2.1	0.2-0.6 0.5-1.5	Nine 1-fold differential cross sections		

The measured observables from CLAS for the exclusive electroproduction of all listed final states are stored in the <u>CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi.</u> Administrated by M. Stepanov and V. Chesnokov

Approaches for Extraction of γ_vNN* Electrocouplings from the CLAS Exclusive Meson Electroproduction Data

- Analyses of different pion electroproduction channels independently:
- > π^+ n and π^0 p channels:

Unitary Isobar Model (UIM) and Fixed-t Dispersion Relations (DR)

I.G. Aznauryan, Phys. Rev. C67, 015209 (2003).

I.G. Aznauryan et al., CLAS Coll., Phys Rev. C80, 055203 (2009).

I.G. Aznauryan et al., CLAS Coll., Phys. Rev. C91, 045203 (2015).

ηp channel:

Extension of UIM and DR

I.G. Aznauryan, Phys. Rev. C68, 065204 (2003).

Data fit at W<1.6 GeV, assuming N(1535)1/2⁻ dominance

H. Denizli et al., CLAS Coll., Phys. Rev. C76, 015204 (2007).

π⁺π⁻p channel:

Data driven JLab-MSU meson-baryon model (JM)

V.I. Mokeev, V.D. Burkert et al., Phys. Rev. C80, 045212 (2009).

V.I. Mokeev et al., CLAS Coll., Phys. Rev. C86, 035203 (2012).

V.I. Mokeev, V.D. Burkert et al., Phys. Rev. C93, 054016 (2016).

Global coupled-channel analyses of the CLAS/world data of $\gamma_{r,v}N$, πN , ηN , $\pi \pi N$, $K\Lambda$, $K\Sigma$ exclusive channels:

T.-S. H. Lee , AIP Conf. Proc. 1560, 413 (2013).

H. Kamano et al., Phys. Rev. C88, 035209 (2013).

JPAC Dispersion Relation CC approach making use of all available knowledge on exclusive meson photoelectro- and hadro-production amplitudes accounting for restrictions from unitarity and analyticity with the input from the experimental data in the CLAS Physics DB developed in OEPVAYa/Hall-B collaboration

Fits to $\gamma_v p \rightarrow \pi^+ n$ Differential Cross Sections and Structure Functions

The CLAS Data on $\pi^+\pi^-p$ Differential Cross Sections and their Fit within the Framework of Meson-Baryon Reaction Model JM

V.I. Mokeev, Nuclear Physics Seminar in SINP at MSU, Russia, Moscow, May 23, 2017 10

JM Model Analysis of $\pi^+\pi^-p$ Photo-/Electroproduction

Major objectives: extraction of $\gamma_{r,v}NN^*$ photo-/electrocouplings and $\pi\Delta,\,\rho p$ decay widths

Jefferson Pab

 $\Delta^{++/0}$ (1232)3/2⁺, N⁰ (1520)3/2⁻, Δ^{++} (1600)3/2⁺, N⁰ (1680)5/2⁺

- seven channels with unstable intermediate meson/baryon and direct π⁺π⁻p production;
- N* contribute to $\pi\Delta$ and ρp channels only;

 unitarized Breit-Wigner ansatz for resonant amplitudes;

- subtraction of partial waves with resonance contributions from nonresonant amplitudes (in progress Hall-B & JPAC).
- parameterized 3-body
 FSI in photoproduction

V.I. Mokeev, V.D. Burkert et al., (CLAS Collaboration) Phys. Rev. C86, 035203 (2012).
 V.I. Mokeev, V.D. Burkert et al., Phys. Rev. C80, 045212 (2009).

Roper Resonance in 2002 & 2017

V. Burkert, Baryons 2002

Jefferson Lab

V. D. Burkert, Baryons 2016

Electrocouplings of $\Delta(1232)3/2^+$, N(1440)1/2⁺, N(1520)3/2⁻, N(1535)1/2⁻, N(1675)5/2⁻, N(1680)5/2⁺, N(1710)1/2⁺ were published in the recent edition of the PDG , Chin. Phys. C40, 100001 (2016).

