

Sectoral Operational Programme "Increase of Economic Competitiveness" *"Investments for Your Future"*

Extreme Light Infrastructure – Nuclear Physics (ELI-NP) – Phase I Project co-financed by the European Regional Development Fund

Extreme Light Infrastructure – Nuclear Physics

Ovidiu Tesileanu and Dan Filipescu, on behalf of the ELI-NP Team

Lomonosov Moscow State University November 25th, 2013

Extreme Light Infrastructure (ELI)

2006: ELI on ESFRI Roadmap

2007-2010: ELI-PP (FP7)

ELI-Beamlines (Czech Republic) ELI-Attoseconds (Hungary) ELI-Nuclear Physics (Romania) ELI-Ultra-high intensity – TBD

2009: Approved by Competitiveness Council

2010: ELI-DC formation decided, MoU
2013: Establishment of ELI-DC

as a Legal entity: Czech Republic,
Hungary, Romania, Italy, Germany

Mission: Complementarity of the Scientific Programs

ERIC

ELI-NP Milestones

• February-April 2010

Scientific case **"White Book"** (100 scientists, 30 institutions) (www.eli-np.ro) approved by ELI-NP International Scientific Advisory Board

• August 2010

Feasibility Study: 293 MEuro

- August 2011 March 2012 : Technical Design
- January 2012: Submission of the application to the E.C.
- July 2012: Romanian Government Decision Construction of the New Research Infrastructure ELI-NP: 293 M€
- September 2012: EC Project approval

European Regional Development Fund (ERDF)

Operational Programme Increase of Economic Competitiveness Financial Support (83%) of the First phase (2012-2015) 180 M€

• October 2012

Workshop: Experimental programme at ELI-NP

• June 2013

International workshops on TDRs experimental areas Start of construction works

• July 2013

Signing of the laser contract

• October 2013

End Tender procedure Gamma Beam

Bucharest-Magurele Physics Campus National Physics Institutes

ELI-NP Infrastructure

Large equipment:

- Ultra-short pulse high power laser system, 2 x 10PW maximum power *Thales Optronique SA and SC Thales System Romania*
- Gamma radiation beam, high intensity, tunable energy up to 20MeV, relative bandwidth 10⁻³, produced by Compton scattering of a laser beam on a 700 MeV electron beam produced by a warm LINAC *Proposals from an European Consortium and LLNL*

Buildings – one contractor, 33000sqm total

Experiments

• 8 experimental areas, for gamma, laser, and gamma+laser

ELI-NP Facility Concept

ELI – Nuclear Physics Research

- Nuclear Physics experiments to characterize laser target interaction
- *Photonuclear reactions*
- Exotic Nuclear Physics and Astrophysics complementary to other NP large facilities (FAIR, SPIRAL2)
- Applied Research based on high intensity laser and very brilliant γ beams

Experimental Areas at ELI-NP

- E1 Laser induced nuclear reactions;
- E2 NRF and applications;
- E3 Positrons source;
- E4/E5 Accelerated particle beams induced by high power laser beams (0,1/1 PW) at high repetition rates;
- E6 Intense electron and gamma beams induced by high power (multi-PW) laser;
- E7 Experiments with combined laser and gamma beams;
- E8 Nuclear reactions induced by high energy gamma beams.

Project implementation

Human Resources

ELI-NP Next Steps

- End 2014: TDRs experiments
- Spring 2015: Construction of buildings
- June 30th, 2015: Lasers and Gamma Beam end of Phase 1
- 2017: End of second Phase, Beginning operation

ELI-NP TDR Workgroups

- Technical Design Reports for the experiments
- Workshop in June for TDRs;
- Gamma WGs:
- Gamma beam preparation, beam lines, diagnostics
- NRF and applications
- Photo fission (production and physics)
- Gamma above Threshold
- Charged particles
- + Positron source for materials science WG
- + Transversal WGs: Vacuum, Control Systems, Dosimetry

Laser WGs:

- •Laser delivery and beam lines
- •Ion driven nuclear physics: fission-fusion
- •Strong fields QED
- •Towards High field (Laser +Gamma) and Plasma

