

Евгений Эпельбаум, Ruhr University Bochum

Семинар по ядерной физике НИИЯФ МГУ 19 января 2021

Ядерные взаимодействия в киральной эффективной теории поля: достижения и вызовы

Введение

Киральная теория ядерных взаимодействий Избранные применения Нерешенные вопросы Заключение

Why (precision) nuclear physics?

After the discovery of Higgs boson, the strong sector remains the only poorly understood part of the SM!

Interesting topic on its own. Some current frontiers:

- the nuclear chart and limits of stability FAIR, GANIL, ISOLDE,...
- EoS for nuclear matter (gravitational waves from n-star mergers) LIGO/Virgo,...
- hypernuclei (neutron stars) JLab, JSI/FAIR, J-PARC, MAMI,...

But also highly relevant for searches for BSM physics, e.g.:

- direct Dark Matter searches (WIMP-nucleus scattering)
- searches for $0\nu\beta\beta$ decays
- searches for nucleon/nuclear EDMs
- proton/deuteron radius puzzle (complementary experiments with light nuclei...)

→ need a reliable approach to nuclear structure with quantified uncertainties: Effective Field Theory

What is an effective theory?

Example from electrostatics

The goal: compute electric potential generated by a localized charge distribution $\rho(\vec{r})$

• The correct answer: $V(\vec{R}) \propto \int d^3r \frac{\rho(\vec{r})}{|\vec{R} - \vec{r}'|}$

What is an effective theory?

Example from electrostatics

The goal: compute electric potential generated by a localized charge distribution $\rho(\vec{r})$

- The correct answer: $V(\vec{R}) \propto \int d^3r \frac{\rho(\vec{r}')}{|\vec{R} \vec{r}'|}$
- For $R \gg a$, only moments of $\rho(\vec{r})$ are needed:

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

with multipole moments ("low-energy constants"):

$$q = \int d^3 r \,\rho(\vec{r}), \qquad P_i = \int d^3 r \,\rho(\vec{r}) \,r_i, \qquad Q_{ij} = \int d^3 r \,\rho(\vec{r}) (3r_i r_j - \delta_{ij} r_j^2)$$

Remember: multipole expansion just follows from:

$$\frac{1}{|\vec{R} - \vec{r}|} = \frac{1}{R} \sum_{l=0}^{\infty} \left(\frac{r}{R}\right)^l P_l(\cos\alpha) = \frac{1}{R} \sum_{l=0}^{\infty} \left(\frac{r}{R}\right)^l \frac{4\pi}{2l+1} \sum_m Y_{lm}(\hat{R}) Y_{lm}^{\star}(\hat{r})$$

observer

What is an effective theory?

Example from electrostatics

The goal: compute electric potential generated by a localized charge distribution $\rho(\vec{r})$

- The correct answer: $V(\vec{R}) \propto \int d^3r \frac{\rho(\vec{r}')}{|\vec{R} \vec{r}'|}$
- For $R \gg a$, only moments of $\rho(\vec{r})$ are needed:

$$V(\vec{R}) = \frac{q}{R} + \frac{1}{R^3} \sum_{i} R_i P_i + \frac{1}{6R^5} \sum_{ij} (3R_i R_j - \delta_{ij} R^2) Q_{ij} + \dots$$

- Getting the right answer without making calculations (and even without knowing $\rho(\vec{r})$)
 - write down the most general rotationally invariant (symmetry!) expression for $V(\vec{R})$
 - expected natural size of the LECs (dimensional analysis): $q \sim a^0$, $P_i \sim a$, $Q_{ij} \sim a^2$, ...
 - measure LECs & compute $V(\vec{R})$ via expansion in $\frac{a}{R}$

From QCD to nuclei: The framework in a nutshell

From QCD to nuclei: The framework in a nutshell

GB and 1N-sectors: Chiral Perturbation Theory

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner, ...