V.I. Mokeev, Nuclear Physics Seminar in SINP at MSU, Russia, Moscow, May 23, 2017 12

Summary of the Results on γ_vpN* Electrocouplings from CLAS

Exclusive meson electroproduction channels	Excited proton states	Q ² -ranges for extracted γ _v NN* electrocouplings, GeV ²
π ⁰ p, π ⁺ n	∆(1232)3/2⁺	0.16-6.0
	N(1440)1/2 ⁺ ,N(1520)3/2 ⁻ , N(1535)1/2 ⁻	0.30-4.16
π ⁺ n	N(1675)5/2 ⁻ , N(1680)5/2 ⁺ N(1710)1/2 ⁺	1.6-4.5
ηρ	N(1535)1/2 ⁻	0.2-2.9
π ⁺ π ⁻ p	N(1440)1/2+, N(1520)3/2-	0.25-1.50
	∆(1620)1/2 ⁻ , N(1650)1/2 ⁻ , N(1680)5/2 ⁺ , ∆(1700)3/2 ⁻ , N(1720)3/2 ⁺ , N'(1720)3/2 ⁺	0.5-1.5

The values of resonance electrocouplings can be found in: https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

The CLAS results on $\gamma_v pN^*$ electrocouplings for the excited states in mass range up to 1.8 GeV were interpolated/extrapolated in Q²-range up to 5.0 GeV². The Fortran code for computation of $\gamma_v pN^*$ electrocoupling values is available at: userweb.jlab.org/~isupov/couplings/.

Elucidating the Running Dressed Quark Mass

Validating the Access to the Quark Mass Function

Good data description at Q²>2.0 GeV² achieved with <u>the same dressed quark mass function</u> for the ground and excited nucleon states of distinctively different structure provides strong evidence for:

- the relevance of dressed quarks with dynamically generated mass and structure;
- access to quark mass function from the data on elastic and $N \rightarrow N^*$ transition form factors.

One of the most important achievements in hadron physics of the last decade obtained in synergistic efforts between experimentalists and theorists.

Interplay between Meson-Baryon Cloud and Quark Core

New CLAS Results on $\pi^0 p$ electroproduction

Fully integrated cross sections Q² = 0.45 GeV μb = 0.55 GeV² $= 0.65 \, \text{GeV}^2$ = 0.75 GeV² Q² $Q^2 = 0.85 \text{ GeV}^2$ $Q^2 = 0.95 \text{ GeV}^2$ 10 Δ ò П. Δ 1.2 1.4 1.6 1.8 W, GeVstructure functions Fhe Rureliminar μb $W = 1.6125, O2 = 0.85 \text{ GeV}^2$ R_{TL} R_{TT} 0.5 0.5 -0.5 -0.5 -0.5 0.5 cost cost Jefferson Pab V.IMokeev, Nuclear Physics Seminar in SINP at MSU, Moscow, Russia, May 23 2017

N. Markov, K.Joo, UCONN

1.10GeV<W<1.80 GeV. 0.3 GeV²<Q²<1.0 GeV²

Fit of the structure functions within the framework of UIM & DR (slides #6,7) will provide electrocouplings of the resonances in mass range up to 1.8 GeV with substantial decays to the N π final state

👎 1.Data

 $\frac{0.5}{\cos\theta}$

17

0

UIM

Sensitivity of the π^0 p Electroproduction off Protons Data to Electrocouplings of the Excited Nucleon States in the 3rd Resonance Region

- Structure functions were evaluated within the UIM (see slide # 7).
- γ_vpN* electrocouplings and hadronic decay widths were taken from previous analyses of the CLAS Nπ and π⁺π⁻p electroproduction off protons data.
- The data on unpolarized structure functions are compared with the UIM expectations accounting for all relevant resonances and when particular $\gamma_v pN^*$ amplitudes were switched off.

