Проявление ненуклонных степеней свободы в NN и Nd рассеянии при промежуточных энергиях (по материалам кандидатской диссертации)

М. Н. Платонова (НИИЯФ МГУ)

Научный семинар по ядерной физике НИИЯФ МГУ, 23 декабря 2014 г.

Актуальность темы исследования

 Фундаментальная основа физики ядра и адронных процессов – Квантовая Хромодинамика (КХД)

$\Lambda_{\rm QCD} \sim 1 \ \Gamma$ эВ

• Непертурбативные методы:

Решение уравнений КХД на решетке (Lattice QCD)

воспроизводит спектры адронов и некоторые черты *NN*взаимодействия; не описывает базовое *NN*-притяжение; колоссальная сложность расчетов с физическими параметрами

- Статические свойства ядер и малонуклонные процессы при низких энергиях: достаточно нуклонных степеней свободы
- Когда нужно обращаться к КХД?
- Короткодействующие корреляции в ядрах
- Процессы при энергиях > 300 МэВ/нуклон

Актуальность темы исследования

- Процессы типа Nd-рассеяния при малых переданных импульсах (< 300 МэВ/с): хорошее описание в терминах нуклонных степеней свободы.
- С ростом передачи импульса на передний план выходят *ненуклонные* (изобарные, мезонные, кварковые) степени свободы; описание процессов в этой области сталкивается с большими трудностями.
- Степень расхождения с экспериментом pacmem с увеличением энергии.
- Включение барионных резонансов Δ(1232) и др.: помогает лишь частично
- В области больших переданных импульсов (> 300 МэВ/с) проявляются короткодействующие механизмы NN-взаимодействия, связанные с кварковой структурой нуклонов.
- Те же короткодействующие механизмы должны проявляться в процессах неупругого NN-рассеяния (с рождением мезонов), которые всегда сопровождаются большими передачами импульса.

Природа короткодействующих NN-сил

r_{NN} > 1 Фм: *NN*-взаимодействие можно описать в терминах мезонного обмена между изолированными нуклонами; размер нуклонов эффективно учитывается вершинными формфакторами

ОВЕ модели ядерных сил; основные степени свободы — нуклоны, мезоны, нуклонные резонансы и изобары

r_{NN} < 1 Фм: нуклоны перекрываются друг с другом → весьма вероятно образование единого шестикваркового (6q) мешка – *дибариона*, одетого единым мезонным полем;

такие механизмы не учитываются в ОВЕ-моделях, но предсказываются в КХД

Указания на существование дибарионов (кварковые модели, эксперимент, фазовый анализ)

• 1964 – Первое предсказание дибарионных состояний на основе симметрии SU(6) (Dyson & Xuong);

6 нестранных дибарионов, в т.ч. $D_{01}(1880)$ – дейтрон, $D_{12}(2160)$, $D_{03}(2350)$

- 1977 предсказание странного *H*-дибариона (Jaffe)
- 1977 обнаружение сигнала изоскалярного дибариона D₀₃ в γd → pn (Kamae et al.)
- 1978 Модель Наймегена (Mulders et al.); 1987 модель ИТЭФ (Кондратюк и др.): предсказание узких дибарионов, отвязанных от NN-канала (d' и др.)
- 1978, 1979 первые экспериментальные указания серии изовекторных дибарионов в упругом *pp*-рассеянии (Auer et al.)
- 1978,1979,1981,1993 обнаружение сигналов изовекторных дибарионов в PWA реакций $pp \rightarrow pp, \pi^+d \rightarrow \pi^+d, pp \rightarrow \pi^+d$ (Hoshizaki, Arndt et al.)
- 2009,2011 открытие изоскалярного дибариона $D_{03}(2380)$ в реакции $pn \rightarrow d\pi^0 \pi^0$ (Adlarson et al. CELSIUS-WASA, WASA@COSY)
- 2011 предсказание *H*-дибариона в рамках LQCD
- 2013 предсказание дибарионов D₁₂(2150) и D₀₃(2370) на основе уравнений Фаддеева (Gal & Garcilazo)
- 2014 подтверждение резонанса $D_{03}(2380)$ в упругом *пр*-рассеянии

6

Дибарионная модель

короткодействующих NN-сил

- Проявление кварковой структуры нуклонов в короткодействующем NNвзаимодействии может быть эффективно описано в терминах дибарионных степеней свободы
- Основной механизм *NN*-взаимодействия на малых и промежуточных расстояниях в *дибарионной модели ядерных сил* (Kukulin et al., 1998, 2001):

$$|D\rangle = \left|s^{6}[6] + \sigma(l_{\sigma} = 0, 2)\right\rangle$$

- З-4 базовых параметра (находятся из кварковых моделей); единые константы в мезон-нуклонных вершинах для 2N- и 3N-сил; нет противоречия между наличием отталкивающего кора в NN-системе и существованием теснокоррелированных NN-пар в ядрах
- Описаны эмпирические фазовые сдвиги упругого NN-рассеяния вплоть до энергий T_N = 1 ГэВ, статические свойства дейтрона и 3N-ядер
- Не было описания процессов с большими передачами импульса

- Исследование процессов NN- и Nd-рассеяния при промежуточных энергиях (200 МэВ – 2 ГэВ) и больших переданных импульсах (> 300 МэВ/с) важно для получения новой информации о короткодействующих NN-корреляциях и тестирования нетрадиционных КХД-мотивированных механизмов.
- Хотя имеется много экспериментальных и теоретических указаний на существование компактных 6q-объектов (дибарионных резонансов) и важность их учета для описания короткодействующих NN-сил, роль дибарионных степеней свободы в процессах типа Nd → Nd, NN → dπ и т. д. была практически не исследована.

Цель диссертации

Выяснение роли ненуклонных (кварковых, дибарионных) степеней свободы в процессах упругого и неупругого рассеяния нуклонов промежуточных энергий ($T_N \sim 1 \ \Gamma ext{3B}$) на нуклонах и ядрах дейтерия.