ELI-NP Gamma beam production

$$E_{\gamma} = n \cdot 2\gamma_{e}^{2} \cdot \frac{1 + \cos\varphi}{1 + (\gamma_{e}\theta)^{2} + a_{0}^{2} + \frac{4\gamma_{e}E_{0}}{mc^{2}}} \cdot E_{0}$$

$$m = \text{harmonic number;} \quad \frac{4\gamma_{e}E_{0}}{mc^{2}} = \text{recoil parameter;} \quad a_{0} = \frac{eE}{m\omega_{0}}; \quad E_{0} = \hbar\omega_{0}$$
Compton backscattering is the most efficient « frequency amplifier »

$$w_{\text{diff}} = 4g_{e}^{2}w_{\text{haser}}$$

 $E_e=300 \text{ MeV}$ and optical laser $\leq g_e \sim 600 = E_g > 1 \text{ MeV}$

but very weak cross section: 6.6524 10⁻²⁵ cm²

Therefore for a powerful γ beam, one needs:

- high intensity electron beams
- very brilliant optical photon beams
- very small collision volume
- very high repetition frequency

Photonuclear reactions

Photodisintegration (-activation)

Gamma Workgroup

Charged Particles

Convener: Moshe Gai (Yale University)

ELI-NP Liaison: Ovidiu Tesileanu

The Charged Particles Working Group

- Scope: TDR for charged particles detection @ ELI-NP
- Physics case:
 - nuclear structure clustering in light nuclei: ¹²C, ¹⁶O;
 - Photodisintegration: ${}^{16}O(\gamma,\alpha){}^{12}C$, ${}^{22}Ne(\gamma,\alpha){}^{18}O$, ${}^{19}F(\gamma,p){}^{18}O$, ${}^{24}Mg(\gamma,\alpha){}^{20}Ne$

(astrophysics, high energy γ , E8);

• International collaboration: Italy (INFN-LNS), Poland (Univ. Warsaw, USA (U.

Chicago, U. Yale), Germany (PTB), Romania;

The Charged Particles Working Group

Three detectors proposed:

- •Bubble chamber: threshold detector, superheated water, computer controlled pressurization, insensitive to gamma beam, neutron background; target: the superheated liquid;
- •Time Projection Chamber: TPC with electronic readout, active volume 35 x 20 x 20 cm³, electrodes on internal side of lateral walls, charge amplification structure; charge-collecting electrode plane w/ timeresolved 2D readout; identify reactions with more than 2 particles, background; strip pitch 1.5mm adequate to record tracks of recoiling ion; target: the TPC-compatible gas;
- •Silicon Strip Detector: allows for particle identification through pulse analysis and TOF; Electrons and positrons not large background in 150µm silicon detector; target: solid.

Gamma Workgroup

Gamma beam preparation, beam lines, diagnostics

Convener: Henry Weller (HIGS, TUNL)

ELI-NP Liaison: Calin Alexandru Ur

Phases of GBS and parameters

Quantity	Symbol	Unit	Specification		Frank
			Full	Stage 2	rootnote
Minimum					
Photon Energy	Ey	[MeV]	≤ 0.2	≤ 0.2	
Maximum					
Photon Energy	E,	[MeV]	≥ 19.5	≥ 3	
Tunahility of	1				
the Photon			Steplessly	_	b)
Energy			variable		
Linear					
Palarization of					
Commo-Roy	Pv	[96]	≥ 95	-	b)
Beam	<i>'</i>				
Minimum					
Framerer of					
Commo Por	Q _v M	[Hz]	$\geq 1.0 \ge 10^2$	-	b)
Gamma-Kay Macropulsas	-6-				
macropuises	10	(_ 1)	- 20 - 201		13
Divergence	20	[rad]	≤ 2.0 x 10 °	≤ 2.0 x 10 °	D)
Average					
Diametral Full					
Width Half	σ,	[m]	≤ 1.0 x 10 [~]	$\leq 1.0 \text{ x } 10^{-1}$	a,b)
Maximum of					
Beam Spot					
Average					
Bandwidth of	W		$< 5.0 \times 10^{-3}$	$\leq 5.0 \times 10^{-2}$	a.b.c)
Gamma–Ray					-,-,-,
Beam					
Gamma-Ray					
Beam Time-					
Average	F	[1/(s•eV)]	$\geq 5.0 \ge 10^3$	-	d)
Spectral Density					
at Peak Energy					
Time-Average		[]/(semm ² emrad ²			
Brilliance at	Bav	•0 106W)	$\geq 1.0 \ge 10^{11}$	$\geq 1.0 \ge 10^{10}$	a,d)
Peak Energy		*0.170 W J]			
Peak-Brilliance	P	[l/(s•mm ² •mrad ²	>10-10		
at Peak Energy	D	•0.1%W)]	≥ 1.0 X 10	-	a,a)
Average					
Spectral Off-					
Peak Gamma-	-	F1 //	<10 10 ⁻¹		
Ray	Φ _{γ.Mgr}	[1/(s•eV)]	$\leq 1.0 \times 10^{-4}$	-	a,b,c)
Background					
Density					