Resonance Photocouplings from the preliminary $\pi^{+}\pi^{-}p$ **Photoproduction Cross Sections**

Fit of the CLAS data (E.N. Golovach, MSU) achieved within the framework of the JM15:

1.19<χ²/d.p.(1.6 GeV<W<2.0 GeV)<1.36

Resonance	A _{1/2} , GeV ^{-1/2} *1000, JM15/RPP12	A _{3/2} , GeV ^{-1/2} *1000 JM15/RPP12
N(1650)1/2 ⁻	61±8 53±16	
N(1680)5/2+	-28±4 -15±6	128±11 133±12
N'(1720)3/2+	37±6 N/A	-40±7 N/A
N(1720)3/2+	81±12 97±3 (*)	-34±8 -39±3(*)
∆(1620)1/2 ⁻	29±7 27±11	
∆(1700)3/2 ⁻	87±19 104±15	87±17 85±22
∆ (1905)5/2 +	19±8 26±11	-43±17 -45±20
∆(1950)7/2 ⁺	-70±14 -76±12	-118±19 -97±10

(*)M. Dugger et al., Phys. Rev. C76, 025211 (2007).

Consistent results on photocouplings of resonances with masses above 1.6 GeV from independent analyses of N π channels (RPP16) and $\pi^+\pi^-p$ photoproduction (JM15) offer sound evidence for the reliable extraction of these fundamental quantities.

Meson-Baryon Channels with Resonant Contributions in the Preliminary Two-Fold $\pi^+\pi^-p$ Differential Photoproduction Cross Sections from the CLAS

Electrocouplings of the Orbital Excited Resonances from the CLAS $\pi^+\pi^-p$ Electroproduction Data

green: 1.51<W<1.61 GeV red: 1.61<W<1.71 GeV black: 1.71<W<1.81 GeV magenta: 1.56<W<1.66 GeV blue: 1.66<W<1.76 GeV

The $\pi^+\pi^-p$ electroproduction is the major source of information on electrocouplings of the $\Delta(1620)1/2^-$, $\Delta(1700)3/2^-$, and N(1740)3/2⁺ resonances that decay preferentially to the N $\pi\pi$ final states.

The CLAS $\pi^+\pi^-p$ Electroproduction Data at High Photon Virtualities

lefferson C

Pal

Q²-Evolution of the Resonant Contributions to the $\pi^+\pi^-p$ Electroproduction off Protons Cross sections at 2.0 GeV² < Q² < 5.0 GeV²

• Resonant contributions were computed within the framework of unitarized Breit-Wigner ansatz successfully used for extraction of the resonance electrocouplings.

 γ_vpN* electrocouplings and π∆ and ρp decay widths were taken from the CLAS results (<u>https://userweb.jlab.org/~mokeev/resonance_electrocouplings/, https://www.jlab.org/Hall-B, https:// secure/e1/~isupov/couplings/section1.html</u> and references therein).

Growth of the relative resonant contributions with Q² suggests good prospects for extraction of $\gamma_v p N^*$ electrocouplings in the entire range of 2.0 GeV²<Q²<5.0 GeV².

Description of the Differential $\gamma_v p \rightarrow \pi^+ \pi^- p$ Cross Sections at 2.0 GeV²<Q² <5.0 GeV² within the Updated JM17 Model

- Good data description at 1.4 GeV < W < 2.0 GeV and 2.0 GeV² < Q² < 4.2 GeV² was achieved with $\chi^2/d.p. < 1.4$.
- The JM17 model is ready to determine γ_vpN* electrocouplings for most N* from γ_vp→π⁺π⁻p channel for the first time.