Observations: QCD is approximately chiral invariant; $SU(2)_L \times SU(2)_R$ is spontaneously broken down to $SU(2)_{isospin}$

Idealized world $[m_u = m_d = 0]$, zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)

GB and 1N-sectors: Chiral Perturbation Theory

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner, ...

Observations: QCD is approximately chiral invariant; $SU(2)_L \times SU(2)_R$ is spontaneously broken down to $SU(2)_{isospin}$

Idealized world [$m_u = m_d = 0$], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)

Real world $[m_u, m_d \ll \Lambda_{QCD}]$, low energy: weakly interacting light GBs (pions) (+ strongly interacting massive hadrons)

Chiral perturbation theory: expansion of observables in $Q = \frac{\text{momenta of particles or } M_{\pi} \sim 140 \text{ MeV}}{\text{breakdown scale } \Lambda_{b}}$

Pion-nucleon scattering

Effective chiral Lagrangian:

$$\mathcal{L}_{\pi} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \dots$$

$$\mathcal{L}_{\pi N} = \underbrace{\bar{N}\left(i\gamma^{\mu}D_{\mu}[\pi] - m + \frac{g_{A}}{2}\gamma^{\mu}\gamma_{5}u_{\mu}[\pi]\right)N}_{\mathcal{L}_{\pi N}^{(1)}} + \underbrace{\sum_{i}c_{i}\bar{N}\hat{O}_{i}^{(2)}[\pi]N}_{\mathcal{L}_{\pi N}^{(2)}} + \underbrace{\sum_{i}d_{i}\bar{N}\hat{O}_{i}^{(3)}[\pi]N}_{\mathcal{L}_{\pi N}^{(3)}} + \underbrace{\sum_{i}e_{i}\bar{N}\hat{O}_{i}^{(4)}[\pi]N}_{\mathcal{L}_{\pi N}^{(4)}} + \dots$$
Pion pueloon conttoring amplitude for $\pi^{a}(a_{i}) + N(m_{i}) \rightarrow \pi^{b}(a_{i}) + N(m_{i})$

Pion-nucleon scattering amplitude for $\pi^a(q_1) + N(p_1) \rightarrow \pi^o(q_2) + N(p_2)$:

$$T^{ba}_{\pi N} = \frac{E + m}{2m} \left(\delta^{ba} \left[g^+(\omega, t) + i\vec{\sigma} \cdot \vec{q_2} \times \vec{q_1} h^+(\omega, t) \right] + i\epsilon^{bac} \tau^c \left[g^-(\omega, t) + i\vec{\sigma} \cdot \vec{q_2} \times \vec{q_1} h^-(\omega, t) \right] \right)$$

calculated within the chiral expansion

Pion-nucleon scattering

Effective chiral Lagrangian:

Pion-nucleon scattering amplitude for $\pi^a(q_1) + N(p_1) \rightarrow \pi^b(q_2) + N(p_2)$:

$$T^{ba}_{\pi N} = \frac{E+m}{2m} \left(\delta^{ba} \Big[g^+(\omega,t) + i\vec{\sigma} \cdot \vec{q}_2 \times \vec{q}_1 h^+(\omega,t) \Big] + i\epsilon^{bac} \tau^c \Big[g^-(\omega,t) + i\vec{\sigma} \cdot \vec{q}_2 \times \vec{q}_1 h^-(\omega,t) \Big] \right)$$

calculated within the chiral expansion

Fettes, Meißner '00; Krebs, Gasparyan, EE '12

Pion-nucleon scattering

Why does a perturbation theory work?