Конкретные задачи

- Разработка надежной модели *Nd*-рассеяния в области энергий $T_N \sim 1 \ \Gamma$ эВ, адекватно учитывающей нуклонные степени свободы, как основы для последующего включения ненуклонных степеней свободы.
- Качественное рассмотрение возможных механизмов Nd-рассеяния под большими углами, включающих ненуклонные степени свободы и трехчастичные силы.
- Исследование относительной роли механизмов рождения промежуточных • барионных и дибарионных резонансов в процессах однопионного рождения типа $pp \rightarrow d\pi^+$.
- Построение модели двухпионного рождения в NN-соударениях на основе ٠ рождения промежуточных дибарионных механизма резонансов. Объяснение аномального усиления в сечении реакции $pn \rightarrow d(\pi\pi)_0$ вблизи 2π-порога (АВС-эффекта).

Основное содержание диссертации

- <u>Глава 1</u>. Роль нуклонных и ненуклонных степеней свободы в упругом *Nd*-рассеянии под малыми и большими углами
- Обобщенная дифракционная модель для *pd*-рассеяния под малыми углами
- Параметризация спиральных NN-амплитуд и дейтронных волновых функций
- Результаты расчетов и обсуждение. Сравнение с точной трехчастичной теорией и экспериментальными данными
- Качественное рассмотрение упругого *Nd*-рассеяния под большими углами: связь с неупругим *NN*-рассеянием
- Глава 2. Относительные вклады барионных и дибарионных возбуждений в реакции однопионного рождения NN → dπ
- Традиционное описание реакции *NN* → *d*π: проблемы и решения
- Включение промежуточных изовекторных дибарионных резонансов
- Проверка модели в упругом *NN* и *πd*-рассеянии
- <u>Глава 3</u>. Промежуточные дибарионные резонансы в реакциях двухпионного рождения и новая интерпретация ABC-эффекта
- Теоретическая модель изоскалярной реакции $pn \rightarrow d(\pi\pi)_0$
- Результаты расчетов
- Параметры σ-мезона и восстановление киральной симметрии
- Сигналы изовекторных дибарионов в реакциях 2π-рождения в *pp*-соударениях
- Двухпионное рождение и спектроскопия дибарионов

<u>Глава 1</u>.

Роль нуклонных и ненуклонных степеней свободы в упругом *Nd*-рассеянии под малыми и большими углами

Упругое рассеяние протона на дейтроне – простейший пример столкновения адрона с ядром; исследование этого фундаментального процесса может дать важную информацию о *NN*-взаимодействии и структуре ядра.

- Точные трехчастичные уравнения (уравнения Фаддеева) могут эффективно применяться только до энергий *T_p* ≈ 350 МэВ, где возможные переданные импульсы и проявление короткодействующих *NN*-корреляций еще относительно малы.
- Необходимо построить достаточно надежную модель pd-рассеяния при промежуточных энергиях ~ 1 ГэВ, учитывающую нуклонные степени свободы, как основу для последующего включения ненуклонных степеней свободы и связанных с ними трехчастичных сил.

Дифракционная модель для упругого *pd*-рассеяния

 Сечение упругого pd-рассеяния под небольшими углами (дифракционный пик) хорошо описывается моделью Глаубера-Ситенко, учитывающей однократное и двукратное рассеяние падающего протона на нуклонах мишени:

 $F_{ii}(\mathbf{q}) = f_n(\mathbf{q}) S\left(\frac{1}{2}\mathbf{q}\right) + f_p(\mathbf{q}) S\left(\frac{1}{2}\mathbf{q}\right) + \frac{i}{2\pi k} \int S(\mathbf{q}') f_n\left(\frac{1}{2}\mathbf{q} + \mathbf{q}'\right) f_p\left(\frac{1}{2}\mathbf{q} - \mathbf{q}'\right) d^2\mathbf{q}',$

 Было неясно, применима ли эта модель для описания поляризационных наблюдаемых, чувствительных к тонким деталям взаимодействия.

Обобщение дифракционной модели Глаубера

- 1) Учет спиновой зависимости NN-амплитуд, D-волны дейтрона и процесса двойной перезарядки
- 2) Использование точных эмпирических NN-амплитуд и современных дейтронных волновых функций в качестве "входных данных"
- 3) Вывод явных аналитических формул связи Nd- и NNинвариантных амплитуд
- 4) Исследование точности и пределов применимости модели в широком интервале энергий:

- расчет дифференциальных сечений и поляризационных наблюдаемых *pd*-рассеяния,

 сравнение результатов с точными трехчастичными расчетами и экспериментальными данными

Явные формулы связи Nd- и NN-амплитуд

Общая формула:

$$A_i = A_i^{(s)} + \frac{i}{2\pi^{3/2}} \int d^2 q' \left(2\mathcal{A}_i^{(d)} - \mathcal{A}_i^{(c)} \right) + (n \leftrightarrow p), \quad i = 1..12.$$

Амплитуды однократного рассеяния

$A_1^{(s)}$	=	$(S_0 + 4 \cdot 8^{-1/2} S_2) A_n$
$A_2^{(s)}$	=	$(S_0^{(0)} + 4 \cdot 8^{-1/2} S_2^{(1)}) C_n$
$A_3^{(s)}$	=	$-6 \cdot 8^{-1/2} S_2 A_n$
$A_4^{(s)}$	=	$-6 \cdot 8^{-1/2} S_2^{(1)} C_n$
$A_5^{(s)}$	=	0
$A_6^{(s)}$	=	0
$A_7^{(s)}$	=	$(S_0^{(0)} + 8^{-1/2} S_2^{(1)}) B_n$
$A_8^{(s)}$	=	0
$A_9^{(s)}$	=	$(S_0^{(0)} + 8^{-1/2} S_2^{(1)}) C_n'$
$A_{10}^{(s)}$	=	$(S_0^{(0)} + 8^{-1/2} S_2^{(1)})(G_n - H_n)$
$A_{11}^{(s)}$	=	$(S_0^{(0)} - 2 \cdot 8^{-1/2} S_2^{(1)}) (G_n + H_n)$
$A_{12}^{(s)}$	=	0