- 1. Eγ > 1 MeV (**Demonstrator**)
 - a. Expandable to the full system
 - b. Deadline 31.10.2015
- 2. Intermediate parameters a. Deadline 30.11.2016
- 3. Full system
 - a. Deadline (after 54 months)
 - b. Two beams: stage 2 and stage 3

- At reference-point located at approximately 10 m downstream of the Compton-collision point for gamma-ray production
- b) For all gamma-ray energies between minimum and maximum photon energy
- c) At all points within the FWHM of the beam spot
- At gamma-ray energy of 2 MeV (for the first part of the electron accelerator) and 10 MeV (for the full electron accelerator)

Equipment for GBS diagnostics

First stage of the project (end of 2015)

- gamma rays of $\geq 1 \text{ MeV}$
- energy profile measurements
 - large volume HPGe detector with anti-Compton shield or large volume LaBr₃ detector
 - commercial detectors and simple DAQ
 - to be used

Equipment for GBS diagnostics

Intermediate stage of the project (end of 2016)

- gamma rays of \geq 3 MeV & BW \leq 5 x 10⁻²
- beam spot diameter FWHM ≤ 1 cm
- energy profile measurements
 - large volume HPGe detector with anti-Compton shield or large volume LaBr₃ detector (available from the previous stage)
 - in-beam
 - out–of–beam
 - precise energy calibration of the detectors can be achieved with standard gamma-ray sources
- · flux counter detector
 - e.g. paddle detector
 - other solutions are discussed
- spatial profile detector
 - mm resolution
 - e.g. CCD based detector

Equipment for GBS diagnostics

Final stage of the project (end of 2017)

- gamma rays of ≥ 19.5 MeV & BW ≤ 5 x 10⁻³
- beam spot diameter FWHM ≤ 1 mm
- energy profile measurements
 - large volume HPGe detector with anti-Compton shield or large volume LaBr₃ detector (available from the previous stage)
 - in-beam
 - out–of–beam
 - define methods for precise energy calibration of the detectors at gamma-ray energies above 3.5 MeV
- flux counter detector
 - from the previous stage
- spatial profile detector
 - need of sub–mm resolution
 - new CCD based detector
- characterize the time structure of the gamma beam

Gamma Workgroup

Nuclear Resonance Fluorescence and Applications

Convener: Norbert Pietralle (T.U. Darmstadt)

ELI-NP Liaison: Calin Alexandru Ur

Nuclear Resonance Fluorescence

- Pure EM-interaction
 - (nuclear–)model independent
 - "small" cross sections
 - \rightarrow need intense beams

Minimum projectile mass

- min. angular momentum transfer, spin-selective → excite mainly low-spin modes [E1,M1,E2,(E3?)]
- Polarisation

parity physics

- Narrow Bandwidth (at ELI)
 - explore specific excitation energy

Observables

- Excitation Energy E_x
 Spin J
 Parity p
 Decay Energies E_g
 - •Partial Widths $\Gamma_{\rm f}/\Gamma_0$

- •Multipole Mixing d
- •Decay Strengths B(pl)
- •Level Width Γ (eV)
- •Lifetime t (ps as)

Separation threshold

Nuclear Resonance Fluorescence

- Dipole response and parity measurements in weakly-bound nuclei
 - low–lying E1 strength in *p–nuclei* having very low natural abundance
 - development of the E1 strength on isotope chains as a function of the neutron number
- Low–energy dipole response in the actinides region
 - precise distribution of M1 and E1 transitions
 - small samples of about 10 mg in pencil like configuration with 1 mm diameter → needed to keep low activity levels of the sample
- Constraints on 0nbb-decay matrix elements from a novel decay channel of the scissors mode of ¹⁵⁰Sm

 $^{150}Nd \longrightarrow ^{150}Sm$

 for accurate calculation of the Nuclear Matrix Elements in IBM–2 one needs to know accurately the spectroscopic properties (excitation energy, electromagnetic decay) of the scissors mode states J^p=1⁺

Applications

- isotopic and/or elemental information about a sample
- non-distructive assay applied to nuclear waste management

