

Исследования бозона Хиггса в эксперименте ATLAS

Профессор Л.Н.Смирнова Семинар ОЭПВАЯ 25 ноября 2014г.

Разделы доклада

- Что такое ATLAS
- Россия и МГУ в эксперименте ATLAS
- Новые результаты исследования бозона Хиггса в ATLAS
- Перспективы и планы исследований

Два самых больших детектора на Большом адронном коллайдере ЦЕРН

CMS

ATLAS

Эволюция детекторов частиц

Современный детектор

Пузырьковая камера

Структура детектора **ATLAS**

ATLAS = <u>A T</u>oroidal <u>L</u>HC <u>ApparatuS</u>

Установка предназначена для комплексного исследования взаимодействий при сверхвысоких энергиях и поиска новых явлений (хиггсовские бозоны, суперсимметричные частицы ...)

История детектора ATLAS Конец 80-х - возникновение идеи ▶1992 — Заявление о намерениях ▶1994 – Технический проект ▶1997 - начало строительства детектора ▶2008 - первый пучок в коллайдере ▶2009 - первые соударения при 0.9 ТЭВ ▶2010 — первые соударения при 7 ТэВ ▶2012 — первые соударения при 8 ТэВ и открытие бозона Хиггса

<u>В настоящий момент:</u>

- Первая большая остановка в ускорении частиц (2013-2014гг.) для подготовки коллайдера и детекторов к следующему сеансу регистрации протонных соударений с энергией 13 – 14 ТэВ при светимости (1-2)·10³⁴ см⁻²с⁻¹
 в 2015г. и пучков ядер
- Завершение анализа событий, зарегистрированных в 2011-2012гг.

Работы в ATLAS ведутся коллективом ~3000 физиков из 174 институтов 38 стран

Организация эксперимента ATLAS и вклад России

В нем участвуют

ИФВЭ (Протвино), ПИЯФ (С.-Петербург), БИЯФ (Новосибирск), ИТЭФ, ФИАН, МГУ, МИФИ(Москва)

семь российских институтов и ОИЯИ

- <mark>- 127 н</mark>аучных сотрудников (от МГУ 6 сотрудников + 2 аспиранта)
- проектная стоимость детектора 475 М шв. фр. (в ценах 1996 г)
- Организация проекта и распределение обязанностей определены в документе
- «Меморандум о взаимопонимании по сотрудничеству в сооружении установки АТЛАС» (1998 г)

Обязательства российских участников

Российские институты вносят вклад в разработку и создание всех основных систем установки

- НИИЯФ МГУ внес вклад в создание трекового детектора переходного излучения (TRT Transition Radiation Tracker) Внутреннего детектора
- Параллельно внесен вклад в разработку триггера высокого уровня и программу исследований физики b и с-кварков (распадов B и D-адронов)

Вклады российских организаций в создание установки

Внутренний детектор ATLAS

пиксели, микростриповые кремниевые (SCT), тонкие дрейфовые трубки (TRT) 6.2m

Три типа детекторов :

2.1m

Ar hadronia

Muon chambers

Semiconductor tracke

Barrel semiconductor tracker Pixel detectors Barrel transition radiation tracker End-cap transition radiation tracker

End-cap semiconductor tracker

Внутренний детектор ATLAS. вклад России

Центральная рама предназначена для монтажа элементов центрального детектора. Изготовлена из углепластика, обладающего рядом специальных характеристик.

Участники: ГНЦ ИФВЭ, ОНПП «Технология», РКЗ «Хруничева»

Изготовители отмечены почетными грамотами сотрудничества АТЛАС.

Подложки для кремниевого детектора из пиролитического графита и легкой керамики. Участники: ГНЦ ИФВЭ, «Атомграф», НИИТАП, Зеленоград.

Детектор переходного излучения (TRT) предназначен для регистрации заряженных частиц и идентификации электронов.

Концепция прибора предложена **МИФИ**. Изготовление основной части детекторов произведена в **ПИЯФ** и **ОИЯИ**.

В проекте также участвуют НИИЯФ МГУ и ФИАН.