'efferson Vab

Strong QCD Dynamics from the Experimental Results on High-Lying γ_vpN* Electrocouplings

- γ_vpN* electrocouplings of all prominent nucleon resonances in mass range M_{N*}<2.0 GeV and at 0.3<Q²<5.0 GeV² will be determined from independent analyses of Nπ, Nππ, channels measured with CLAS.
- The information on the structure of orbitally excited N* with total orbital momenta of dressed quarks L=1 and L=2 will become available for the first time.
- DSE evaluations of the [70,1⁻], [56,2⁺] SU_{sf}(6)-multiplet electrocouplings will extend the access to the strong QCD dynamics allowing us to address:
 - a) environmental sensitivity or universality of the quark mass function to orbital excitations of three dressed quarks;
 - b) complexity of quark-gluon vertex dressing beyond rainbow-ladder truncation;
 - c) first studies of pseudoscalar and vector di-quark correlations;

'ellerson Val

d) shed light on DCSB and its evolution with distance from studies of chiral partner structure $\Delta(1232)3/2^+$ vs $\Delta(1700)3/2^-$ as the first step.

Technical Scope

Forward Detector (FD)

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter
- Forward Tagger
- RICH detector

Central Detector (CD)

- Solenoid magnet (1)
- Silicon Vertex Tracker
- Central Time-of-Flight
- Central Neutron Det.
- MicroMegas

<u>Beamline</u>

- Photon Tagger
- Shielding
- Cryo Target
- Moller polarimeter
- Polarized Targets

CLAS12 Equipment for KPP

HALL B

CLAS12 Forward Tagger (FT)

Detect electrons at small angle to perform quasi-real photo-production experiments.

First calibration w/ cosmics

HALL B

- Hardware interlocks in preparation by DSG
- FT-Cal final assembly in May
- FT checkout in June (in EEL)
- Installation in CLAS12 in July
- Implementation of R/O in CLAS12 DAQ in summer
- FT-Cal + FT-Hodo reconstruction implemented in COATJAVA3.0.
- FT-Trck in progress

Hybrid Baryons E12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV ² < Q ² < 2.0 GeV ² in mass range from 1.8 to 3 GeV in KA, N $\pi\pi$, N π (A. D'Angelo, et al.)
KY Electroproduction E12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q ² evolution of electrocoupling amplitudes at Q ² <7.0 GeV ² (<i>D. Carman, et al.</i>)

Approved by PAC44

Run Group conditions:

 $E_{b} = 6.6 \text{ GeV}, 50 \text{ days}$

 $E_{b} = 8.8 \text{ GeV}, 50 \text{ days}$

Jefferson Pab

- •Polarized electrons, unpolarized LH₂ target
- L = $1x10^{35}$ cm⁻²s⁻¹

Hunting for Glue in Excited Baryons with CLAS12

Can glue be a structural component to generate hybrid q³g baryon states?

Predictions of the N* spectrum from QCD show both regular q³ <u>and</u> hybrid q³g states

Search for hybrid baryons with CLAS12 in exclusive KY and $\pi^{*}\pi^{-}p$ electroproduction

The only way to establish the nature of a baryon state as q³ or q³g is from the Q² evolution of its electroexcitation amplitudes

V.I. Mokeev, Nuclear Physics Seminar in SINP at MSU, Moscow, Russia, May 23, 2017 30

CLAS12 N* Program at High Q²

E12-09-003

Nucleon Resonance Studies with CLAS12

Gothe, Mokeev, Burkert, Cole, Joo, Stoler

E12-06-108A

KY Electroproduction with CLAS12

Carman, Gothe, Mokeev

Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for Nπ, Nη, Nππ, KY:

 $E_b = 11 \text{ GeV}, Q^2 = 3 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}$ with the almost complete coverage of the final state phase space

Key Motivation

Study the structure of all prominent N* states in the mass range up to 2.0 GeV vs. Q^2 up to 12 GeV².

CLAS12 is the only facility foreseen in the world capable to map-out N* quark core under almost negligible contributions from meson-baryon cloud

The experiments will start at the end of 2017!

V.I. Mokeev, Nuclear Physics Seminar in SINP at MSU, Moscow, Russia, May 23, 2017 31

Emergence of Hadron Mass and Quark-Gluon Confinement

N* electroexcitation studies with CLAS12 in Hall B at JLab will address the critical open questions:

How is >98% of visible mass generated,?