Gamma Workgroup

Photofission

Conveners: Attila Krasznahorkay (ATOMKI), Fadi Ibrahim (IPNO) ELI-NP Liaison: Dimiter Balabanski

1.Studies of transmission resonances through fission

decay (White Book case)

2.Photo-fission cross-section measurements

3.Spectroscopic experiments with fission fragments

(TDR WS conclusions)

Photo-fission experiments Physics goals

- High-resolution photofission studies in actinides → investigation of 2nd, 3rd potential minima, angular and mass distribution measurements.
- measurements of absolute photofission cross sections:
 - → (monochromatic photons with variable energy required)
- limited photon source intensity:
 - → target thickness limited by finite range of fission fragments (ca. 8 mg/cm² in uranium)
 - \rightarrow multiple target-detector arrays needed

Physics- Photofission

Part 2

Production of RIB with ISOL target

Big investment Radioprotection Not really competitive with the existing or future facilities

Production of RIB with IGISOL technique

Big investment (still) Easy Radioprotection Competitive : refractory elements and very short lived nuclei Unique in the world

F. Ibrahim: Conclusions of TDR WS

30

Production of fission fragments by photo-fission at ELI

With a flux of F γ 's at 15 MeV per second ELI can produce F. s. N=F.<u>6,4 10⁻³</u> f/s in a standard target. If you open the energy window of the γ then F increase and the production increase proportionally

31

Elements of an IGISOL facility

- •Large acceptance ion guide
- •Laser ion source
- •Mass separator
- •Multi-reflection purification trap
- Measurement stations
 - β -decay station (also β -delayed neutrons)
 - collinear laser spectroscopy
 - mass measurements

Gamma Workgroup

Reactions above the particle Threshold

Conveners: Hiroaki Utsunomiya (Konan Univ.), Franco Camera (INFN) ELI-NP Liaison: Dan Filipescu

Absolute (γ,n) cross section measurements (Hiroaki Utsunomiya)

- 4π high efficiency neutron detector
- ³He proportional counters arranged in concentric rings, embedded in a parallelepiped polyethylene moderator covered with polyethylene plates with cadmium sheets towards interior;
- Efficiency of neutron detector obtained with ring-ratio technique

- γ beam spectrum measurement
- Large volume LaBr₃(Ce) detector
- Accurate beam flux monitor (proper for specific ELI-NP gamma beam properties)

Hiroaki is proposing to measure also $(\gamma, 2n)$ c.s. and the anisotropy of neutrons for separating E1 and M1 (γ, n) using liquid scintillators.

Measurement of GDR strength functions (Franco Camera)

- Excitation and decay of PDR-GDR (from 5 to 19 MeV)

Direct γ -decay to ground state Two step γ -decay to ground state (measured in coincidence) Neutron and γ decay to ground state (measured in coincidence) measurement of γ -ray energy

measurement of neutron energy

Instrumentation:

Array of

• γ detectors

large volume scintillators (LaBr₃) for high energy gammas (decay of the entry state)

HPGe detectors for low energy discrete decays (second γ in two step)

• n detectors

liquid scintillators (for neutron anisotropy and γ - n coincidences) plastic scintillators (neutron wall for γ - n coincidences) arranged in flexible configurations.

Radioisotope production (Ulli Koester)

- Gamma ray beams can be an asset to overcome the inherent limitations of
 - Bremsstrahlung, namely the enormous power density required to compensate the relatively meager CS
- Specific applications of isotopes otherwise difficult to reach, e.g. ^{195m}Pt produced by (γ, γ') or ²²⁵Ra produced by ²²⁶Ra (γ, n)
- Do not need a fancy irradiation station -> one of the principal advantages of narrow bandwidth gamma beams over charged projectiles: the heat dissipation of the sample is much easier realizable; one does not require extremely thin windows and related safety systems as at cyclotrons
- Any irradiation station (or simply a place in the beam dump) that can take the full gamma beam it would fully serve the needs.
- Perform test irradiations by irradiating briefly thin foils, then measure them with one or two shielded Ge detector.

Extreme Light Infrastructure - Nuclear Physics (ELI-NP) - Phase I Project co-financed by the European Regional Development Fund

Document edited by Horia Hulubei National Institute for Research and Development in Physics and Nuclear Engineering Publication date of the document: August 2013

www.eli-np.ro

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

For detailed information regarding the other programmes co-financed by the European Union please visit www.fonduri-ue.ro, www.ancs.ro, http://amposcce.minind.ro