The spontaneously broken chiral symmetry only allows for **derivative** pion couplings! E.g., for the pseudoscalar (Yukawa) coupling:

$$\underline{\lambda}$$
 ~ $\underline{\lambda}$ ~ $\underline{\lambda}$ ~ $\underline{\lambda}$ ~ \underline{Q}^{-1}

Chiral EFT for nuclear systems

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

- contrary to pions, the interaction between nucleons is **NOT** suppressed at low energy
- certain Feynman diagrams (ladder) are enhanced and need to be resummed

Chiral EFT for nuclear systems

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

- contrary to pions, the interaction between nucleons is NOT suppressed at low energy
- certain Feynman diagrams (ladder) are enhanced and need to be resummed

The approach proposed by Weinberg:

- (1) Use chiral EFT to compute nuclear forces
- (2) Solve the A-body Schrödinger equation to calculate nuclear observables

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

A **systematically improvable**, unified approach for $\pi\pi$, π N, NN that allows one to derive **consistent** many-body forces and currents

EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98

• Write down the effective chiral Lagrangian for π , N (if needed, + Δ and external fields...)

EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98

- Write down the effective chiral Lagrangian for π , N (if needed, + Δ and external fields...)
- Compute the **irreducible part of the few-N amplitude** (i.e. nuclear forces & currents) by combining ChPT with TOPT, method of UT, unitary clothing or S-matrix matching
 - unitary ambiguities (consistency!)
 - pion loops usually computed in DR
 - renormalizability of nuclear potentials places constraints on unitary ambiguity

EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98

- Write down the effective chiral Lagrangian for π , N (if needed, + Δ and external fields...)
- Compute the **irreducible part of the few-N amplitude** (i.e. nuclear forces & currents) by combining ChPT with TOPT, method of UT, unitary clothing or S-matrix matching
 - unitary ambiguities (consistency!)
 - pion loops usually computed in DR
 - renormalizability of nuclear potentials places constraints on unitary ambiguity

• **Regularization:** introduce a cutoff Λ to make the few-N Schrödinger equation well defined

 $-\text{ long range: } \frac{1}{\bar{q}^2 + M_\pi^2} \longrightarrow \frac{1}{\bar{q}^2 + M_\pi^2} e^{-\frac{\bar{q}^2 + M_\pi^2}{\Lambda^2}} \simeq \frac{1}{\bar{q}^2 + M_\pi^2} (1 + \text{short-range terms})$

- short range: nonlocal Gaussian regulator [Reinert, Krebs, EE, EPJA 54 (2018) 88]

EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98

- Write down the effective chiral Lagrangian for π , N (if needed, + Δ and external fields...)
- Compute the **irreducible part of the few-N amplitude** (i.e. nuclear forces & currents) by combining ChPT with TOPT, method of UT, unitary clothing or S-matrix matching
 - unitary ambiguities (consistency!)
 - pion loops usually computed in DR
 - renormalizability of nuclear potentials places constraints on unitary ambiguity

• **Regularization:** introduce a cutoff Λ to make the few-N Schrödinger equation well defined $- \log \operatorname{range:} \frac{1}{\vec{q}^2 + M_\pi^2} \longrightarrow \frac{1}{\vec{q}^2 + M_\pi^2} e^{-\frac{\vec{q}^2 + M_\pi^2}{\Lambda^2}} \simeq \frac{1}{\vec{q}^2 + M_\pi^2} (1 + \operatorname{short-range terms})$ $- \operatorname{short range:} \operatorname{nonlocal Gaussian regulator}$ [Reinert, Krebs, EE, EPJA 54 (2018) 88]

EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98

- Write down the effective chiral Lagrangian for π , N (if needed, + Δ and external fields...)
- Compute the **irreducible part of the few-N amplitude** (i.e. nuclear forces & currents) by combining ChPT with TOPT, method of UT, unitary clothing or S-matrix matching
 - unitary ambiguities (consistency!)
 - pion loops usually computed in DR
 - renormalizability of nuclear potentials places constraints on unitary ambiguity

• **Regularization:** introduce a cutoff Λ to make the few-N Schrödinger equation well defined

 $-\text{ long range: } \frac{1}{\bar{q}^2 + M_\pi^2} \longrightarrow \frac{1}{\bar{q}^2 + M_\pi^2} e^{-\frac{\bar{q}^2 + M_\pi^2}{\Lambda^2}} \simeq \frac{1}{\bar{q}^2 + M_\pi^2} (1 + \text{short-range terms})$

