DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU

V. Shvedunov

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University

26 November 2013

Lomonosov Moscow State University

Betatron – 1959 - 1985

Low intensity Low duty factor Low energy

Study of new accelerator <u>for</u> <u>nuclear physics</u> started in 1983

Beam time structure

Linac and race-track microtron

Linac

- 1 injector
- 2 accelerating structure
- 3 RF source
- 4 focusing
- 5 master generator
- 6 end magnet
- 7 injection magnet
- 8 extraction magnet

Race-track microtron

Continuous wave race-track microtron (RTM) (1983-1992)

INJECTOR

In 1992 CW linac – RTM injector was put into operation and after few years of operation for nuclear resonance experiments CW RTM project was closed – main interest in accelerators activity at SINP MSU was shifted to applied machines

Electron accelerators in the range 0.5 – 100 MeV

Some applications use

Different mechanisms of radiation interaction with matter are used for different applications - at level of molecules, atoms, nuclei

70 MeV pulsed RTM

with World Physics Technologies USA, 2002

Explosive detection, isotopes production, elemental analysis, nuclear physics

Injection energy	48 keV
Energy gain	4.8 MeV / orbit
Orbits	14
Output energy	14.8 - 68.3 MeV
Output current at 68.3 MeV	10 mA
Orbit circumference increase	1λ/orbit
Operating frequency	2,856 MHz
Klystron power pulsed	6 MW
End magnet field induction	0.963 T
RTM dimensions	2.2x1.8x0.9 m ³

Large dipoles built with rare-earth permanent magnet material

35 MeV high brightness beam pulsed RTM with World Physics Technologies USA , 2004

Generation of radiation by short high charge bunches

Injected beam	4.85 MeV
Energy gain per turn	2.43MeV
Output beam	4.85-34.2 MeV
Normalized emittance	10 mm mrad
Longitudinal emittance	200 keV deg
Micro pulse	5 ps
Pulse repetition	1-150 Hz
Micro charge	150 pC
RF frequency	2,856 MHz
Pulsed RF power	<3 MW
End magnet field	0.486 T

Large dipoles built with rare-earth permanent magnet material, RF gun with photocathode

55 MeV race-track microtron with Lebedev Physical Institute – 2008

Explosive detection,

isotopes production, elemental analysis, nuclear physics

Output energy	55 MeV	
Output pulse current	Up to 10 mA	
Repetition rate	6.25 – 50 Hz	
Number of linac passa	ages 11	
Energy gain / turn	5 MeV	
Current pulse length	6 µs	
Operating frequency	2856 MHz	
End magnet field	1.0 T	
Maximum RF power	6 MW	
Orbit circumference increase / turn 1 λ		

12 MeV RTM for intraoperative radiation therapy

with Polytechnic University of Catalonia, under construction

SINP MSU 60 KW, 1.2 MEV COMPACT CW LINAC FOR RADIATION TECHNOLOGIES

	One- Section	Two- Sections
Beam energy	0.6 MeV	1.2 MeV
Beam current	0 to 50 mA	0 to 50 mA
Maximum beam power	30 kW	60 kW
Length	0.8 m	1.3 m
Gun/klystron high voltage	15 kV	15 kV
Plug power consumption	~75 kW	~150 kW
Electrical efficiency	~40%	~40%

SOME CURRENT APPLICATIONS OF 1.2 MEV COMPACT CW LINAC

- 1. Test of spacecraft elements (solar batteries etc) for radiation effects
- 2. Source of high dose rate X-rays radiation
- 3. R&D for radiation technologies

Thermo shrinkable polyethylene film dimensions decrease after different doses. Optimal dose 120 kGy.

