ИОНИЗАЦИЯ ГЕЛИЯ ПРОБНЫМ ПОЛЕМ (СЕЧЕНИЯ ФОТОПОГЛОЩЕНИЯ И УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОНОВ) В ОБЛАСТИ ПЕРЕКРЫВАЮЩИХСЯ РЕЗОНАНСОВ, СОЗДАННЫХ ЛАЗЕРНЫМ ПОЛЕМ

ИЗМЕНЕНИЕ СТРУКТУРЫ КОНТИНУУМА АТОМА ПРИ ПОГРУЖЕНИИ ЕГО В ЛАЗЕРНОЕ ПОЛЕ.

УПРАВЛЯЕМОЕ ПЕРЕКРЫВАНИЕ РЕЗОНАНСОВ В КОНТИНУУМАХ АТОМОВ

основные допущения

Резонансное приближение (рассматриваются только состояния, резонансно связанные лазерным полем, пренебрегается многофотонной ионизацией и свободно-свободными переходами)

• Рассматриваются классические поля

Основное состояние

• Время жизни автоионизационного состояния значительно меньше длительности лазерного импульса.

(dF/dt)/F, $(df/dt)/f << min_{\omega_i}$, $T_a << T_i$.

Т. е. можно считать, что интенсивности рассматриваемых полей изменяются адиабатически, и поля являются монохроматическими

СХЕМЫ СВЯЗИ ЭЛЛИПТИЧЕСКИ ПОЛЯРИЗОВАННЫМ ЛАЗЕРНЫМ ПОЛЕМ АВТОИОНИЗАЦИОННЫХ СОСТОЯНИЙ В АТОМЕ ГЕЛИЯ.

Схема 1

Красные стрелки обозначают связи, индуцированные право поляризованным полем, синие — лево поляризованным. Зеленые — автоионизационные переходы, пунктирные — переходы, вызванные пробным полем. Масштаб по энергии условный. Здесь пренебрегается свободно — свободными переходами и переходами под действием лазерного поля в область между первым и вторым ионизационным порогом.

МАТРИЦА НЕЭРМИТОВОГО ЭФФЕКТИВНОГО ГАМИЛЬТОНИАНА

$$\hat{H}_{\mathit{eff}} = \hat{H}_{\mathit{eff}}^{\,(1)} \otimes \hat{H}_{\mathit{eff}}^{\,(2)}$$

Общее выражение для отношения сечения фотоионизации к сечению прямой фотоионизации σ_0 :

$$\frac{\sigma}{\sigma_0} = 1 - \operatorname{Im}\left(\vec{t}\left(\Omega\hat{I} - \hat{H}_{eff}\right)^{-1}\vec{t}\right) = 1 - \alpha_1 \operatorname{Im}\left(\vec{t}_1\left(\Omega\hat{I} - \hat{H}_{eff,1}\right)^{-1}\vec{t}_1\right) - \alpha_2 \operatorname{Im}\left(\vec{t}_0\left(\Omega\hat{I} - \hat{H}_{eff,2}\right)^{-1}\vec{t}_2\right)$$

ПРОЯВЛЕНИЕ КРАТНЫХ ПОЛЮСОВ S – МАТРИЦЫ В СЕЧЕНИИ ФОТОИОНИЗАЦИИ

Изменения сечения фотоионизации при изменении интенсивности связывающего поля (модельный расчет). Критической интенсивности соответствует красная кривая. Стрелка указывает на положение энергии при котором наблюдается вырождение резонансов.