A_n, *B_n*, *C_n*, *C'_n*, *G_n*, *H_n* – инвариантные *NN*-амплитуды,

Амплитуды двукратного рассеяния

$\mathcal{A}_1^{(d)}$	=	$\frac{1}{2} \left(S_0 + 4 \cdot 8^{-1/2} S_2 \right) A_n A_p$
		$+\frac{1}{2}S_0^{(0)} \Big(3B_n B_p + \big(C_n C_p - C'_n C'_p\big)(\hat{q}_2 \cdot \hat{q}_1) - 2G_n G_p - 2H_n H_p \big((\hat{q}_2 \cdot \hat{q}_1)^2 - (\hat{q}_2 \times \hat{q}_1)^2\big)\Big)$
$\mathcal{A}_2^{(d)}$	=	$4 \cdot 8^{-1/2} S_2^{(1)} A_n C_p(\hat{q} \cdot \hat{q}_1)$
		$+S_0^{(0)} \Big(A_n C_p(\hat{q} \cdot \hat{q}_1) - C'_n G_p(\hat{q} \cdot \hat{q}_2) + C'_n H_p \big((\hat{q}_2 \cdot \hat{q}_1)(\hat{q} \cdot \hat{q}_1) - (\hat{q}_2 \times \hat{q}_1)(\hat{q} \times \hat{q}_1) \big) \Big)$
$\mathcal{A}_3^{(d)}$	=	$S_0^{(0)} \Big(C'_n C'_p (\hat{q} \times \hat{q}_2) (\hat{q} \times \hat{q}_1) - B_n B_p \Big)$
		$+G_nG_p + H_nH_p((\hat{q}_2\cdot\hat{q}_1)^2 - (\hat{q}_2\times\hat{q}_1)^2) + 2G_nH_p((\hat{q}\cdot\hat{q}_1)^2 - (\hat{q}\times\hat{q}_1)^2))$
		$-3 \cdot 8^{-1/2} S_2 A_n A_p (\hat{q} \cdot \hat{q}')^2$
$\mathcal{A}_4^{(d)}$	=	$-4S_0^{(0)}C'_nH_p(\hat{q}\times\hat{q}_2)(\hat{q}\times\hat{q}_1)(\hat{q}\cdot\hat{q}_1) - 6\cdot 8^{-1/2}S_2^{(1)}A_nC_p(\hat{q}\cdot\hat{q}_1)(\hat{q}\cdot\hat{q}')^2$
$\mathcal{A}_5^{(d)}$	=	$S_0^{(0)} \Big(C'_n C'_p (\hat{q} \cdot \hat{q}_2) (\hat{q} \cdot \hat{q}_1) - B_n B_p \Big)$
		$+G_nG_p + H_nH_p((\hat{q}_2\cdot\hat{q}_1)^2 - (\hat{q}_2\times\hat{q}_1)^2) - 2G_nH_p((\hat{q}\cdot\hat{q}_1)^2 - (\hat{q}\times\hat{q}_1)^2))$
		$-3 \cdot 8^{-1/2} S_2 A_n A_p (\hat{q} \times \hat{q}')^2$
$\mathcal{A}_6^{(d)}$	=	$2S_0^{(0)} \Big(C'_n G_p - C'_n H_p \big((\hat{q} \cdot \hat{q}_1)^2 - (\hat{q} \times \hat{q}_1)^2 \big) \big) (\hat{q} \cdot \hat{q}_2) - 6 \cdot 8^{-1/2} S_2^{(1)} A_n C_p (\hat{q} \cdot \hat{q}_1) (\hat{q} \times \hat{q}')^2 $
$\mathcal{A}_7^{(d)}$	=	$\left(S_0^{(0)} + 8^{-1/2}S_2^{(1)}\right)A_nB_p$
$\mathcal{A}_8^{(d)}$	=	$S_0^{(0)} \left(C'_n G_p(\hat{q} \cdot \hat{q}_2) + C'_n H_p((\hat{q} \cdot \hat{q}_2) \left((\hat{q} \cdot \hat{q}_1)^2 - (\hat{q} \times \hat{q}_1)^2 \right) - 2(\hat{q} \times \hat{q}_2) (\hat{q} \times \hat{q}_1))(\hat{q} \cdot \hat{q}_1) \right) \right)$
		$+6 \cdot 8^{-1/2} S_2^{(1)} A_n C_p(\hat{q} \times \hat{q}_1) (\hat{q} \times \hat{q}') (\hat{q} \cdot \hat{q}')$
$\mathcal{A}_{9}^{(d)}$	=	$8^{-1/2}S_2^{(1)}A_nC_p'((\hat{q}\cdot\hat{q}_1) - 3(\hat{q}_1\times\hat{q}')(\hat{q}\times\hat{q}'))$
		$+S_0^{(0)} \Big(A_n C_p'(\hat{q} \cdot \hat{q}_1) + C_n G_p(\hat{q} \cdot \hat{q}_2) - C_n H_p \big((\hat{q}_2 \cdot \hat{q}_1)(\hat{q} \cdot \hat{q}_1) - (\hat{q}_2 \times \hat{q}_1)(\hat{q} \times \hat{q}_1) \big) \Big)$
$\mathcal{A}_{10}^{(d)}$	=	$S_0^{(0)} \left(C_n C_p'(\hat{q} \cdot \hat{q}_2) (\hat{q} \cdot \hat{q}_1) + A_n G_p - A_n H_p \left((\hat{q} \cdot \hat{q}_1)^2 - (\hat{q} \times \hat{q}_1)^2 \right) \right)$
		$+8^{-1/2}S_{2}^{(1)}\Big(A_{n}G_{p}\big(1-3(\hat{q}\times\hat{q}')^{2}\big)-A_{n}H_{p}\big((\hat{q}\cdot\hat{q}_{1})^{2}-(\hat{q}\times\hat{q}_{1})^{2}-3(\hat{q}\times\hat{q}')\big((\hat{q}\cdot\hat{q}_{1})(\hat{q}_{1}\times\hat{q}')\big)$
		$-(\hat{q} \times \hat{q}_1)(\hat{q}_1 \cdot \hat{q}'))))$
$\mathcal{A}_{11}^{(d)}$	=	$S_0^{(0)} \left(C_n C_p'(\hat{q} \times \hat{q}_2)(\hat{q} \times \hat{q}_1) + A_n G_p + A_n H_p \left((\hat{q} \cdot \hat{q}_1)^2 - (\hat{q} \times \hat{q}_1)^2 \right) \right)$
		$+8^{-1/2}S_{2}^{(1)}\Big(A_{n}G_{p}\big(1-3(\hat{q}\cdot\hat{q}')^{2}\big)+A_{n}H_{p}\big((\hat{q}\cdot\hat{q}_{1})^{2}-(\hat{q}\times\hat{q}_{1})^{2}-3(\hat{q}\cdot\hat{q}')\big((\hat{q}\cdot\hat{q}_{1})(\hat{q}_{1}\cdot\hat{q}')$
		$-(\hat{q} \times \hat{q}_1)(\hat{q}_1 \times \hat{q}'))))$
$\mathcal{A}_{12}^{(d)}$	=	$S_0^{(0)} C'_n B_p(\hat{q} \cdot \hat{q}_2)$

16

Сравнение с экспериментальными данными при энергии $T_p = 1 \ \Gamma$ эВ

расчет Дифракционная модель находится в хорошем согласии с экспериментом для

однократное

рассеяние

полный

всех наблюдаемых при |*t*| ≤ 0.4 ГэВ². Двукратное

Двукратное рассеяние играет очень важную роль.

