Р.А. Алиев

Ядерно-физические методы в исследовании окружающей среды

Основные направления работы

- Радионуклиды как инструменты для исследования окружающей среды
- Исследование и прогнозирование поведения радионуклидов в природе, оценка состояния окружающей среды
- Разработка ядерно-физических методик определения нуклидов в природных и искусственных объектах (гамма-активационный анализ, RBS)
- Разработка методик производства радионуклидов, используемых в качестве меток

Радионуклиды как инструменты исследования окружающей среды: примеры применения

- Датирование по ¹⁴С
- Определение потоков органического углерода в гидросфере по ²³⁴Th
- Исследование эрозии почв с помощью ¹³⁷Cs,
 ²¹⁰Pb, ⁷Be.
- Исследование времени жизни аэрозолей с помощью ⁷Be, ³²P, ³³P
- Датирование океанических, морских, озерных донных отложений по ¹⁰Be, ²³⁰Th, ²¹⁰Pb

²¹⁰Pb и ¹³⁷Cs как трассеры осадконакопления

- ²¹⁰Pb продукт распада ²²²Rn (ряд ²³⁸U), поступление с атмосферными выпадениями, поток почти постоянен.
- ¹³⁷Cs техногенный, в окружающей среде с 1945 г., функция поступления зависит от региона. Могут наблюдаться максимумы в 1963 (ядерные взрывы), 1986 (Чернобыль).

Monetti M.A. US Department of Energy Report EML-579. 1996. <u>http://www.eml.doe.gov/publication</u> <u>s/reports</u>

¹³⁷Сѕ в донных отложениях

Черного моря

R.A.Aliev, St.N.Kalmykov, Yu.A.Sapozhnikov. In: Environmental radiochemical analysis II. Cambridge. UK. 254-262.

Белое море (центральная часть и Двинской залив)

Рассчитанные скорости осадконакопления (Белое море)

Запас ¹³⁷Сs в донных отложениях (Белое море)

Места захоронения РАО вблизи архипелага Новая Земля

1 — Новоземельская впадина, 2 — залив Абросимова, 3 — залив Степового, 4 — залив Цивольки, 5 — залив Ога, 6 — залив Седова, 7 залив Благополучия, 8 — залив Течений, 9 — вблизи о. Колгуев [Айбулатов Н.А. Экологическое эхо холодной войны в морях Российской Арктики. — М.: ГЕОС, 2000.]

Общая активность 4 ПБк (Казеннов, Сивинцев, Кикнадзе, 2005)

Методы исследований

- Анализ проб морской воды большого объема на ¹³⁷Cs
- Анализ донных отложений на ¹³⁷Cs и другие гамма-излучатели (детектор из особо чистого германия Canberra)
- Определение ²¹⁰Pb в осадках (гаммаспектрометрически по линии 46,5 кэВ, детектор из особо чистого германия планарный, БДЕР 7К, ИФТП)
- Гамма-спектромпетрический анализ *in situ*

Вертикальные профили ¹³⁷Сs и ²¹⁰Pb (впадины Франц-Виктория и Новоземельская)

Вертикальные профили ¹³⁷Cs и ²¹⁰Pb (заливы Степового и Абросимова)

Залив Степового

Экспедиция 2007 – АПЛ «Комсомолец»

ГОА Мир-1, 18.08. 2007, отобрана из первого отсека АПЛ

Некоторые выводы (экспедиции 2004, 2005, 2006, 2007 на Новую Землю и в Норвежское море)

- Радиоактивность морской воды соответствует фоновым значениям для региона
- Радиоактивность донных отложений в заливах Цивольки и Ога соответствует фоновым значениям, характерным для региона
- В заливах Абросимова и Степового техногенная радиоактивность донных отложений превышает фоновые уровни, максимальное значение в заливе Степового до 600 Бк/кг ¹³⁷Cs.
- Рассчитаны скорости седиментации для двух точек в заливе Абросимова (3,0 и 2,8 мм/год) и одной в заливе Степового (1,2 мм/год). Эти величины находятся в хорошем соответствии с вертикальным распределением техногенного ¹³⁷Cs. Вид вертикальных профилей ¹³⁷Cs позволяет предположить, что рассчитанные величины скоростей седиментации являются типичными для заливов.
- Техногенная радиоактивность морской среды существенно уменьшилась по сравнению с 1993-1994 гг.
- Результаты свидетельствуют об отсутствии утечек радионуклидов из затопленных объектов

Разработанные методики анализа радионуклидов

- Определение ⁹⁹Тс в природных водах (ионообменная хроматография, ЖС спектрометрия)
- Определение ²³⁷Np в донных отложениях (жидкостная экстракция, нейтронноактивационный анализ, гаммаспектрометрия)
- Определение ²¹⁰Pb в донных отложениях (жидкостная экстракция, ЖС спектрометрия)

Определение ²³⁷Np методом радиохимического НАА

Определение 99Тс в природных

водах

Р. А. Алиев, С. Н. Калмыков, Р.В. Хрестенко, И.Г. Тананаев. Определение ⁹⁹Tc в загрязненных природных водах. Вопросы радиационной безопасности. 2007. № 3. С. 10-16.