ДИНАМИКА СОБСТВЕННЫХ ЗНАЧЕНИЙ МАТРИЦЫ НЕЭРМИТОВОГО ЭФФЕКТИВНОГО ГАМИЛЬТОНИАНА ПРИ ИЗМЕНЕНИИ ИНТЕНСИВНОСТИ ЛАЗЕРНОГО ПОЛЯ

 $E_{\rm e}$ – собственные значения матрицы неэрмитового эффективного гамильтониана

Дважды вырожденные собственные значения, соответствующие двойному полюсу S-матрицы

РЕЗУЛЬТАТЫ РАСЧЕТОВ СЕЧЕНИЙ ФОТОИОНИЗАЦИИ АТОМА ГЕЛИЯ ПРОБНЫМ ПОЛЕМ В ОБЛАСТИ РЕЗОНАНСНО СВЯЗАННЫХ АВТОИОНИЗАЦИОННЫХ СОСТОЯНИЙ (АИС) ПРИ ЭЛЛИПТИЧЕСКОЙ ПОЛЯРИЗАЦИИ ПОЛЕЙ

2s2p¹P и AИС₂, связаны лазерным полем с нулевой растройкой Δ =0 (Δ = ω - E_2 + E_1). Лазерное поле право поляризовано. Поляризация пробного меняется от правой до левой. Интенсивность лазерного поля E=4*10-6 a.e.

 $AMC_2 = 2s^2 \, ^1S$

 $AMC_2=2s3d^1D$

РЕЗУЛЬТАТЫ РАСЧЕТОВ СЕЧЕНИЙ ФОТОИОНИЗАЦИИ ГЕЛИЯ ПРОБНЫМ ПОЛЕМ В ОБЛАСТИ РЕЗОНАНСНО СВЯЗАННЫХ АИС ПРИ ЭЛЛИПТИЧЕСКОЙ ПОЛЯРИЗАЦИИ ПОЛЕЙ

2s2p¹P и AИС₂, связаны лазерным полем с нулевой растройкой Δ =0 (Δ = ω -E₂+E₁). Лазерное поле право поляризовано. Поляризация пробного меняется от правой до левой. Интенсивность лазерного поля I=4*10-6 а.е.

 $AMC_2 = 2s^2 \, ^1S$

 $AMC_2=2s3d^1D$

То же, что и выше, для трех значений эллиптичности пробного поля: синяя кривая – лево поляризованное пробное поле $(P_P=-1)$, красная кривая – право поляризованное $(P_P=1)$, зеленая – линейно $(P_P=0)$. Эллиптичность лазерного $P_S=1$ и $P_S=0.5$.

РЕЗУЛЬТАТЫ РАСЧЕТОВ СЕЧЕНИЙ ФОТОИОНИЗАЦИИ ГЕЛИЯ ПРОБНЫМ ПОЛЕМ В ОБЛАСТИ РЕЗОНАНСНО СВЯЗАННЫХ АИС ПРИ ЭЛЛИПТИЧЕСКОЙ ПОЛЯРИЗАЦИИ ПОЛЕЙ

 $2s2p^1P$ и AVC_2 , связаны лазерным полем с нулевой растройкой Δ =0 (Δ = ω - E_2 + E_1). Лазерное поле право поляризовано. Пробнок поле поляризовано линейно. Меняется угол между вектором поляризации пробного поля и плоскостью поляризации лазерного.

 $AMC_2 = 2s^2 \, ^1S$

 $AMC_2=2s3d^1D$

РЕЗУЛЬТАТЫ РАСЧЕТОВ СЕЧЕНИЙ ФОТОИОНИЗАЦИИ ПРОБНЫМ ПОЛЕМ В ОБЛАСТИ РЕЗОНАНСНО СВЯЗАННЫХ АИС ПРИ ЭЛЛИПТИЧЕСКОЙ ПОЛЯРИЗАЦИИ ПОЛЕЙ

2s2p¹P и AИС₂, связаны лазерным полем с нулевой растройкой \triangle =0 (\triangle = ω - E_2 + E_1). Лазерное поле право поляризовано. Пробнок поле поляризовано линейно. Меняется угол между вектором поляризации пробного поля и плоскостью поляризации лазерного.

 $AMC_2 = 2s^2 \, ^1S$

 $AMC_2=2s3d^1D$

То же, что и выше, для трех значений эллиптичности пробного поля: синяя кривая – лево поляризованное пробное поле $(P_p=-1)$, красная кривая – право поляризованное $(P_p=1)$, зеленая – линейно $(P_p=0)$. Лазерное поля право поляризовано. Угол между плоскостью поляризации пробного и лазерного полей – 45 и 75°.

УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ ФОТОЭЛЕКТРОНОВ ПРИ ФОТОИОНИЗАЦИИ ГЕЛИЯ ПРОБНЫМ ПОЛЕМ В ОБЛАСТИ РЕЗОНАНСНО СВЯЗАННЫХ АИС ПРИ РАЗНОЙ ПОЛЯРИЗАЦИИ ЛАЗЕРНЫХ ПОЛЕЙ

Если оба поля поляризованы циркулярно или линейно в одном направлении, то форма угловых распределений не зависит как от частоты пробного поля, при которой они рассматриваются, так и от интенсивности лазерного поля и выбранной схемы уровней. Угловые распределения являются в этом случае просто произведением полного сечения на зависящую от углов θ , ϕ функцию.

РЕЗУЛЬТАТЫ РАСЧЕТОВ УГЛОВЫХ РАСПРЕДЕЛЕНИЙ ФОТОЭЛЕКТРОНОВ ПРИ ФОТОИОНИЗАЦИИ ПРОБНЫМ ПОЛЕМ В ОБЛАСТИ РЕЗОНАНСНО СВЯЗАННЫХ АИС ПРИ ЭЛЛИПТИЧЕСКОЙ ПОЛЯРИЗАЦИИ ПОЛЕЙ

Если поля распространяются параллельно, то угловые распределения можно

представить в виде: $\frac{d\sigma^2(\Omega)}{d\theta d\varphi} = \frac{3\sigma(\Omega)}{8\pi} \cos^2(\theta) (1 + A\cos(2\varphi + \varphi_0))$

Ниже приведены расчеты угловых распределений фотоэлектронов для второй схемы уровней при право поляризованном лазерном поле /=4*10-6 а. е. для различных значений поляризации пробного поля ($\Omega = (E_{res1} + E_{res2})/2$).

$$r(\theta, \varphi) = \frac{1}{\sigma(\Omega)} \frac{d\sigma^2(\Omega)}{d\theta d\varphi}$$

ВЫВОДЫ

СПЕКТР СИСТЕМЫ «АТОМ+ЛАЗЕРНОЕ ПОЛЕ» ОПРЕДЕЛЯЕТСЯ СВОЙСТВАМИ АТОМА И ХАРАКТЕРИСТИКАМИ ЛАЗЕРНОГО ПОЛЯ → ОТСЮДА СЛЕДУЕТ ВОЗМОЖНОСТЬ УПРАВЛЕНИЯ СПЕКТРОМ ЭТОЙ СИСТЕМЫ.

ИЗМЕНЯЯ ПАРАМЕТРЫ ПОЛЕЙ (ИНТЕНСИВНОСТИ, ЧАСТОТЫ, НАПРАВЛЕНИЯ РАСПРОСТРАНЕНИЯ) МОЖНО УПРАВЛЯТЬ ПРОЦЕССОМ ФОТОИОНИЗАЦИИ, ИЗМЕНЯТЬ ПОЛОЖЕНИЯ И ЧИСЛО МАКСИМУМОВ В СЕЧЕНИИ.

ИЗМЕНЕНИЕ ПАРАМЕТРОВ ПОЛЕЙ ПО РАЗНОМУ СКАЗЫВАЕТСЯ В ПОЛНЫХ СЕЧЕНИЯХ И УГЛОВЫХ РАСПРЕДЕЛЕНИЯХ: МОЖНО ПОДОБРАТЬ СИСТЕМУ ТАК, ЧТО ОДИНАКОВЫМ ПОЛНЫМ СЕЧЕНИЯМ БУДУТ СООТВЕТСТВОВАТЬ РАЗНЫЕ ФОРМЫ УГЛОВЫХ РАСПРЕДЕЛЕНИЙ. ВОЗМОЖНА СИТУАЦИЯ, КОГДА ОДИНАКОВОЙ ФОРМЕ УГЛОВЫХ РАСПРЕДЕЛЕНИЙ СООТВЕТСТВУЮТ РАЗНЫЕ ПОЛНЫЕ СЕЧЕНИЯ.