# Современные источники рентгеновского излучения и что нового они привнесли в науку

#### Грызлова Елена Владимировна

Кандидат физико-математических наук Старший научный сотрудник НИИ ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова

> Университетские субботы 18 апреля 2015 года, МГУ, Москва







100 км 1мм радио

















































### Измерение расстояния до луны





Уголковый отражатель, установленный на луне Appollo11

В 1962 году одновременно МТІ и Крымской астрономической обсерватории измерили расстояние до луны, используя лазер







### Рентгеновские лазеры



# Сравнение источников излучения



### Генерация излучения



Н. ТеслаВ.К. РентгенД. Д. ИваненкоИ. Я. ПомеранчукJ. S. Schwinger36 описали существованиеизлучения для кольцевых ускорителей частиц

1985-86 описали существование тормозного излучения



### Генерация излучения







- Н. Тесла В.К. Рентген
- Д. Д. Иваненко И. Я. Померанчук J. S. Schwinger

1985-86 описали существование тормозного излучения







Н.А. Винокуров А.Н. Скринский 1977 – Создали модификацию клистрона – лазер на свободных электронах

# Генерация излучения



The undulator section in the FLASH tunnel



### Формирование сгустков электронов



















# **European XFEL**





















### Размеры микрообъектов



### Размеры микрообъектов



### Размеры микрообъектов



# Дифракция рентгеновских лучей



 $2d_z \cos \theta_z = n\lambda;$ 

# Дифракция рентгеновских лучей

![](_page_45_Figure_1.jpeg)

$$2d_z \cos \theta_z = n\lambda;$$

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

### Восстановление трехмерной структуры молекулы

![](_page_50_Figure_1.jpeg)

# Модельный эксперимент на FLASH:

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_3.jpeg)

from the next pulse: no object

> Фемто - 10<sup>-15</sup> Пико – 10<sup>-12</sup> Нано – 10<sup>-9</sup>

### Модельный эксперимент на FLASH:

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

from the next pulse: no object

![](_page_52_Picture_5.jpeg)

Отображение и голография наноструктур с временным разрешением до10 фс.

Фемто - 10<sup>-15</sup> Пико – 10<sup>-12</sup> Нано – 10<sup>-9</sup>

# Гипотеза о дрожании белка 'protein quake'

![](_page_53_Figure_1.jpeg)

Многофотонное возбуждение центра фотосинтеза Blastochloris viridis позволило наблюдать изменение формы, возникающие на временах порядка пикосекунды (10<sup>-12</sup>) и предшествующие распространению тепла через белок

Окно прозрачности воды

Эксперимент выполнен на LCLS 40-fs X-ray, 2.6 × 10<sup>12</sup> фотонов на импульс, сфокусированы на 10-µm<sup>2</sup>.

# Гипотеза о дрожании белка 'protein quake'

![](_page_54_Figure_1.jpeg)

Многофотонное возбуждение центра фотосинтеза Blastochloris viridis позволило наблюдать изменение формы, возникающие на временах порядка пикосекунды (10<sup>-12</sup>) и предшествующие распространению тепла через белок

Окно прозрачности воды

Эксперимент выполнен на LCLS 40-fs X-ray, 2.6 × 10<sup>12</sup> фотонов на импульс, сфокусированы на 10-µm<sup>2</sup>.

# Наблюдение фотосинтеза

#### $\gamma + \gamma + \gamma + \gamma + \gamma + CO_2$ ..... $H_2O \rightarrow O_2$ +глюкоза

![](_page_55_Picture_2.jpeg)

Карта электронной плотности фотосистемы II (H<sub>2</sub>O-пластохиноноксидоредуктаза) до и после поглощения двух фотонов

Наблюдение биохимического процесса в режиме реального времени

C. Kupitz et a; Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser, Nature **513**, 261 (2014).

# Наблюдение фотосинтеза

#### $\gamma + \gamma + \gamma + \gamma + \gamma + CO_2$ ..... $H_2O \rightarrow O_2$ +глюкоза

d Dark

0:0→3:2

![](_page_56_Picture_3.jpeg)

C. Kupitz et a; Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser, Nature **513**, 261 (2014).

### Шкала времен для быстрых процессов

![](_page_57_Figure_1.jpeg)

X-Ray Sources, L. Rivkin, EPFL & PSI, Frascati, November 2008

# Наблюдение эволюции электронной плотности

Облучение атома криптона электромагнитным импульсом

![](_page_58_Figure_2.jpeg)

Плотность 4р оболочки как функция времени

E. Goulielmakis et al Real-time observation of valence electron motion, Nature, 465, 769 (2010).

# Сложение (вычитание) частот

![](_page_59_Figure_1.jpeg)

Сравнение теории с экспериментом позволило утверждать, что оптический лазер динамически изменил ковалентные связи в алмазе.

![](_page_59_Figure_3.jpeg)

# Сложение (вычитание) частот

![](_page_60_Figure_1.jpeg)

Сравнение теории с экспериментом позволило утверждать, что оптический лазер динамически изменил ковалентные связи в алмазе.

![](_page_60_Figure_3.jpeg)

# Сложение (вычитание) частот

![](_page_61_Figure_1.jpeg)

Сравнение теории с экспериментом позволило утверждать, что оптический лазер динамически изменил ковалентные связи в алмазе.

![](_page_61_Figure_3.jpeg)

## Космическая рентгенография

Крабовидная туманнос в рентгеновском Диапазоне (сверхновая 1054 г.) В центре – пульсар с периодом 0.033 сек.

Тень от Титана (спутника Сатурна) снятая в рентгеновском диапазоне в январе 2003 года, когда Титан проходил перед Крабовидной туманностью. Используя эти данные астрономы впервые смогли определить протяженность атмосферы Титана.

HOW THE CRAB X-RAYED TITAN

http://chandra.harvard.edu

### Военное применение

![](_page_63_Picture_1.jpeg)

В 2010 году в США стартовала программа по развитию системы обороны морских сил, основанная на лазерах на свободных электронах, базирующихся на авианосцах

«The Free Electron Laser (FEL) provides naval platforms with a highly effective and affordable defense capability against surface and air threats, future antiship cruise missiles and swarms of small boats. Utilization of FEL also allows an unlimited magazine with speed-of-light delivery».

http://www.onr.navy.mil/Media-Center/Fact-Sheets/Free-Electron-Laser.aspx

# Как к нам попасть?

![](_page_64_Figure_1.jpeg)

![](_page_64_Picture_2.jpeg)

![](_page_64_Picture_3.jpeg)

Лаборатория Д-ра А.Н. Грум-Гржимайло

Кафедра общей ядерной физики

Отдел электромагнитных процессов и взаимодействия атомных ядер Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова

gryzlova@gmail.com