— short range: nonlocal Gaussian regulator [Reinert, Кге

[Reinert, Krebs, EE, EPJA 54 (2018) 88]

 Solve the Schrödinger equation and tune C_i(Λ) to data (i.e. implicit renormalization). Since not ∀ counter terms needed to absorb UV divergences from iterations are taken into account, one must keep: Λ ~ Λ_b. [Lepage'97; EE, Meißner '06; EE, Gegelia '09; EE et al. '17]

EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98

- Write down the effective chiral Lagrangian for π , N (if needed, + Δ and external fields...)
- Compute the **irreducible part of the few-N amplitude** (i.e. nuclear forces & currents) by combining ChPT with TOPT, method of UT, unitary clothing or S-matrix matching
 - unitary ambiguities (consistency!)
 - pion loops usually computed in DR
 - renormalizability of nuclear potentials places constraints on unitary ambiguity

• **Regularization:** introduce a cutoff Λ to make the few-N Schrödinger equation well defined

 $-\text{ long range: } \frac{1}{\bar{q}^2 + M_\pi^2} \longrightarrow \frac{1}{\bar{q}^2 + M_\pi^2} e^{-\frac{\bar{q}^2 + M_\pi^2}{\Lambda^2}} \simeq \frac{1}{\bar{q}^2 + M_\pi^2} (1 + \text{short-range terms})$

— short range: nonlocal Gaussian regulator [Reinert, Krebs,

[Reinert, Krebs, EE, EPJA 54 (2018) 88]

- Solve the Schrödinger equation and tune C_i(Λ) to data (i.e. implicit renormalization).
 Since not ∀ counter terms needed to absorb UV divergences from iterations are taken into account, one must keep: Λ ~ Λ_b. [Lepage'97; EE, Meißner '06; EE, Gegelia '09; EE et al. '17]
- Error analysis and consistency checks (naturalness, Lepage plots, ...). Any observable $X^{(n)}$ calculated at order Q^n should be approximately Λ -independent: $dX^{(n)}/d\Lambda \mid_{\Lambda \sim \Lambda_b} \stackrel{n \to \infty}{\longrightarrow} 0$

EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98

- Write down the effective chiral Lagrangian for π , N (if needed, + Δ and external fields...)
- Compute the **irreducible part of the few-N amplitude** (i.e. nuclear forces & currents) by combining ChPT with TOPT, method of UT, unitary clothing or S-matrix matching
 - unitary ambiguities (consistency!)
 - pion loops usually computed in DR
 - renormalizability of nuclear potentials places constraints on unitary ambiguity

• **Regularization:** introduce a cutoff Λ to make the few-N Schrödinger equation well defined

 $-\text{ long range: } \frac{1}{\bar{q}^2 + M_\pi^2} \longrightarrow \frac{1}{\bar{q}^2 + M_\pi^2} e^{-\frac{\bar{q}^2 + M_\pi^2}{\Lambda^2}} \simeq \frac{1}{\bar{q}^2 + M_\pi^2} (1 + \text{short-range terms})$

short range: nonlocal Gaussian regulator

[Reinert, Krebs, EE, EPJA 54 (2018) 88]

- Solve the Schrödinger equation and tune C_i(Λ) to data (i.e. implicit renormalization).
 Since not ∀ counter terms needed to absorb UV divergences from iterations are taken into account, one must keep: Λ ~ Λ_b. [Lepage'97; EE, Meißner '06; EE, Gegelia '09; EE et al. '17]
- Error analysis and consistency checks (naturalness, Lepage plots, ...). Any observable $X^{(n)}$ calculated at order Q^n should be approximately Λ -independent: $dX^{(n)}/d\Lambda \mid_{\Lambda \sim \Lambda_b} \stackrel{n \to \infty}{\longrightarrow} 0$