В НПО «Машиностроитель», Пермь для этого детектора изготовлены прецизионные конструкции из композитных материалов.

Общий объем выполненных в России работ составляет

5,2 м шв.фр.

Вклад НИИЯФ МГУ в создание детектора TRT Участие в

Создание циркуляционной газовой системы трекового детектора переходного излучения (TRT) (совместно с МИФИ и ФИАН)

Исследование эффектов старения для обеспечения 10 лет непрерывной работы под действием радиации

Участие в физическом

Участие МГУ в эксплуатации установки ATLAS 2010-2014гг.

			2010			2011			2012			2013			2014			All Years		
	$\langle \rangle$		Alloc	Req	%	Alloc	Req	%	Alloc	Req	%	Alloc	Req	%	Alloc	Req	%	Alloc	Req	%
1	Moscow SU	Class 1	0,10	0,12	84%	0,14	0,078	178%		0,062	0%		0,018	0%		0	0%	0,24	0,3171	76%
		Class 2	0,19	0,324	60%	0,10	0,269	37%	0,20	0,235	85%	0,09	0,115	75%		0,09	0%	0,58	1,126	52%
1		Class 3	0,73	1,527	48%	0,86	1,683	51%	1,35	1,617	83%	1,28	2	64%	0,97	0,65	150%	5,19	7,8988	66%

ОТР в 2012 69% 6.00 МГУ 5,00 4,00 3,00 2.00 1,00 0,00 BINP ITEP **MEPhI** MSU PNPI Lebedev IHEP

3

13

Направления работ:

•Газовая система TRT и эксплуатация детектора •Математическое моделирование TRT •Разработка алгоритмов триггера двух мюонов •Участие в проектах модернизации детектора (NSW,TDAQ) •Физический анализ распадов В и D- мезонов

Результаты исследования бозона Хиггса в эксперименте **ATLAS**

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC Событие распада бозона Хиггса на два электрона и два мюона

> Основные каналы наблюдения новой частицы – распады на два фотона и четыре лептона (электрона или мюона) Н→үү и Н→4I

Первые результаты измерения инвариантных масс пар мюонов с противоположными зарядами

16

H→үү событие без (слева) и с конверсией фотона Expected fraction of converted photons – ~20% at $|\eta| \sim 0 - ~45\% |\eta| \sim 1.6$

ATLAS-CONF-2011-161

Новые измерения массы бозона Хиггса в распадах Н—үү и Н—41 CERN-PH-2014-122, 15 June 2014

Table 5: Summary of Higgs boson mass measurements.

Channel	Mass measurement [GeV]	ک wei
$H \to \gamma \gamma$	$125.98 \pm 0.42 (\text{stat}) \pm 0.28 (\text{syst}) = 125.98 \pm 0.50$	
$H{\rightarrow} ZZ^*{\rightarrow} 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.06 \text{ (syst)} = 124.51 \pm 0.52$	
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} = 125.36 \pm 0.41$	kg

С момента открытия было увеличено количество данных (в ~2.5 раза) - 2013г. и качество методов анализа - лето 2014г.

 $\Delta m_H = 1.47 \pm 0.67 \,(\text{stat}) \pm 0.28 \,(\text{syst}) \,\text{GeV}$

 $= 1.47 \pm 0.72$ GeV

2.5σ →2σ и соотв. 4.5% вероятности согласия

Основной вклад в систематику измерения массы дает шкала энергии фотонов

Higgs boson production in the diphoton decay channel arxiv:1408.7084, 27 August 2014

Регистрация сигнала Н в других каналах распада

 $H \rightarrow WW^* \rightarrow lvlv$

События, отвечающие распадам бозона Хиггса СМ, выделены для пяти каналов распада. Уровень сигнала в каждом из каналов и суммированное значение величины сигнала согласуется с расчетными в СМ: $\mu = \sigma / \sigma_{CM} = 1.30^{+0.18}$ (ATLAS-CONF-2014-009 20.03.2014)

Observation and measurement of Higgs boson decays to WW* with ATLAS at the LHC (ATLAS-CONF-2014-060, 12 October 2014)