Сравнение с точными трехчастичными расчетами при энергиях $T_p = 250-450$ МэВ

Результаты, полученные на основе обобщенной дифракционной модели, прекрасно согласуются с предсказаниями точной трехчастичной теории в области переданных импульсов |*t*| = *q*² ≤ 0.3-0.4 ГэВ².

Вне этой области точная теория уже не описывает экспериментальные данные 🛁 здесь проявляются ненуклонные степени свободы и трехчастичные силы.

0,8

Качественное рассмотрение упругого *Nd*-рассеяния под большими углами

 Простейший механизм Nd-рассеяния под большими углами – однонуклонный обмен (ONE): недооценка сечения назад в 2-10 раз

- Одно- и многократные перерассеяния: очень малый вклад под большими углами
- Учет возбуждения промежуточной ∆изобары устраняет расхождение с экспериментом лишь частично

Что может предложить дибарионная модель?

• Механизм однонуклонного обмена чувствителен к высокоимпульсным компонентам д.в.ф.

• Расчеты с использованием д.в.ф. дибарионной модели (ср. с д.в.ф. CD-Bonn):

 Усиление высокоимпульсных компонент д.в.ф. при учете дибарионного механизма приводит к резкому увеличению вклада механизма ONE.
 Но этого недостаточно для устранения расхождений с данными.

Что может предложить дибарионная модель?

Дейтронная волновая функция имеет
 2 компоненты – NN и дибарионную (D)

$$\Psi_{d} = \begin{pmatrix} \Psi_{NN} \\ \Psi_{6q+\sigma} \end{pmatrix}$$

Может дать существенный вклад в *Nd*-рассеяние, однако вклад под большими углами подавлен вершинным формфактором

• Более вероятный процесс – сочетание трехчастичной силы с однонуклонным обменом в начальном (или конечном) состоянии

Возможно дополнительное усиление за счет образования промежуточных дибарионных резонансов

Упругое *Nd*-рассеяние под большими углами и трехчастичные силы

Традиционный механизм:

Учет стандартной 3*N*-силы — 2π-обмена с возбуждением промежуточной изобары Δ(1232) — недостаточно для устранения расхождений с экспериментом

Новый механизм,

возникающий в дибарионной модели:

Новая трехчастичная сила – мезонный обмен между нуклоном и дибарионной компонентой дейтрона;

дополнительное усиление за счет рождения промежуточных *дибарионных резонансов*

Упругое *Nd*-рассеяние под большими углами и трехчастичные силы

Традиционный механизм:

Учет стандартной 3*N*-силы – 2π-обмена с возбуждением промежуточной изобары Δ(1232) – недостаточно для устранения расхождений с экспериментом

Новый механизм,

возникающий в дибарионной модели:

Новая трехчастичная сила — мезонный обмен между нуклоном и дибарионной компонентой дейтрона;

дополнительное усиление за счет рождения промежуточных *дибарионных резонансов*

Оба эти механизма включают в качестве подпроцесса *неупругое NNрассеяние с рождением мезонов (NN → dπ, NN → dππ* и т. д.) и могут быть исследованы в таких процессах.

В итоге,

показана применимость и высокая степень точности обобщенной дифракционной модели, включающей только нуклонные степени свободы, для сечений и ряда спиновых наблюдаемых *pd*-рассеяния в широком интервале промежуточных энергий при небольших переданных импульсах (|*q*²| ≤ 0.35 ГэВ²).

При более высоких передачах импульса основную роль играют короткодействующие механизмы, описание которых требует выхода за рамки традиционной (мезон-обменной) картины *NN*-взаимодействия. Исследование этих механизмов целесообразно проводить в более простых процессах, сопровождающихся большими передачами импульса, типа *NN* → *dπ*, *NN* → *dππ*, и т. д.

<u>Глава 2</u>.

Относительные вклады барионных и дибарионных возбуждений в реакции однопионного рождения *NN* → *d*π

Описание реакции $pp \leftrightarrow d\pi^+$

- Переданные импульсы > 360 МэВ/с
- Возбуждение промежуточной изобары Δ(1232)
 качественное объяснение данных при энергиях
 T_p = 400-800 МэВ (Mandelstam, 1958)
- Феноменологические модели (Weise et al., 1977; Grein et al., 1984 и др.); метод связанных каналов (Niskanen, 1979)
- Наиболее последовательное описание на основе уравнений Фаддеева для системы πNN с учетом Δ(1232) (Mizutani et al., 1981-1990)

- Сильная зависимость от off-shell свойств π*N*-амплитуды!
- Полуколичественное описание сечений; проблемы в описании поляризационных наблюдаемых

Изовекторные дибарионы в реакции $pp \leftrightarrow d\pi^+$

- Данные по упругому $\vec{p} + \vec{p}$ рассеянию: первые экспериментальные указания серии дибарионных резонансов с $I = 1 {}^{1}D_{2}(2150), {}^{3}F_{3}(2240), {}^{1}G_{4}(2430)$ и т. д. (Auer et al., 1979).
- Анализ парциально-волновых амплитуд (PWA) $pp \leftrightarrow \pi^+ d$: резонансное поведение основных амплитуд 1D_2P , 3F_3D , 1G_4F (Hiroshige et al., 1982; Arndt et al., 1993 и др.); NΔ-порог: 2170 МэВ Резонансы или псевдорезонансы (промежуточные NΔ-состояния)?

- Попытка явного учета дибарионных степеней свободы в реакции pp → dπ⁺ (Като & Watari, 1979) – подгонка параметров 6 гипотетических дибарионных резонансов под экспериментальные наблюдаемые; сложно сделать однозначные выводы.
- Необходим более последовательный анализ относительных вкладов барионных и дибарионных резонансов

Традиционное описание реакции $pp \rightarrow d\pi^+$

ONE (однонуклонный обмен) + $N\Delta$ (промежуточное состояние N+ Δ)

Основная проблема – выбор параметров короткодействующего обрезания в вершинах πNN и $\pi N\Delta$!