Intensive bremsstrahlung X-rays source (30 Gy/s at average energy 300 keV)

Compact CW linear accelerator for radiation technologies CWL-1-25

(under commissioning)

Beam energy
Average beam current
Average beam power
Operating frequency
Klystron average power
Wall plug efficiency
Beam scanning width
Accelerator dimensions
1)Without output horn and power supply

1 MeV 25 mA 25 kW 2450 MHz 50 kW 30% 80 cm 470 x 784 x 1375 mm¹⁾

Accelerator is able to provide operation of thermo shrinkable polyethylene film facility with productivity up to 10000 tons/year

SINP MSU 10 MeV TECHNOLOGICAL LINAC (with "Toriy", Moscow)

Beam energy Pulsed beam current Average beam power Operating frequency Klystron pulsed power Klystron average power Wall plug efficiency Beam scanning width 10 MeV 430 mA 15 kW 2856 MHz 6 MW 25 kW 20% 80 cm

Energy spectrum, beam image and beam profile

SINP MSU 10 MeV TECHNOLOGICAL LINAC (with "Toriy", Moscow) Proposal

Pulsed Linear Accelerator PLA-10-15H

Beam energy Pulsed beam current Average beam power Operating frequency Klystron pulsed power Klystron average power Wall plug efficiency Beam scanning width Accelerator dimensions

Pulsed Linear Accelerator PLA-10-15V

10 MeV 430 mA 15 kW 2856 MHz 6 MW 25 kW 20% 80 cm 470 x 784 x 1375 mm¹⁾ Design by SINP MSU team and "Toriy" team of 3/6 MeV linac with interlaced energies for cargo inspection. Variant 1.

X-rays head

Control console

Beam energy Dose rate at 1 m Operating frequency Pulse repetition frequency Accelerator dimensions Accelerator weight ¹⁾Including local radiation shielding

3.5/6 MeV 0.2 – 2 Gy/min 2856 MHz 50 – 400 Hz 1000x600x900 mm 900 kg¹⁾

Energy spectrum in interlaced energies mode

Low

High

Beam spots diameters are well below 2 mm

Scale: 1 square= 1×1 mm

Interlaced energies 6/3.5 MeV linac for cargo inspection. Variant 2.

with Scantronic Systems, Moscow, 2012

Material recognition with $\triangle Z \sim 1$

High spatial resolution

Experiments on industrial tomography have been conducted

Interlaced energies 6/3.5 MeV linac for cargo inspection. Variant 2.

http://scantronicsystems.com/

Accelerator for radiography 2011

Maximum energy	8 MeV
Range of energy regulation	3-8 MeV
Max dose rate at 1 m at 8 MeV	10 Gy/min
Range of dose rate regulation	1-10 Gy/minн
Beam spot dimension	<1 мм

Control pannel

Accelerator tests

Resolution 0,5% for steel thickness 340 mm.

Accelerator for radiography operation

More than 15 000 expositions during 1.5 year

Project of laser-electron X-rays generator (LEXG)

Since 2004, joint with Lebedev Physical Institute

$$E_{\gamma} = 4\gamma^{2}E_{ph}$$

$$E_{ph} = 1.16 \text{ eV}$$

$$E_{\gamma} = 10 - 45 \text{ keV}$$

$$E_{e} = \gamma m_{0}c^{2} = 25 - 50 \text{ MeV}$$

$$B_{av} > 10^{12} \text{ c}^{-1}\text{mm}^{-2}\text{mrad}^{-2}(0.1\% \text{ BW})^{-1}$$

Close to limit value of photons per one interaction for ring machine:

$$q_e = 1 \text{ nC}, \ w_{ph} = 20 \text{ mJ},$$

 $N_e = 5 \times 10^9, \ N_{ph} = 10^{17},$
 $\sigma_r = 2 \times 10^{-5} \text{ m}, \ N_{\gamma} \approx 10^7$

High average flux due to multiple frequent collisions

Laser acceleration in vacuum (up to 1 GeV/m)

First version – open resonator with special mirror 1998-2002

Second version – diffraction accelerating structure 2002 - 2008