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

• Decouple pions via a suitable UT: $\tilde{H} \equiv U^{\dagger} \begin{pmatrix} \eta H \eta & \eta H \lambda \\ \lambda H \eta & \lambda H \lambda \end{pmatrix} U = \begin{pmatrix} \eta H \eta & 0 \\ 0 & \lambda \tilde{H} \lambda \end{pmatrix}$

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

(Minimal) ansatz: $U = \begin{pmatrix} \eta (1 + A^{\dagger}A)^{-1/2} & -A^{\dagger}(1 + AA^{\dagger})^{-1/2} \\ A(1 + A^{\dagger}A)^{-1/2} & \lambda(1 + AA^{\dagger})^{-1/2} \end{pmatrix}$, $A = \lambda A\eta$ Okubo '54

Require: $\eta \tilde{H} \lambda = \lambda \tilde{H} \eta = 0 \longrightarrow \lambda (H - [A, H] - AHA) \eta = 0$

The decoupling equation is solved perturbatively (chiral expansion)

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

The decoupling equation is solved perturbatively (chiral expansion)

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

Contrary to S-matrix, renormalizability of nuclear potentials is not guaranteed

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

Contrary to S-matrix, renormalizability of nuclear potentials is not guaranteed

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

Contrary to S-matrix, renormalizability of nuclear potentials is not guaranteed

Indeed, explicit calculations of e.g. the 3NF $\propto g_A^6$ yield:

time-ordered-like diagrams from the method of UT

$$V = \dots = \int d^3 l_1 d^3 l_2 \,\delta(\vec{l}_1 - \vec{l}_2 - \vec{q}_1) \left[\dots \right]$$

$$\times \left[2 \frac{\omega_1^2 + \omega_2^2}{\omega_1^4 \,\omega_2^4 \,\omega_3^2} + \frac{8}{\omega_1^2 \,\omega_2^2 \,\omega_3^4} - \frac{\omega_1 + \omega_2}{\omega_1^3 \,\omega_2^2 \,\omega_3^3} - \frac{2}{\omega_1^4 \,\omega_2^2 \,\omega_3 \,(\omega_1 + \omega_3)} - \frac{2}{\omega_1^2 \,\omega_2^4 \,\omega_3 \,(\omega_2 + \omega_3)} \right]$$

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

Contrary to S-matrix, renormalizability of nuclear potentials is not guaranteed

Indeed, explicit calculations of e.g. the 3NF $\propto g_A^6$ yield:

→ cannot renormalize the potential !

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

Solution [EE, PLB 639 (2006) 654]: Nuclear potentials are not uniquely defined. Starting from N³LO, one can construct additional UTs in Fock space beyond the (minimal) Okubo Ansatz.

The UTs relevant for the N³LO terms $\propto g_A^6$ are $U = e^{\alpha_1 S_1 + \alpha_2 S_2}$, with the generators

$$S_{1} = \eta \Big[H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \eta H^{(1)} \frac{\lambda}{E_{\pi}^{3}} H^{(1)} - h.c. \Big] \eta, \qquad S_{2} = \eta \Big[H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \frac{\lambda}{E_{\pi}^{2}} H^{(1)} - h.c. \Big] \eta$$

They induce additional contributions in the Hamiltonian starting from N³LO

$$\delta V^{(4)} = \left[(H_{\rm kin} + V^{(0)}), \ \alpha_1 S_1 + \alpha_2 S_2 \right] = -\alpha_1 H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \eta H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \eta H^{(1)} \frac{\lambda}{E_{\pi}^3} H^{(1)} + \dots \right]$$

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, ...

Solution [EE, PLB 639 (2006) 654]: Nuclear potentials are not uniquely defined. Starting from N³LO, one can construct additional UTs in Fock space beyond the (minimal) Okubo Ansatz.