Результаты расчетов: зависимость от Л

- При выборе мягких параметров обрезания в вершинах (в согласии с данными по упругому π*N*-рассеянию) традиционные механизмы дают только 40-50% парциального (¹D₂P) и полного сечений реакции *pp* → *d*π⁺.
- Увеличение параметра обрезания в вершине F_{πNΔ}: разумное описание сечений, но с заметной сдвижкой по энергии; более существенные расхождения в спиновых наблюдаемых.
- Другой путь учет промежуточных дибарионных резонансов.

Параметры *D*₁₂ взяты из анализа данных по упругому *pp*- и *πd*-рассеянию и из анализа структуры дибарионов

Включение дибарионных резонансов позволяет улучшить описание данных.
 Для описания полного сечения в широком интервале энергий нужно учесть возбуждение двух изовекторных резонансов: D₁₂(2150) [¹D₂] и D⁻₁₃(2240) [³F₃].

Сигналы изовекторных дибарионов в реакции $pp \to pp + \pi^0 \pi^0$

Выводы

- В случаях, когда дибарионный резонанс лежит вблизи порога возбуждения системы двух барионов В+В* и имеет близкую ширину, вклад s-канального быть резонансного механизма может сымитирован t-канальным псевдорезонансным механизмом при увеличении параметров короткодействующего обрезания; при этом многие тонкие черты описать не удается.
- При выборе мягких параметров обрезания в мезон-обменных вершинах, в которые согласуются с данными по упругому *пN*-рассеянию, для описания наблюдаемых реакции $pp \rightarrow d\pi^+$ необходим учет дополнительных короткодействующих механизмов, таких, как рождение промежуточных дибарионных резонансов.
- Сечение реакции двухпионного рождения $pp \to d(\pi\pi)_0$ также можно описать на основе дибарионных механизмов с реалистическими параметрами.
- Важно найти такие реакции, в которых дибарионные резонансы ٠ проявляются более четко и не могут быть "замаскированы" стандартными мезон-обменными механизмами, даже при подгонке параметров.
- В следующей главе будет рассмотрено двухпионное рождение в pnсоударениях с этой точки зрения.

<u>Глава 3</u>.

Промежуточные дибарионные резонансы в реакциях двухпионного рождения и новая интерпретация АВС-эффекта

Что такое АВС-эффект?

A. Abashian, N.E. Booth, K.M. Crowe, PRL 5, 258 (1960); 7, 35 (1961): Инклюзивный эксперимент $pd \rightarrow {}^{3}\text{He}X, T_{p} = 0.743 \text{ GeV}$ Обнаружено аномальное усиление сигнала вблизи порога двухпионного рождения.

Традиционный механизм 2π-рождения и АВС-эффекта – *t*-канальное возбуждение и последующий распад промежуточной системы ΔΔ (Risser & Shuster, 1973): частичное описание старых инклюзивных данных; противоречие с новыми эксклюзивными данными. 34

Новые эксперименты коллаборации WASA@COSY

Первые эксклюзивные эксперименты с очень высокой статистикой в полной 4 π -геометрии $p + d \rightarrow p_{\text{spectator}} + d + \pi^0 \pi^0$ @ $T_n = 1.0 - 1.4 \text{ GeV}$

 $d\pi^0\pi^0$

Экспериментальные данные ясно показали образование изоскалярного дибарионного резонанса D_{03} 0.5 с параметрами:

Дибарионная модель реакции $pn \to d + (\pi \pi)_0$

- Модель реакции *pn* → *d* + (ππ)₀, предложенная в диссертации, предполагает, что основной вклад в сечение реакции при энергиях *T_p* = 1.0–1.4 ГэВ, соответствующих рождению дибариона *D*₀₃ (2380), дают две интерферирующие моды распада этого дибариона:
 - (*a*) эмиссия пионной пары из промежуточного скалярного о-мезона,
 - (b) последовательная эмиссия двух пионов через образование

промежуточного изовекторного дибариона D_{12} (2150).

- Резонансы D_{12} и D_{03} рассматриваются как возбужденные состояния дейтронного дибариона D_{01} . Прямая аналогия с нуклонными резонансами N^* .
- Тогда АВС-эффект обусловлен рождением σ -мезона в процессе $D_{03} \rightarrow D_{01} + \sigma$.

Спектры инвариантных масс при *E* = 2.38 ГэВ

• Experiment (PRL'11) • Phase space • - - $D_{03} \rightarrow \sigma + d$ • · · · · $D_{03} \rightarrow \pi + D_{12}$ • Full calculation

- Каждый из двух механизмов распада дибариона D₀₃ дает резонансное усиление в соответствующем спектре инвариантных масс
- Вклад о-моды весьма мал, но необходим для формирования АВС-пика

Энергетические распределения

Свойства о-мезона

Скалярный о-мезон – самый легкий резонанс в КХД с квантовыми числами вакуума $O(0^+)$; сильно связан с киральным конденсатом; имеет сложную структуру (возможно, гибридную $qq\overline{qq} + 2g$) и необычные свойства

В ππ-рассеянии – очень широкий резонанс (Caprini et al., 2006):

 $m_{\sigma} \simeq 440 \text{ MeV}, \quad \Gamma_{\sigma} \simeq 540 \text{ MeV}$

Из описания АВС-пика в 2π -рождении:

 $m_{\sigma} \simeq 300 \text{ MeV}, \quad \Gamma_{\sigma} \simeq 100 \text{ MeV}$

Уменьшение массы и ширины о-мезона – признак частичного восстановления киральной симметрии!

Восстановление киральной симметрии (ВКС)

- <u>Два основных явления непертурбативной КХД</u>:
 конфайнмент (невылетание кварков)
 нарушение киральной симметрии (физические массы адронов)
- Частичное ВКС происходит
- в изолированных сильно возбужденных адронах (Glozman et al.)
- в ядерной материи при высокой плотности и/или температуре (Kunihiro et al., Volkov et al. и др.)
 ^{0,8}
- Повышение E^* , ρ , $T \rightarrow q\overline{q} >$ рост $E_q \rightarrow$ сокращение

ВКС проявляется в уменьшении массы скалярного σ -мезона и ширины распада $\sigma \to \pi\pi$

Восстановление киральной симметрии (ВКС)

- Дибарион *D*₀₃ (2380):
 - высокая плотность ($r(D_{03}) \approx 0.8 \; \Phi_{
 m M}$)
 - большая энергия возбуждения ($E^* \approx 500 \text{ M}
 m sB$)

В нем должно происходить частичное ВКС.