How confinement emerges from QCD and how it is related to DCSB?

Mapping-out quark mass function from the CLAS12 results on γ_νpN* electrocouplings of spin-flavor flip, radial, and orbital excited nucleon resonances at 5<Q²<12 GeV² will allow us to explore the transition from strong QCD to pQCD regimes with a traceable connection to the QCD Lagrangian.

V.I. Mokeev, Nuclear Physics Seminar in SINP at MSU, Russia, Moscow, May 23, 2017 32

Conclusions and Outlook

- High quality meson electroproduction data from CLAS have allowed us to determine the electrocouplings of most well-established resonances in mass range up to 1.8 GeV from analyses of π⁺n, π⁰p, ηp, and π⁺π⁻p electroproduction channels.
 - Profound impact on the exploration of strong QCD dynamics:
 - a) first DSE evaluations of ∆(1232)3/2⁺ and N(1440)1/2⁺ electroexcitation amplitudes with a traceable connection to the QCD Lagrangian;
 - b) synergistic efforts between the DSE theory (C.D. Roberts) and the experimental studies of $\gamma_v pN^*$ electrocouplings in Hall-B at JLab (V.D. Burkert) have revealed the capability for reliable access to quark mass function for the first time.
 - c) resonance electrocouplings from CLAS revealed the N* structure as a complex interplay between inner core of three dressed quarks and outer MB-cloud.
- Electrocouplings of most resonances in the mass range up to 2.0 GeV will become available at Q²<5.0 GeV² from independent analyses of the new CLAS data on N π and π + π -p electroproduction in the near term future.
- Future analyses the CLAS results on electrocouplings of orbital-excited resonances within the QCD-based framework will extend insight to the strong QCD dynamics addressing:
 - a) the environmental sensitivity or universality of dressed quark mass function,
 - b) complexity of the dressed quark-gluon vertex and qq-interaction kernel,
 - c) shed light on the DCSB manifestation in the structure of chiral partners $\Delta(1232) 3/2^+$ and $\Delta(1700)3/2^-$.

- After 12 GeV Upgrade, CLAS12 will be only available worldwide facility capable of obtaining electrocouplings of all prominent N* states at still unexplored ranges of low photon virtualities down to 0.05 GeV² and highest photon virtualities ever achieved for exclusive reactions from 5.0 GeV² to 12 GeV² from the measurements of exclusive N π , π + π -p, and KY electroproduction.
 - The expected results will allow us:
 - a) search for hybrid-baryons and other new states of baryon matter;
 - b) to map out the dressed quark mass function at the distance scales where the transition from quark-gluon confinement to pQCD regime is expected, <u>addressing</u> <u>the most challenging problems of the Standard Model on the nature of >98% of</u> <u>hadron mass and quark-gluon confinement.</u>
- Success of N* Program with the CLAS12 detector at Jefferson Lab will be very beneficial for hadron physics community. It requires close collaborative efforts between experiment, phenomenology, and the QCD-based hadron structure theory.

Request for Support of the N* Studies with the CLAS12 from SINP at MSU

- Development of the procedures for extraction of cross sections and polarization asymmetries from the future data with the CLAS12 at W<2.5 GeV in exclusive channels π⁺π⁻p at 0.05 GeV² <Q²< 12 GeV²; KΛ, KΣ at 2.0 GeV² <Q²< 12 GeV² (E.N. Golovach, contact person golovach@jlab.org).
- Upgrade of the CLAS Physics DB in order to provide the data interface for N* parameter extraction in the multi-channel coupled channel analyses under development by the JPAC at Jefferson Lab.
- Reaction models for extraction of $\gamma_v pN^*$ electrocouplings at 3.0 GeV² <Q²< 12 GeV² which incorporate quark degrees of freedom .
- Reaction models for extraction of the $\gamma_v pN^*$ electrocouplings in exclusive KY electroproduction.
- Predictions on Q²-evolution of the hybrid baryon electrocouplings.
- Evaluation of γ_vpN* electrocouplings for orbital-excited resonances at Q²<12 GeV² within different quark models