Гамма-активационный анализ

- Возможность определения практически всех элементов с Z>=6, в том числе C, N, O, F, а также Ti, Ni, Nb, Tl, Pb, Bi, которые трудно определяются НАА
- Более простое по сравнению с реакторным НАА аппаратурное оформление
- Возможность определения одного элемента по разным реакциям
- Возможность анализа проб большого объема (контроль ядерных материалов и т.д.)

Спектр тормозного излучения

Oganessian Yu. Ts. et al. Nucl. Phys. A 701, 2002, 87c-95c

Удельная активность продуктов

активации

Время облучения 6 ч

Пределы обнаружения (СДО-1)

 $S = \sqrt{3S_c}$ Расчет минимально детектируемого количества импульсов (Колесов, Журн. Аналит. Химии 51 (1996) 1252)

Продукты активации родия

Условия облучения - 50 МэВ, 6 мА, 10 Гц, 4 мкс, 6 ч

Производство меток для радиохимического анализа

- ²⁰⁷Bi определение ²¹⁰Pb (реакция ^{nat}Pb(d,xn)²⁰⁷Bi)
- 95g Tc, 95m Tc, 96 Tc определение 99 Tc (nat Mo(a,xn) 96 Tc, nat Mo(a,xn) 96 Tc, nat Mo(a,xn) 95 Ru $\rightarrow {}^{95g}$ Tc)
- ⁸⁸Y определение ⁹⁰Sr (реакция ^{nat}Sr(d,xn)⁸⁸Y)

^{95g}Tc - новая метка для анализа технеция

Ru 94	Ru 95	Ru 96	Ru 97	Ru 98	Ru 99	Ru 100	Ru 101	Ru 102	Ru 103	Ru 104
	▲ EC	— γ, n		—γ,3n	γ,4Π					
Tc 93	/Tc 94 `	Tc 95	Tc 96	Tc 97	Tc 98	Tc 99		-		
α,n α,p	Mo 93	Mo 94	Mo 95	Mo 96	Mo 97	Mo 98	Mo 99	Mo 100		
Mo 92										
	•	α ,2n		•	•	•	•	•		
		10 93								

T_{1/2}=20 h, EC, gamma

^{95g}Тс - новые пути получения

Метод 1

Метод 2

- Мишень природный молибден
- Пучок 30 MeV альфа-частицы

- Мишень RuCl₄ раствор
- Пучок 70 MeV тормозное излучение

^{95g}Tс - новые пути получения

Gamma spectra of irradiated target (a), organic (b) and aquatic (c) phases after first separation

^{95g}Tс - новые пути получения

Исследование поверхности с помощью метода RBS

 Исследование механизма взаимодействия алюмофосфатных стекол, содержащих уран, с водой

RBS-спектр алюмофосфатного стекла

1 – до обработки водой
 2 – после обработки

 $Na_{2}O - 21.7\%$ $Al_{2}O_{3} - 19.2\%$ $P_{2}O_{5} - 49.7\%$ $U_{3}O_{8} - 9.5\%$

RBS-спектр алюмофосфатного

стекла

Energy, MeV

Автор благодарит

- Коллег по РХЛ за постоянную помощь в работе
- Коллег с кафедры радиохимии химического факультета МГУ, и лично доц. Калмыкова С.Н.
- Экипажи судов «Профессор Штокман», «Профессор Водяницкий», «Иван Петров», «Эколог», «Академик Мстислав Келдыш»
- Членов экспедиций, участвовавших в пробоотборе
- Коллег из ИО РАН академика А.П. Лисицына, к.г.-м.н. Шевченко В.П., Новигацкого А.Н.
- Владимирова М.В., Смирнова В.Н. (МЧС РФ), Кобылянского В.В. («НТПЦ Альтаир»)
- Сотрудников ЛУУ и лично Кирьянова Е.Ф. за облучение мишеней на циклотроне
- Профессора Ишханова Б.С. и к.ф.-м.н. Ермакова А.Н. за возможность выполнения работ на микротроне
- К.ф.-м.н. Куликаускаса В.С. за выполнение анализов методом RBS
- К.ф.-м.н. Еремина Н.В. за помощь в гамма-спектрометрических измерениях на БДЕР-7К

спасибо за внимание