The UTs relevant for the N³LO terms $\propto g_A^6$ are $U = e^{\alpha_1 S_1 + \alpha_2 S_2}$, with the generators

$$S_{1} = \eta \Big[H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \eta H^{(1)} \frac{\lambda}{E_{\pi}^{3}} H^{(1)} - h.c. \Big] \eta, \qquad S_{2} = \eta \Big[H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \frac{\lambda}{E_{\pi}^{2}} H^{(1)} - h.c. \Big] \eta$$

They induce additional contributions in the Hamiltonian starting from N³LO

$$\delta V^{(4)} = \left[(H_{\rm kin} + V^{(0)}), \ \alpha_1 S_1 + \alpha_2 S_2 \right] = -\alpha_1 H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \eta H^{(1)} \frac{\lambda}{E_{\pi}} H^{(1)} \eta H^{(1)} \frac{\lambda}{E_{\pi}^3} H^{(1)} + \dots \right]$$

Choose a_1 , a_2 such that the 1π -exchange factorizes out (i.e. the 3NF is renormalizable):

time-ordered-like diagrams from the method of UT

So far, it was **always** possible to tune the phases of the additional UTs in such a way that nuclear potentials and currents remain finite (using DR).

An example: chiral expansion of the 3NF

Up to N⁴LO (Q⁵), the 3NF receives contributions from 6 topologies: (tree-level diagrams start contributing from N²LO, one-loop graphs from N³LO)

An example: chiral expansion of the 3NF

Up to N⁴LO (Q⁵), the 3NF receives contributions from 6 topologies: (tree-level diagrams start contributing from N²LO, one-loop graphs from N³LO)

The large-distance behavior is completely predicted in a parameter-free way by the chiral symmetry of QCD + exp. information on π N system

The longest-range 3NF

The TPE 3NF has the form (modulo 1/m-terms):

 $V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] \, [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$

The longest-range 3NF

The TPE 3NF has the form (modulo 1/m-terms):

 $V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] \, [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$

The longest-range 3NF

The TPE 3NF has the form (modulo 1/m-terms):

$$V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] \, [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$$

• N²LO [Q³]:
$$\mathcal{A}^{(3)}(q_2) = \frac{g_A^2}{8F_\pi^4} \left((2c_3 - 4c_1)M_\pi^2 + c_3q_2^2 \right), \qquad \mathcal{B}^{(3)}(q_2) = \frac{g_A^2c_4}{8F_\pi^4}$$
van Kolck '94

The TPE 3NF has the form (modulo 1/m-terms):

$$V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{\left[q_1^2 + M_\pi^2\right] \left[q_3^2 + M_\pi^2\right]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$$

• N²LO [Q³]: van Kolck '94 $\mathcal{A}^{(3)}(q_2) = \frac{g_A^2}{8F_\pi^4} \left((2\mathbf{c_3} - 4\mathbf{c_1})M_\pi^2 + \mathbf{c_3}q_2^2 \right), \qquad \mathcal{B}^{(3)}(q_2) = \frac{g_A^2\mathbf{c_4}}{8F_\pi^4}$

• N³LO [Q⁴]:

The TPE 3NF has the form (modulo 1/m-terms):

$$V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] \, [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$$

• N²LO [Q³]: van Kolck '94 $\mathcal{A}^{(3)}(q_2) = \frac{g_A^2}{8F_\pi^4} \left((2c_3 - 4c_1)M_\pi^2 + c_3 q_2^2 \right), \qquad \mathcal{B}^{(3)}(q_2) = \frac{g_A^2 c_4}{8F_\pi^4}$

$$\begin{aligned} \mathcal{A}^{(4)}(q_2) &= \frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(2M_\pi^4 + 5M_\pi^2 q_2^2 + 2q_2^4 \right) + \left(4g_A^2 + 1 \right) M_\pi^3 + 2 \left(g_A^2 + 1 \right) M_\pi q_2^2 \Big] \,, \\ \mathcal{B}^{(4)}(q_2) &= -\frac{g_A^4}{256\pi F_\pi^6} \Big[\underbrace{A(q_2)}_{A(q)} \left(4M_\pi^2 + q_2^2 \right) + \left(2g_A^2 + 1 \right) M_\pi \Big] & \text{Ishikawa, Robilotta '07}_{\text{Bernard, EE, Krebs, Meißner '08}} \end{aligned}$$