Тогда σ-мезон, испускаемый дибарионом, будет иметь меньшую массу и ширину в сравнении со свободным σ-мезоном (рождающимся в ππрассеянии).

Именно это показывает эксперимент в области АВС-пика.

 Согласно дибарионной модели ядерных сил, явление ВКС играет ключевую роль в NN-взаимодействии на коротких расстояниях.
 ABC-эффект можно рассматривать как первое экспериментальное подтверждение этого предсказания.

Заключение

- Показано, что учет рождения промежуточных дибарионных резонансов позволяет согласованно описать широкий круг процессов, сопровождающихся большими передачами импульса и не имеющих объяснения в рамках традиционных мезон-обменных моделей.
- Можно предположить, что дибарионные резонансы это не просто "мультикварковая экзотика", но проявление фундаментальных свойств непертурбативной КХД, которые определяют взаимодействие нуклонов на малых расстояниях и короткодействующие корреляции в ядрах.

Основные результаты

- 1) Впервые выполнено обобщение дифракционной модели Глаубера-Ситенко для рассеяния быстрых адронов на ядрах с учетом спиновой (и изоспиновой) структуры входных адрон-нуклонных амплитуд и волновой функции ядрамишени.
- Получены явные аналитические формулы связи спин-зависящих инвариантных Nd- и NN-амплитуд.
- Выполнено сравнение предсказаний дифракционной модели для поляризационных наблюдаемых в задаче упругого pd-рассеяния с результатами точных трехчастичных расчетов при промежуточных энергиях.
- Продемонстрирована высокая точность обобщенной дифракционной модели в широком интервале энергий для Nd-рассеяния в переднюю полусферу углов.
- 2) Предложен нетрадиционный механизм Nd-рассеяния под большими углами, включающий трехчастичное взаимодействие с рождением промежуточного дибарионного резонанса. Показана связь этого механизма с процессами неупругого NN-рассеяния (NN → dπ, NN → dππ и т. д.) и возможность его исследования в таких процессах.

Основные результаты

- 3) Исследована относительная роль стандартных мезон-обменных механизмов, в том числе, с возбуждением промежуточной Δ-изобары, и механизмов возбуждения изовекторных дибарионных резонансов в реакции однопионного рождения $NN \rightarrow d\pi$.
- Данное исследование выполнено впервые для отдельных парциальных волн реакции и без ad hoc подгонки параметров дибарионных резонансов.
- Показано, что включение механизмов рождения промежуточных дибарионов позволяет значительно улучшить описание процесса *NN* \rightarrow *d*π при условии выбора мягких параметров короткодействующего обрезания в вершинах πNN и $\pi N\Delta$, согласующихся с данными по упругому πN -рассеянию.
- 4) Впервые указана возможность исследования изовекторных дибарионов в двухпионного Предложено рождения в рр-соударениях. реакциях альтернативное описание реакции *pp* \rightarrow *pp* $\pi\pi$ в терминах промежуточных дибарионов.
- 5) На основе дибарионной модели NN-взаимодействия предложена новая количественная интерпретация околопорогового усиления (АВС-эффекта) в реакциях двухпионного рождения $np \rightarrow d\pi\pi$, $pd \rightarrow {}^{3}$ Не $\pi\pi$ и др., открытого экспериментально более 50 лет назад и до сих пор не получившего признанного теоретического объяснения.
- Впервые показано, что АВС-эффект можно рассматривать как прямое экспериментальное подтверждение восстановления киральной симметрии в адронных соударениях при промежуточных энергиях. 44

Теоретическая и практическая значимость

- Предложенная интерпретация АВС-эффекта открывает новые возможности фундаментального явления исследования восстановления киральной симметрии и свойств легких скалярных мезонов в NN- и Nd-соударениях при промежуточных энергиях ~ 1 ГэВ.
- Дибарионный механизм для реакций одно- и двухпионного рождения, ٠ развитый в диссертации, дает новую теоретическую основу для описания процессов рождения мезонов. (До сих пор базовые механизмы таких процессов включали в себя только псевдорезонансы, обусловленные возбуждением отдельных барионов.)
- Результаты, изложенные в диссертации, могут быть использованы для ٠ дальнейших расчетов адронных и ядерных процессов при промежуточных энергиях, а также для интерпретации существующих и предсказания новых экспериментальных данных (WASA@COSY, HADES и др.).
- Формализм обобщенной дифракционной модели в настоящее время активно ٠ используется учеными из ОИЯИ и Исследовательского центра Юлиха для расчетов спиновых наблюдаемых рассеяния антипротонов на дейтерии. Эти расчеты очень важны для новой экспериментальной программы FAIR (Дармштадт), предполагающей использование поляризованных антипротонных пучков.

Публикации

- 9 статей в рецензируемых научных журналах,
 в т. ч. 2 в Тор 25% (Phys. Rev. C)
- 1 статья в трудах конференций
- 12 тезисов докладов

Список опубликованных статей

- Platonova M.N. and Kukulin V.I. Refined Glauber model versus Faddeev calculations and experimental data for pd spin observables. // Phys. Rev. C. 2010. V. 81. P. 014004 (1-13).
- Платонова М.Н., Кукулин В.И. Описание спин-зависящих наблюдаемых в упругом pd-рассеянии на основе обобщенной дифракционной модели. // Ядерная физика. 2010. Т. 73. № 1. С. 90-110.
- 3. Платонова М.Н. Развитие обобщенной дифракционной модели для упругого pd-рассеяния при промежуточных энергиях. // Изв. РАН. Сер. физ. 2010. Т. 74. № 11. С. 1650-1656.
- 4. Платонова М.Н., Кукулин В.И. О возможности восстановления nn и np спиральных амплитуд на основе p+d и n+d данных рассеяния при промежуточных энергиях. // Изв. РАН. Сер. физ. 2011. Т. 75. № 4. С. 551-555.
- Platonova M.N., Kukulin V.I. Quark degrees of freedom in the deuteron and their testing in nucleon-deuteron scattering. // J. Phys. Conf. Ser. 2012. V. 381. P. 012110 (1-6).