All contributions are welcome ! (V.I. Mokeev, spokeperson for the N* Program with the CLAS12, mokeev@jlab.org)

Hall B – Run Groups

HALL	B
------	---

Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target		
E12-06-108	Hard exclusive electro-production of π^0,η	Stoler	В	80		RICH (1 sector)			liquid		
E12-06-108A	Exclusive N*->KY Studies with CLAS12	Carman		(60)		Forward tagger			Π2		
E12-06-108B	Transition Form Factor of the η^{\prime} Meson with CLAS12	Kunkel		(80)				Α			
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	А	60	420		11	E Cabatiá			
E12-06-112A	Semi-inclusive Λ productiuon in target fragmentation region	Mirazita		(60)	139			r. Saballe			
E12-06-112B	Colinear nucleon structure at twist-3	Pisano		(60)							
E12-06-119(a)	Deeply Virtual Compton Scattering	Sabatie	А	80							
E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40							
E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119 🗡							
E12-11-005A	Photoproduction of the very strangest baryon	Guo		(120)							
E12-12-001	Timelike Compton Scatt. & J/ ψ production in e+e-	Nadel-Turonski	A-	120							
E12-12-007	Exclusive ϕ meson electroproduction with CLAS12	Stoler, Weiss	B+	60							
E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30		Neutron			liquid		
E12-09-007(a)	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	30	90	RICH (1 sector)	11	В	D ₂ target		
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	56		Forward tagger	Forward tagger	Forward tagger		K Hafidi	
E12-09-008A	Hadron production in target fragmentation region	Mirazita		(60)				rt. Hanar			
E12-09-008B	Colinear nucleon structuer at twist-3	Pisano		(60)							
E12-11-003	DVCS on neutron target	Niccolai	А	90							
E12-11-003A	In medium structure functions, SRC, and the EMC effect	Hen		(90)							
Beam time partia	al sum			765 (1355)	229						

Experiment ending with A or B are run group experiments approved by the CLAS collaboration. They are running parallel to the experiments with same experiment number. (**(**) Experiments with spokeperson(s) from SINP.

Hall B – Run Groups

E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	А	80		Polarized			NH ₃
E12-06-109A	DVCS on the neutron with polarized deuterium target	Niccolai		(60)		target RICH (1			ND ₃
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	А	120	185	sector) Forward tagger	11	С	
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	Avakian	A-	103		r orward taggor		S. Kuhn	
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	80					
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103					
E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		11	D	
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear
E12-06-113	Free Neutron structure at large x	Bueltman	А	42	42	Radial TPC	11	F	Gas D ₂
E12-14-001	EMC effect in spin structure functions	Brooks	B+	55	55	Pol. LiH target	11	G	LiH
TOTAL CLAS12 run time (approved experiments)				1466 (2118)	631				

Proposal	Physics	Contact	Rating	Days	Group	Equipment	Energy	Group	Target
C12-11-111	SIDIS on transverse polarized target	Contalbrigo	А	110					
C12-12-009	Transversity w/ di-hadron on transvere target	Avakian	А	110	110	Transverse target	11	н	HD
C12-12-010	DVCS with transverse polarized target in CLAS12	Elouadrhriri	А	110					
All CLAS12 transverse target proposals				330	110				
E12-11-006	Heavy Photon Search at Jefferson Lab (HPS)	Jaros	А	180	180	Setup in alcove	2.2, 6.6	I	Nuclear
E12-11-106	High Precision Measurement of the Proton Charge Radius	Gasparian	А	15	15	Primex	1.1, 2.2	J	H2 gas
Beam time request from CLAS12 C1 experiments + non-CLAS12 experiments				525	305				
Beam time from approved CLAS12 experiments (from previous table)			1466 (2118)	631					
Beam time for Hall B experiments table 1 + table 2 (incl. 110 days of C1 approved exp.)				1991 (2643)	936				

HALL B

Hall B – Run Groups

Proposal Count	Experiment Days	Run Groups	RG days	Compression
37	2943	11	1036	0.35

In the BOAW we expect experiment schedule:

- 35 weeks per year \approx 35/2 = 17.5 PAC weeks = 122.5 PAC days

- With 0.8 Hall multiplicity => 122.5 x 0.8 = 98 PAC days

- To run 2943 PAC days of individual experiments = **30 years**

- Run 2943 PAC days as run groups = 1036/98 = 10.5 years

() Experiments with spokeperson(s) from SINP.

