Ионизация атомов при совместном действии ультракоротких рентгеновского и инфракрасного лазерных импульсов

Н. Кабачник

DESY, FLASH and XFEL

XFEL versus FLASH

	European XFEL	FLASH	
Abbreviation for	European X-ray Free-Electron Laser	Free-Electron Laser in Hamburg	
Start of commissioning	2014	2004	
Length of the accelerator	1.7 kilometres	0.15 kilometres	x11
Length of the facility	3.4 kilometres	0.3 kilometres	x11
Number of accelerator modules	100	7	x14
Maximum electron energy	17.5 billion electron volts (17.5 GeV)	1 billion electron volte (1 GeV)	17.5
Minimum wavelength of the laser light	0.1 nanometre	4.5 nanometres	x1/45
	(of the order of an atom)	(of the order of a molecule)	
Number of undulators (magnet structures for light	5	1	
generation)			
Number of experiment stations	10	5	x2
	completely instrumented		

XFEL versus LCLS and SPring8

	LCLS	SACLA	European XFEL
Abbreviation for	Linac Coherent Light Source	SPring-8 Angstrom Compact	European X-Ray Free-Electron Laser
		Free Electron Laser	
Location	California, USA	Japan	Germany
Start of commissioning	2009	2011	2014
Accelerator technology	normal conducting	normal conducting	superconducting
Number of light flashes per second	120	60	27 000

Two-colour short-pulse photoionization of atoms

Infrared (IR) laser pulse: $\omega = 1.66 \text{ eV} (800 \text{ nm}), \text{ T}_{\text{L}} = 2.5 \text{ fs}$ $I = 10^{12} - 10^{14} \text{ W/cm}^2$ XUV pulse $\omega = 70 - 130 \text{ eV}$ 0.5 0.5 0.5 0-10

The main parameters: τ_L - duration of the IR pulse τ_{XUV} - duration of the XUV pulse

 $\rm T_L\,$ - period of the $\rm IR$ pulse

Two limiting cases:

- A: $au_{XUV} \ll T_L$ Streaking
 - B: $\tau_L > \tau_{XUV} \gg T_L$ Sidebands

Case A: $\tau_{XUV} \ll T_L$, streaking experiment

Laser field: strong, $10^{13} - 10^{14}$ W/cm², few-cycle, $\tau_L \sim 5$ fs, $E_L = 1.6$ eV (800 nm)

XUV pulse: weak, τ_{χ} ~300 as, E_x=90eV

Modification of electron spectra in a strong IR field:

$$v_z(t \to \infty) = v_{z0} - \frac{e}{m} \int_{t_i}^{\infty} E_L(t) dt$$

= $v_{z0} - \frac{e}{m} A(t_i)$

a) Energy shift

b) Energy spread

Theoretical results: Ar (3s) photoionization *Example:* A.Kazansky and N. Kabachnik J. Phys. B 40, 2163 (2007) Ar (3s); I= 28.6 eV IR: $\tau_1 = 5$ fs, $\lambda = 800$ nm, W = 10¹³ W/cm² **XUV:** $E_x = 90 \text{ eV}$, $\tau_x = 330 \text{ as}$ 0 001 (au) 000 200 400 600 Ś 100 E (el) 20 SO ન્દુ

Experimental results: Ne(2p) photoionization

Example: M. Gouliemakis et al. Science 305, 1267, 2004

Pump: XUV, E=93 eV, T=250 as

Probe: IR 750 nm, T=5 fs

Photoelectrons are detected along the laser polarization

Case B: $\tau_L > \tau_{XUV} \gg T_L$, sideband formation

Emitted electron interacts with the laser field: it can absorb or emit IR - photons

Experimental results: He photoionization

Example: Glover et al. PRL 76, 2468 (1996)

Theory: strong field approximation

L. Keldysh 1965

Amplitude of photoionization

$$\mathcal{A}_{\vec{k}} = -i \int_{-\infty}^{\infty} dt \ \bar{\mathcal{E}}_X(t) < \Psi_f \psi_{\vec{k}} |\hat{D}| \Psi_0 > \exp[i(E_b - \omega_X)t]$$

Electron wave function in the laser field (Volkov wave-function):

$$\psi_{\vec{k}} = \exp\left\{i[\vec{k} - \vec{A}_L(t)]\vec{r} - i\Phi(\vec{k}, t)\right\}$$

where $\Phi(\vec{k}, t) = \frac{1}{2} \int_{-\infty}^t dt' \left[\vec{k} - \vec{A}_L(t')\right]^2$ Volkov phase

Approximately $\mathcal{A}_{\vec{k}} \approx -i \vec{d}_{\vec{k}} \, \mathcal{F}(\vec{k})$

$$\mathcal{F}(\vec{k}) = \int_{t_0}^{t_M} dt' \bar{\mathcal{E}}_X(t') \exp\left[-i \int_{t_0}^{t'} dt'' \frac{1}{2} \left([\vec{k} - \vec{A}_L(t'')]^2 - k_0^2 \right) \right]$$
$$k_0^2/2 = \omega_X - E_b$$

Results of calculations. Case A – streaking regime

800

IR: I = 3.5×10^{12} W/cm² $T_{L} = 2.5$ fs (800 nm) XUV: $\tau_{X} = 0.5$ fs $E_{e} = 220$ eV (8.1 a.u.)

<u>Results of calculations for different τ_{χ} </u>

A.K. Kazansky, I.P. Sazhina, N.M. Kabachnik, Phys.Rev. A 82, 033420, 2010

Description of the gross structure

$$\mathcal{F}(k) \approx \widetilde{E}(k) \underbrace{\begin{array}{c} 1 - (J(k))^{N_{max}+1} \\ 1 - J(k) \end{array}}$$

 $\tilde{E}(k) = \mathcal{E}_{0X} \int_0^{T_L} dt e^{iQ(t)}$ where $Q(t) = \int_0^t dt' \frac{1}{2} \left([k - A_L(t')]^2 - k_0^2 \right)$

 \bar{S}

Suppose for simplicity that

$$A_L(t) = \sin \omega_L t + \alpha$$

Stationary phase approximation

Result:

 $\tilde{E}(k) \sim \mathcal{E}_{0X}Ai(S)$

 $k > \alpha + k_0$

$$S = \frac{\left[(k - \alpha - A_0)^2 - k_0^2\right]}{[4A_0\omega_L^2(k - \alpha - A_0)]^{1/3}}$$

$$[k - A_L(t_s)]^2 = k_0^2$$

$$\tilde{E}(k) \sim \mathcal{E}_{0X} Ai(\bar{S})$$

$$k < \alpha + k_0$$

$$= \frac{[(k - \alpha + A_0)^2 - k_0^2]}{[-4A_0\omega_L^2(k - \alpha + A_0)]^{1/3}}$$

Sideband formation in laser-assisted Auger decay

First experiment: J.M. Schins et al. PRL 73, 2180, 1994

LMM transitions in Ar IR laser 800 nm

TOF electron spectrometer of the magnetic bottle type

Sideband structure for Ne KLL Auger transition

A. Kazansky and N. Kabachnik J. Phys. B 43, 035601 (2010)

Ne (1s), KLL

Sidebands at different emission angles

Angular dependence of the gross structure

Recent experiment at LCLS

M. Meyer et al 2010 unpublished