Данные о распадах бозона Хиггса на фермионы Н→ЬБ

Данные о распадах бозона Хиггса на фермионы Н→ $\tau \overline{\tau}$ ^{ATLAS-CONF-2014-} 061, 70ctober 2014

Сигнал наблюдается на уровне 4.5 (3.5 ожидаемых) и сила сигнала µ= 1.42+0.44-0.38, что согласуется с предсказанием для Юкавской константы в СМ

Новые данные о константах связи бозона Хиггса

This result provides evidence at the 4.1σ level that a fraction of Higgs-boson production occurs through vector boson fusion

Daniel Froidevaux, CERN

LHCP Conference, NY, 3rd of June 2014

25

Higgs boson decays to WW* (ATLAS-CONF-2014-060, 12 October 2014)

For a Higgs boson mass of **125.36 GeV**, the ratio of the observed to expected values of the total production cross section times branching fraction is $\mu = 1.08^{+0.16}_{-0.15}$ (stat^{.)+0.16} _{-0.13} (syst.).

The corresponding ratios for the gluon-gluon fusion and vectorboson fusion production mechanisms are

1.01 ± 0.19 (stat.) $^{+0.20}_{-0.17}$ (syst.) and 1.28 $^{+0.44}_{-0.40}$ (stat.) $^{+0.29}_{-0.21}$ (syst.), respectively.

At $\sqrt{s} = 8$ TeV, the total production cross sections are measured to be $\sigma(gg \rightarrow H \rightarrow WW^*) = 4.6 \pm 0.9 \text{ (stat.)}^{+0.8}_{-0.7} \text{ (syst.) pb}$ and $\sigma(VBF H \rightarrow WW^*) = 0.51 \, {}^{+0.1}_{-0.15} \text{ (stat.)}^{+0.13}_{-0.08} \text{ (syst.) pb.}$

The fiducial cross section is determined for the gluon-gluon fusion process in exclusive final states with zero or one associated jet.

Измерение констант связи с фермионами и бозонами

Используются предположения:

- Существует одно состояние с массой m_н = 125.5 ГэВ
- Это состояние имеет малую ширину, позволяющее использовать приближение для его нулевой ширины: σ·B(i→H→f) = σ_i· Γ_f/ Γ_H
- Структура тензора в лагранжиане соответствует Стандартной модели, состояние является СР-четным скаляром; k_j есть масштабный фактор константы связи j-й частицы относительно предсказаний Стандартной модели (с k_j²). Нет вклада BSM явлений.

Пример: Н→үү

 $(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$

B предположении $k_V = k_W = k_Z; k_F = k_b = k_t = k_{tau}$ и $k_V > 0;$ Получено

Согласие двухмерного анализа с СМ наблюдается на уровне 12% (~2σ)
Значения констант при 68% CL находятся в областях k_F = [0.76, 1.18] k_V= [1.05, 1.22]

Отношение констант связи с W и Z

- Проверка соотношения констант связи Хиггса с W и Z проверялась через определение отношения λ_{WZ} = k_W/k_Z из инклюзивных данных для уровня сигнала в каналах *H*→WW* и *H*→ZZ*;
- Величина найдена равной λ_{WZ} = 0.81^{+0.16}-0.15.

Результат большей точности получен с учетом каналов рождения WH и ZH и приведен на рисунке справа. Расширенный фит определения λ_{WZ} с учетом возможного вклада эффектов BSM дает величину $\lambda_{WZ} = 0.82 \pm 0.15$ (4D – совместимость со Стандартной моделью составляет 20%)

Оценка вклада BSM частиц в диаграммы рождения и распада Хиггса

Рассмотрены возможные сценарии вклада BSM частиц в петли диаграмм процессов рождения $gg \rightarrow H$ и распада $H \rightarrow \gamma \gamma$; k_g and k_γ – параметризация этих эффектов

Определение спина частицы Сравнение гипотез J^P= 0⁺ и 0⁻, 2⁺ Phys.Rev.Lett.726(2013)120

Анализируются распределения по косинусу угла θ* фотонов относительно оси z в системе Колина-Сопера

$$|\cos\theta^*| = \frac{|\sinh(\Delta\eta^{\gamma\gamma})|}{\sqrt{1 + (p_{\rm T}^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_{\rm T}^{\gamma 1} p_{\rm T}^{\gamma 2}}{m_{\gamma\gamma}^2}$$