Список опубликованных статей

- 6. Platonova M.N. and Kukulin V.I. ABC effect as a signal of chiral symmetry restoration in hadronic collisions. // Phys. Rev. C. 2013. V. 87. P. 025202 (1-5).
- Кукулин В.И., Платонова М.Н. Короткодействующие компоненты ядерных сил: эксперимент против мифологии. // Ядерная физика. 2013. Т. 76. № 12. С. 1549-1565
- 8. Platonova M.N. New interpretation of the ABC effect in two-pion production in NN collisions. // Few-Body Syst. 2014. V. 55 P. 791-794.
- 9. Kukulin V.I. and Platonova M.N. Chiral symmetry restoration in σ-meson production in hadronic processes. // EPJ Web Conf. 2014. V. 73. P. 05005 (1-5).

Доклады на конференциях

- 1. LIX Международное совещание по ядерной спектроскопии и структуре атомного ядра "ЯДРО 2009" (Чебоксары, Июнь 2009).
- 2. LX Международное совещание по ядерной спектроскопии и структуре атомного ядра "ЯДРО 2010" (Санкт-Петербург, Июль 2010).
- 3. The Rutherford Centennial Conference on Nuclear Physics (Manchester, UK, August 2011).
- 4. LXII Международное совещание по ядерной спектроскопии и структуре атомного ядра "ЯДРО 2012" (Воронеж, Июнь 2012).
- 5. Mini-workshop on two-pion production in the HADES and WASA experiments (IPN Orsay, France, April 2013).
- 6. The 22nd European Conference on Few-Body Problems in Physics "EFB 22" (Cracow, Poland, September 2013).
- 7. The 13th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon "MENU 2013" (Rome, Italy, October 2013).
- 8. XII Всероссийская Конференция "Молодые ученые России" (Москва, Апрель 2014).

Спасибо за внимание!

\mathcal{D}	$I(J^P)$	$^{2S+1}L_J(NN)$	M_D^{\exp}, Γ эВ	Γ_D , МэВ	$M_D^{\mathrm{SU}(6)},$ ГэВ
$\mathcal{D}_{01}(d)$	$0(1^+)$	${}^{3}S_{1}$	1.88	0	1.88
$\mathcal{D}_{03}\left(d^{*} ight)$	$0(3^+)$	${}^{3}D_{3}$	$\simeq 2.38$	$\simeq 70$	2.35
\mathcal{D}_{10}	$1(0^{+})$	1S_0	1.88	0-0.5	1.88
\mathcal{D}_{12}	$1(2^{+})$	${}^{1}D_{2}$	$\simeq 2.15$	$\simeq 120$	2.16
\mathcal{D}_{13}^-	$1(3^{-})$	${}^{3}F_{3}$	$\simeq 2.24$	100-150	—
\mathcal{D}_{14}	$1(4^{+})$	${}^{1}G_{4}$	$\simeq 2.43$	$\simeq 150$	_
\mathcal{D}_{15}^-	$1(5^{-})$	${}^{3}H_{5}$	$\simeq 2.70$	$\simeq 200$	—
\mathcal{D}_{21}	$2(1^+)$	_	$\simeq 2.16$?	2.16
\mathcal{D}_{30}	$3(0^+)$	_	?	?	2.35

Параметры известных дибарионных резонансов

Обобщенная

дифракционная модель

Исходные формулы: $M(\mathbf{q}) = M^{(s)}(\mathbf{q}) + M^{(d)}(\mathbf{q}) + M^{(ex)}(\mathbf{q}),$

$$M^{(s)} = \int d^{3}r e^{i\mathbf{q}\mathbf{r}/2} \Psi_{d}(\mathbf{r}) \Big(M_{n}(\mathbf{q}) + M_{p}(\mathbf{q}) \Big) \Psi_{d}(\mathbf{r}),$$

$$M^{(d)} = \frac{i}{4\pi^{3/2}} \int d^{2}q' \int d^{3}r e^{i\mathbf{q}'\mathbf{r}} \Psi_{d}(\mathbf{r}) \Big(M_{n}(\mathbf{q}_{2}) M_{p}(\mathbf{q}_{1}) + M_{p}(\mathbf{q}_{1}) M_{n}(\mathbf{q}_{2}) \Big) \Psi_{d}(\mathbf{r}),$$

$$M^{(ex)} = -\frac{i}{4\pi^{3/2}} \int d^{2}q' \int d^{3}r e^{i\mathbf{q}'\mathbf{r}} \Psi_{d}(\mathbf{r}) \Big(M_{n}(\mathbf{q}_{2}) - M_{p}(\mathbf{q}_{2}) \Big) \Big(M_{n}(\mathbf{q}_{1}) - M_{p}(\mathbf{q}_{1}) \Big) \Psi_{d}(\mathbf{r}).$$

$$\mathbf{q}_{1} = \mathbf{q}/2 - \mathbf{q}', \ \mathbf{q}_{2} = \mathbf{q}/2 + \mathbf{q}'$$
52

Разложение полной *pd*-амплитуды по инвариантым амплитудам:

$$M[\mathbf{p}, \mathbf{q}; \boldsymbol{\sigma}, \mathbf{S}] = (A_1 + A_2 \,\boldsymbol{\sigma} \hat{n}) + (A_3 + A_4 \,\boldsymbol{\sigma} \hat{n}) (\mathbf{S} \hat{q})^2 + (A_5 + A_6 \,\boldsymbol{\sigma} \hat{n}) (\mathbf{S} \hat{n})^2 + A_7 (\boldsymbol{\sigma} \hat{k}) (\mathbf{S} \hat{k}) + A_8 \,\boldsymbol{\sigma} \hat{q} ((\mathbf{S} \hat{q}) (\mathbf{S} \hat{n}) + (\mathbf{S} \hat{n}) (\mathbf{S} \hat{q})) + (A_9 + A_{10} \,\boldsymbol{\sigma} \hat{n}) \mathbf{S} \hat{n} + A_{11} (\boldsymbol{\sigma} \hat{q}) (\mathbf{S} \hat{q}) + A_{12} \,\boldsymbol{\sigma} \hat{k} ((\mathbf{S} \hat{k}) (\mathbf{S} \hat{n}) + (\mathbf{S} \hat{n}) (\mathbf{S} \hat{k})),$$

