СЖАТЫЕ АТОМЫ И ИХ ВЗАИМОДЕЙСТВИЕ С ВУФ ИЗЛУЧЕНИЕМ

Е.В. Грызлова

НИИЯФ МГУ 26 апреля 2011 г.

План доклада

- Понятие сжатых атомов (константа сверхтонкого расщепления, ЭПР спектры, β-распад)
- 2. Спектр атома, ограниченного фуллереновой оболочкой
- 3. Взаимодействие сильного ВУФ излучения с H@C₆₀ и H@C₃₆ (сечение ионизации, наблюдения ATI, угловые распределения)

Сжатие атомов и молекул

Сжатие атомов и молекул

Сжатие атомов в криокристаллах

Определение величины сжатия

Сверхтонкое расщепление

$$\varphi = (\mathbf{a} - \mathbf{a}_0)/\mathbf{a}_0$$
$$a = \frac{8\pi}{3} \mu_e \mu_n |\psi(0)|^2$$

 μ_e, μ_n - магнитные моменты электрона и ядра

atom	matrix	φ (%)	ref	ä	atom	matrix	φ (%)	ref
Н	H_2	-0.23^{a}	2		D	Kr	$+0.62^{b}$	5
D	D_2	-0.32^{a}	4		Η	Ne	$+4.0^{c}$	6
Η	Ne	-0.10^{a}	4		D	Ne	$+5.0^{\circ}$	6
D	Ne	-0.07^{a}	4		Η	Ar	$+10.8^{c}$	6
Η	Ar	-0.47^{a}	4		Η	Kr	$+5.4^{\circ}$	6
D	Ar	-0.53^{a}	4		D	Kr	$+8.2^{\circ}$	6
Η	Kr	-0.59^{a}	3		Η	Xe	-0.97^{a}	5
Η	Ne	$+0.43^{b}$	3		D	Xe	-1.04^{b}	5
Η	Ar	$+1.15^{b}$	3		Η	Xe	-1.5^{c}	6
Η	Kr	$+0.47^{b}$	3		D	Xe	-1.8^{c}	6
Н	Kr	$+0.55^{b}$	5					

(2) Jen, C. K.; Foner, S. N.; Cochran, E. L.; Bowers, V. A. Phys. Rev. 112, 1169 (1958).

(3) Foner, S. N.; Cochran, E. L.; Bowers, V. A.; Jen, C. K. J. Chem. Phys. 32, 963 (1960).

(4) Zhitnikov, R. A.; Dmitriev, Y. A. In Optical Orientation of Atoms and Molecules; Klementiev, G., Ed.; Physical Institute Press: Leningrad, Vol. **2**, p 109 (1990).

(5) Morton, J. R.; Preston, R. F.; Strach, S. J.; Adrian, F. J.; Jette, A.N. J. Chem. Phys. 70, 2889 (1979,).

(6) Knight, L. B.; Rice, W. E.; Moore, L. J. Chem. Phys. 109,1409 (1998,).

Интерпретация величины сжатия

Сверхтонкое расщепление

$$a = \frac{8\pi}{3} \mu_e \mu_n |\psi(0)|^2$$

 $\mu_e,\,\mu_n\,$ - магнитные моменты электрона и ядра

atom	matrix	φ (%)	ref	atom	matrix	φ (%)	ref
Η	H_2	-0.23^{a}	2	D	Kr	$+0.62^{b}$	5
D	D_2	-0.32^{a}	4	Η	Ne	$+4.0^{c}$	6
Η	Ne	-0.10^{a}	4	D	Ne	$+5.0^{\circ}$	6
D	Ne	-0.07^{a}	4	Η	Ar	$+10.8^{\circ}$	6
Η	Ar	-0.47^{a}	4	Η	Kr	$+5.4^{\circ}$	6
D	Ar	-0.53^{a}	4	D	Kr	$+8.2^{\circ}$	6
Η	Kr	-0.59^{a}	3	Η	Xe	-0.97^{a}	5
Η	Ne	$+0.43^{b}$	3	D	Xe	-1.04^{b}	5
Η	Ar	$+1.15^{b}$	3	Η	Xe	-1.5^{c}	6
Η	Kr	$+0.47^{b}$	3	D	Xe	-1.8^{c}	6
Η	Kr	$+0.55^{b}$	5				

а) газовый разряд;

b) фотолиз;

с) осаждение на SiO₂

Энак изменения характеризует подкачку или утечку электронной плотности на ядре

>Два эффекта противоположного знака наблюдаются одновременно

Для слабо поляризуемых атомов наблюдаются эффекты обоих знаков, но для сильно поляризуемого Хе один

Сжатие азота и фосфора (I)

(7) Adrian, F. J.; Cochran, E. L.; Bowers, V. A. AdV. Chem. 36, 50 (1962).