HALL B

Evidence for the New State N'(1720)3/2⁺ from Combined Analyses of $\pi^+\pi^-p$ Photo- and Electroproduction off Protons

The structure at W~1.7 GeV represents the major feature for W-dependencies of fully integrated cross sections at 0.5 GeV² < Q^2 < 5.0 GeV² (see also slide # 25).

N* hadronic decays from the data fit that incorporates the new N'(1720)3/2⁺ state

Resonance	BF(πΔ), %	BF(ρ p), %
N'(1720)3/2+ electroproduction photoproduction	47-64 46-62	3-10 4-13
N(1740)3/2 ⁺ electroproduction photoproduction	39-55 38-53	23-49 31-46
∆(1700)3/2 ⁻ electroproduction photoproduction	77-95 78-93	3-5 3-6

Successful description of $\pi^+\pi^-p$ photo- and electroproduction data achieved by implementing new N'(1720)3/2⁺ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of new N'(1720)3/2⁺ state.

N(1740)3/2⁺ hadronic decays from the CLAS data fit with conventional resonances only

	BF(πΔ), %	BF(ρp), %
electroproduction	64-100	<5
photoproduction	14-60	19-69

The contradictory BF values for N(1740)3/2⁺ decays to the $\pi\Delta$ and ρ p final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only.

'efferson Vab

Analysis of the γp and $ep \rightarrow \pi^+\pi^- p$ CLAS data at W~1.7 GeV in the JM15 model

- Fit of θ_{π^-} , θ_{π^+} , θ_{ρ} angular distributions requires essential contribution(s) from the resonance(s) of $J^{\pi}=3/2^+$.
- Fits with conventional states only and by implementing in addition N'(1720)3/2+ candidate provide equally good data description.
- Accounting for the known resonances only results in contradictory values for the N(1740)3/2⁺ BF to ρp final state inferred from the photo- and the electroproduction data (see slide #23)

efferson Pal

The Parameters of N'(1720)3/2⁺ and N(1740)3/2⁺ from the CLAS Data Fit

The photo-/electrocouplings of N'(1720)3/2⁺ and conventional N(1740)3/2⁺ states:

 N'(1720)3/2⁺ is the only candidate state for which Q²-evolution of transition electrocouplings have been obtained offering insight to the structure of the new baryon state.

• DSE evaluation of the N* spectrum for the states of $J^{\pi}=3/2^+$ with realistic ansatz for qq-interaction.

 DSE computation of N'(1720)3/2⁺ electrocouplings in order to trace the new state emergence from QCD.

Jefferson Pab

N'(1720)3/2⁺ New State at 2.0 GeV² < Q^2 < 5.0 GeV²

$\gamma_v pN^*$ Electrocouplings from N π , $\pi^+\pi^-p$, and ηp Electroproduction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Consistent values of resonance electrocouplings from analyses of $N\pi/\pi^+\pi^-p$ and $N\pi/N\eta$ electroproduction off protons demonstrate the capabilities of the developed reaction models to obtain resonance electrocouplings in independent analyses of these exclusive channels.

Electrocouplings of $\Delta(1232)3/2^+$, N(1440)1/2⁺, N(1520)3/2⁻, N(1535)1/2⁻, N(1675)5/2⁻, N(1680)5/2⁺, N(1710)1/2⁺ were published in the recent edition of the PDG , Chin. Phys. C40, 100001 (2016).