Спиновая структура *NN*-амплитуд:

$$M_{i}[\mathbf{p}, \mathbf{q}; \boldsymbol{\sigma}, \boldsymbol{\sigma}_{i}] = A_{i} + C_{i}\boldsymbol{\sigma}\hat{n} + C_{i}'\boldsymbol{\sigma}_{i}\hat{n} + B_{i}(\boldsymbol{\sigma}\hat{k})(\boldsymbol{\sigma}_{i}\hat{k}) + (G_{i} + H_{i})(\boldsymbol{\sigma}\hat{q})(\boldsymbol{\sigma}_{i}\hat{q}) + (G_{i} - H_{i})(\boldsymbol{\sigma}\hat{n})(\boldsymbol{\sigma}_{i}\hat{n}), \quad i = n, p$$

Структура волновой функции и формфактора дейтрона:

$$\Psi_d[\mathbf{r};\boldsymbol{\sigma}_n,\boldsymbol{\sigma}_p] = \frac{1}{\sqrt{4\pi r}} \left(u(r) + \frac{1}{2\sqrt{2}} w(r) S_{12}[\hat{r};\boldsymbol{\sigma}_n,\boldsymbol{\sigma}_p] \right),$$

Формфактор (полный):

$$S[\mathbf{q}; \boldsymbol{\sigma}_{n}, \boldsymbol{\sigma}_{p}] = \int d^{3}r e^{i\mathbf{q}\mathbf{r}} |\Psi_{d}[\mathbf{r}; \boldsymbol{\sigma}_{n}, \boldsymbol{\sigma}_{p}]|^{2}$$

$$= S_{0}(q) - \frac{1}{2\sqrt{2}} S_{2}(q) S_{12}[\hat{q}; \boldsymbol{\sigma}_{n}, \boldsymbol{\sigma}_{p}],$$

$$rge \quad S_{12}[\hat{n}; \mathbf{v}_{1}, \mathbf{v}_{2}] = 3(\mathbf{v}_{1}\hat{n})(\mathbf{v}_{2}\hat{n}) - (\mathbf{v}_{1}\mathbf{v}_{2}).$$
монопольный:

$$S_{0}(q) = S_{0}^{(0)}(q) = \int_{0}^{\infty} dr u^{2}(r) j_{0}(qr),$$

$$S_{0}^{(2)}(q) = \int_{0}^{\infty} dr w^{2}(r) j_{0}(qr),$$

$$S_{12}^{(2)}(q) = 2\int_{0}^{\infty} dr u(r) w(r) j_{2}(qr),$$

$$S_{2}^{(1)}(q) = 2\int_{0}^{\infty} dr u(r) w(r) j_{2}(qr),$$

$$S_{2}^{(2)}(q) = -2^{-1/2} \int_{0}^{\infty} dr w^{2}(r) j_{2}(qr)_{53}$$

Связь упругого *Nd*-рассеяния под большими углами с неупругим *NN*-рассеянием

Открытие и первые интерпретации АВС-эффекта

T. Risser & M.D. Shuster, Phys. Lett. **B43**, 68 (1973):
 <u>t-канальная ΔΔ-модель</u>

- Предсказывает <u>два пика</u> в спектре двух пионов:
 при малых и больших инвариантных массах M_{ππ} –
 ABC- и "DEF"-эффекты
- Качественное описание инклюзивных данных

$$\mathcal{M}_{\lambda_p,\lambda_n,\lambda_d} = \frac{\sum\limits_{\lambda_3} \mathcal{M}_{\lambda_p,\lambda_n,\lambda_3}^{(D_{03})} \left[\mathcal{M}_{\lambda_3,\lambda_d}^{(\sigma)} + \mathcal{M}_{\lambda_3,\lambda_d}^{(D_{12})} \right]}{s - M_{D_{03}}^2 + i\sqrt{s}\Gamma_{D_{03}}(s)}$$

$$\mathcal{M}_{\lambda_{p},\lambda_{n},\lambda_{3}}^{(D_{03})} = \sqrt{5}p^{2}F_{pn\to D_{03}}C_{1\lambda_{3}20}^{3\lambda_{3}}C_{\frac{1}{2}\lambda_{p}\frac{1}{2}\lambda_{n}}^{1\lambda_{3}}$$
$$\mathcal{M}_{\lambda_{3},\lambda_{d}}^{(\sigma)} = \frac{F_{D_{03}\to d\sigma}F_{\sigma\to\pi\pi}}{M_{\pi\pi}^{2}-m_{\sigma}^{2}+iM_{\pi\pi}\Gamma_{D_{03}}(M_{\pi\pi}^{2})}C_{1\lambda_{d}2\mu}^{3\lambda_{3}}\mathcal{Y}_{2\mu}(\mathbf{p}_{d},\mathbf{p}_{d}),$$
$$\mathcal{M}_{\lambda_{3},\lambda_{d}}^{(D_{12})} = \sqrt{\frac{6}{5}}\frac{F_{D_{03}\to D_{12}\pi_{1}}F_{D_{12}\to d\pi_{2}}}{M_{d\pi_{2}}^{2}-M_{D_{12}}^{2}+iM_{d\pi_{2}}\Gamma_{D_{12}}(M_{d\pi_{2}}^{2})}C_{1\lambda_{d}2\mu}^{3\lambda_{3}}\mathcal{Y}_{2\mu}(\mathbf{p}_{\pi_{1}},\mathbf{p}_{d\pi_{2}}) + (\pi_{1}\leftrightarrow\pi_{2})}$$

$$F_{R \to ab}(p_{ab}) = M_{ab} \sqrt{\frac{8\pi \Gamma_{R \to ab}^{(l)}(p_{ab})}{(p_{ab})^{2l+1}}} \qquad \Gamma_{R \to ab}^{(l)}(p) = \Gamma_{R \to ab}^{(l)} \left(\frac{p}{p_0}\right)^{2l+1} \left(\frac{(p_0)^2 + \Lambda_{ab}^2}{p^2 + \Lambda_{ab}^2}\right)^{l+1}$$

$$\frac{d\sigma}{dM_{bc}} = \frac{1}{(4\pi)^5 ps} \iint p_a p_{bc} d\Omega_a d\Omega_{bc} \,\overline{|\mathcal{M}(\mathbf{p}_a, \mathbf{p}_{bc})|^2}$$