(8) Knighrt, L. B.; Steadman, J. J. Chem. Phys. 77, 1150 (1982).

(9) Dmitriev, Y. A.; Zhitnikov, R. A. J. Tech. Phys. 57, 1811 (1987).

(10) Wylie, D.; Shuskus, A.; Young, C.; Gilliam, O. Phys. Rev. 125, 451 (1962).

Сжатие азота и фосфора (II)

atom m		natrix	φ (%)	ref
Р	Ar		+19	7
Ν	H_2		+9.6	8
Ν	N_2		+15.6	8
Ν	CH_{2}	1	+29.5	8
Ν	Ne		+7.8	9
Ν	KN	3, crystal	+48.6	10
atom		φ (%)	size of cage (Å)	ref
N@C ₇₀		+49.1	7.80 (6.99. equator)	28
N@C ₆₆ (COO	$C_2H_5)_{12}$	+53.4	7.31	28
N@C ₆₁ (COOC	$C_{2}H_{5})_{2}$	+54.1		28
$N(a)C_{60}$		+54.1	6.96	27, 28
$P(\overline{a})C_{60}$		+250	6.96	29b

Большое изменение (10-50%),
 связанное с размером атома
 Изменение заполнения оболочек

 Электронная конфигурация сохраняется

>Энергия связи не превышает 0.9 kcal/mol.

 Значительное изменение константы сверхтонкого расщепления 50%
 Сверхтонкое расщепление чувствительно к химическому соединению
 Структура подтверждается

теоретическим анализом

(27) Pietzak, B.; Waiblinger, M.; Murphy, T. A.; Weibinger, A.; Hŏhne,M.; Dietel, E.; Hirsch, A. *Chem. Phys. Lett.* 279, 259 (1997).
(28) Dietel, E.; Hirsch, A.; Pietzak, B.; Wailblinger, M.; Lips, K.; Weidlinger, A.; Gruss, A.; Dinse, K.-P *J. Am. Chem. Soc.* 121, 2432 (1999).

(29) (a) Weiden, N.; Goedde, B.; Käss, H.; Dinse, K.-H.; Rohrer, M.*Phys. ReV. Lett.* 85, 1544 (2000).

(b) Knapp, C.; Weiden, N.; Käss, H.; Dinse, K.-P.; Pietzak, B.; Waiblinger, M.; Weidinger, A. Mol. Phys. 95, 999 (1998).

Металлофуллерены

 Y@C₈₂, Sc@C₈₂ имеют сходную структуру, и атом металла остается неподвижным.
 La@C₈₂ металл не прилипает к поверхности и совершает движение вдоль ближайшего шестиугольника

[✓] Chem. Phys. Lett. 298, 79 (1998).

J. Phys. Chem. 95, 7564 (1991).

ЭПР спектр Sc₃@C₈₂

✓22 эквидистантные линии Sc₃@C₈₂ говорят о геометрической эквивалентности трех атомов скандия

J. Am. Chem. Soc. 116, 9367; Phys. Rev. Lett. 73, 3415 (1994).

Phys. Rev. B 69, 113412 (2004).

Phys. Rev. Lett. **83**, 2214 (1999).

β-распад

⁷Li+p→⁷Be+n

$$Li_2CO_3 + p + C_{60} \rightarrow Be@C_{60} + \dots$$

 $^{7}\text{Be+e} \rightarrow ^{7}\text{Li+}\gamma$

Период β-распада [*]

Host materials	$T_{1/2}$ (days)	References
C ₆₀	52.68 ± 0.05	This work
Beryllium metal	53.12 ± 0.05	This work
Lithium fluoride	53.12 ± 0.07	[5]
Graphite	53.107 ± 0.022	[8]
Boron nitride	53.174 ± 0.037	[8]
Tantalum	53.195 ± 0.052	[8]
Gold	53.311 ± 0.042	[8]

Электронная плотность[**]

		Orbitals				
	1st	2nd	Others	Total		
Be@C ₆₀	34.22	1.24	0.02	35.48		
Be atom	34.25	1.13	_	35.38		
Be metal	34.11	0.32	0.33	34.78		

[*] T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi and K. Ohno Phys. Rev. Lett. 93 112501 (2004).