Определение спина частицы (arXiv:1307.1432)

 $H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4I, H$ $\rightarrow WW \rightarrow I \nu I \nu$

и их комбинации

Суммарный уровень исключения находится на уровне 2-3 о

Квантовые числа бозона Хиггса Стандартной модели J^P= 0⁺ сравниваются с альтернативными значениями 0⁻, I⁻,I⁺, 2⁺; они исключены на уровне достоверности выше **97.8**%

Исключение квантовых чисел состояния J^P=2⁺ _m находится на уровне **3-4**о Вклады рождения кварк-

антикварковых пар для частицы → со спином 2

FFK2013

31

Наибольшие вклады

Дифференциальные сечения рождения бозона Хиггса для канала распада Н→үү

ATLAS-CONF-2013-072, 18 July 2013

Поиск новых гипотез о природе скаляра массы 125 ГэВ

Диаграмма каскадного распада тяжелого бозона Хиггса Н°→WH[±]→WWh°→WWbБ

Значения выходных классификаторов BDT для экспериментальных данных и модельных событий с разными гипотезами о массах H° и H[±] : 1025 и 225 ГэВ (верх); 1025 и 625 ГэВ (внизу). Сечение сигнала предполагалось равным 1 пб

Phys.Rev.D89 (2014) 032002

Важный результат – отсутствие других частиц до масс ~600 ГэВ

34

массы (справа вверху) Наличие резонанса с системе үү в условиях, когда Хиггс с массой 125 ГэВ включен в фон

Higgs boson width

- In the Standard Model and at 125 GeV, the Higgs boson width is 4.2 MeV Experimental width is a few GeV
- From width of observed peaks, derived direct 95% CL limit on the width:
 - H→γγ : observed limit ATLAS 5.0 GeV (6.2 expected) CMS 2.4 GeV (3.1 expected)
 - H→ZZ→4I : observed limit ATLAS 2.6 GeV (6.2 expected) CMS 3.4 (2.8 expected)
 - CMS as well
- ~3 orders of magnitude larger than SM
- However it recently turns out that indirect limit on the width can be set, less than 1 order of magnitude larger than SM
- What is the magic ? See next slides...

ATLAS: Γ_H < 23-50.0 MeV @95%CL (depending of g → ZZ background K factor) ATLAS-CONF-2014-042

David Rousseau, Experimental Higgs, PANIC, 25 August 2014

Заключение

Измерены свойства бозона Хиггса:

- Массы в различных каналах распада (125.36±0.41)ГэВ
- Спин и четность частицы J^P = 0⁺
- Относительная величина сигнала в разных каналах и для разных механизмов рождения: μ= σ/σ_{CM} = 1.30 ^{+0.18}/_{-0.17}
- Инвариантность к W и Z бозонам
- Получена оценка ширины распада Н: Г_Н/Г_{SM} < 5.7

Выполнен анализ для альтернативных механизмов рождения наблюдаемого состояния

Все результаты согласуются с предсказаниями стандартной модели

The Gfitter group M. Baak et al. et al, arXiv 1407.3792 D. Butazzo et al, arXiv 1307.3536

Higgs boson mass

- Fundamental parameter of the Standard Model
- SM predictions need it
- Self consistency of the model (global EW fit)
- Vacuum stability

David Rousseau, Experimental Higgs, PANIC, 25 August 2014

Higgs pole mass M_b in GeV

Планы и перспективы ATLAS

- Стартующий в 2015г. второй сеанс (до 2018г.) принесет 10-кратное увеличение количества событий рождения бозона Хиггса (100 фб⁻¹)
- Это позволит улучшить наблюдения в новых каналах распада и исследовать свойства частицы
- Многое зависит от обнаружения явлений новой физики и новых частиц в следующий сеансах работы коллайдера

Спасибо за внимание!

A FRACTION OF THE WOMEN FROM THE ATLAS EXPERIMENT

8 марта 2010г.

Практическое участие

Май 2014