[8] E. B. Norman et al., *Phys. Lett. B* **519**, 15 (2001).

[**] E.V. Tkalya, A.V. Bibikov, and I.V. Bodrenko Phys, Rev. C 81, 024610 (2010).

План доклада

- Понятие сжатых атомов (константа сверхтонкого расщепления, ЭПР спектры, β-распад)
- 2. Спектр атома, ограниченного фуллереновой оболочкой
- 3. Взаимодействие сильного ВУФ излучения с H@C₆₀ и H@C₃₆ (сечение ионизации, наблюдения ATI, угловые распределения)

Наблюдение конфаймент-резонансов

Y.B. Xu, M.Q. Tan, and U. Becker, *Phys. Rev. Lett.* **76**, 3538 (1996). «Oscillations in the Photoionization Cross Section of C_{60} »

Наблюдение конфайнмент-резонансов

Y.B. Xu, M.Q. Tan, and U. Becker, *Phys. Rev. Lett.* **76**, 3538 (1996). «Oscillations in the Photoionization Cross Section of C_{60} »

P.J. Benning, D.M. Poirier, N. Troullier, J.L. Martins, J.H. Weaver, R.E. Haufler, L.P. Chibante, and R.E. Smalley, *Phys. Rev. B* **44**, 1962 (1991).

Сечение ионизации в разных потенциалах

M.Ya. Amusia, E.Z. Liverts and V.B. Mandelzweig *Phys. Rem. A* **74**, 042712 (2006). A.S. Baltenkov, U. Becker, S.T. Manson and A.Z. Msezane *J. Phys. B: At. Mol. Opt. Phys.* **43** 115102 (2010).

Потенциал H@C₆₀

Спектр H@C₆₀ и H@C₃₆

уровень	Н	Яма@С ₆₀	H@C ₆₀	Яма@C ₃₆	H@C ₃₆
1s	-0.5	-0.09697	-0.50014	-0.10323	-0.50187
2s	-0.125	-	-0.17762		-0.16617
2p	-0.125	-0.07122	-0.16312	-0.05084	-0.16416
3s	-0.05(5)	-	-0.05657		-0.06027
3p	-0.05(5)	0.02580	-0.05757		-0.05752
3d	-0.05(5)	-			

J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi and S.T. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L239 (1999).

Спектр H@C₆₀ и H@C₃₆

План доклада

- Понятие сжатых атомов (константа сверхтонкого расщепления, ЭПР спектры, β-распад)
- 2. Спектр атома, ограниченного фуллереновой оболочкой
- 3. Взаимодействие сильного ВУФ излучения с H@C₆₀ и H@C₃₆ (сечение ионизации, наблюдения ATI, угловые распределения)

Параметры импульса

t=1.5 фс, *E*=1. ae (I~5.·10¹⁴ Вт/см²), ω: 0.6-2ae (16-55 эВ)

Спектр фотоионизации

Спектр фотоионизации

Вероятность ионизации захваченного атома в сравнении со свободным атомом

 Усиление вероятности ионизации, особенно заметное при ионизации 2s
 Значительное большее усиление для H@C₆₀ в сравнении с H@C₃₆

красные линии соответствуют соединению H@C₆₀, синие – H@C₃₆, зеленые – свободному водороду; сплошные линии относятся к 1s состоянию системы, пунктирные – 2s.

Вероятность ионизации захваченного атома в сравнении со свободным атомом

Усиление вероятности ионизации, особенно заметное при ионизации 2s >Значительное большее усиление для Н@С₆₀ в сравнении c H@C₃₆ Принципиально разное поведение при ионизации в первый пик и во второй

сплошные линии относятся к 1s состоянию системы, пунктирные – 2s.

Параметры угловой асимметрии (I)

Параметры угловой асимметрии (II)

Второй пик

Заключение

>Сделан обзор условий, при которых структура атома меняется внешним потенциалом

Конфамент-резонансы являются следствием многократного отражения от стенок фуллерена, и позволяют определить его потенциал

Конфаймент-резонансы наблюдаются в сильном поле, демонстрирую более богатую физику, чем в слабом поле

СПАСИБО ЗА ВНИМАНИЕ