The TPE 3NF has the form (modulo 1/m-terms):

$$V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{\left[q_1^2 + M_\pi^2\right] \left[q_3^2 + M_\pi^2\right]} \left(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2)\right)$$

• N²LO [Q³]: van Kolck '94

• N³LO [Q⁴]

$$\mathcal{A}^{(3)}(q_2) = \frac{g_A^2}{8F_\pi^4} \left((2c_3 - 4c_1)M_\pi^2 + c_3 q_2^2 \right), \qquad \mathcal{B}^{(3)}(q_2) = \frac{g_A^2 c_4}{8F_\pi^4}$$

$$\mathcal{A}^{(4)}(q_2) = \frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(2M_\pi^4 + 5M_\pi^2 q_2^2 + 2q_2^4 \right) + \left(4g_A^2 + 1 \right) M_\pi^3 + 2 \left(g_A^2 + 1 \right) M_\pi q_2^2 \Big],$$

$$\mathcal{B}^{(4)}(q_2) = -\frac{g_A^4}{256\pi F_\pi^6} \Big[\underbrace{A(q_2)}_{A(q)} \left(4M_\pi^2 + q_2^2 \right) + (2g_A^2 + 1)M_\pi \Big] \qquad \text{Ishikawa, Robilotta '07}_{\text{Bernard, EE, Krebs, Meißner '08}}$$

• N⁴LO [Q⁵]: Krebs, Gasparyan, EE '12

The TPE 3NF has the form (modulo 1/m-terms):

$$V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] \, [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$$

$$\mathcal{A}^{(3)}(q_2) = \frac{g_A^2}{8F_\pi^4} \left((2c_3 - 4c_1)M_\pi^2 + c_3 q_2^2 \right), \qquad \mathcal{B}^{(3)}(q_2) = \frac{g_A^2 c_4}{8F_\pi^4}$$

• N³LO [Q⁴]:
$$\mathcal{A}^{(4)}(q_2) = \frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(2M_\pi^4 + 5M_\pi^2 q_2^2 + 2q_2^4 \right) + \left(4g_A^2 + 1 \right) M_\pi^3 + 2 \left(g_A^2 + 1 \right) M_\pi q_2^2 \Big],$$

 $\mathcal{B}^{(4)}(q_2) = -\frac{g_A^4}{256\pi F_\pi^6} \Big[\underbrace{A(q_2)}_{A(q)} \left(4M_\pi^2 + q_2^2 \right) + \left(2g_A^2 + 1 \right) M_\pi \Big]$ Ishikawa, Robilotta '07
Bernard, EE, Krebs, Meißner '08

• N⁴LO [Q⁵]:

$$\begin{aligned} \mathsf{Krebs, Gasparyan, EE '12} \\ \mathcal{A}^{(5)}(q_2) &= \frac{g_A}{4608\pi^2 F_\pi^6} \Big[M_\pi^2 q_2^2 (F_\pi^2 \left(2304\pi^2 g_A (4\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{22} - \bar{e}_{36}) - 2304\pi^2 \bar{d}_{18} c_3 \right) \\ &+ g_A (144c_1 - 53c_2 - 90c_3)) + M_\pi^4 \left(F_\pi^2 \left(4608\pi^2 \bar{d}_{18} (2c_1 - c_3) + 4608\pi^2 g_A (2\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{36} - 4\bar{e}_{38}) \right) \\ &+ g_A \left(72 \left(64\pi^2 \bar{l}_3 + 1 \right) c_1 - 24c_2 - 36c_3 \right) \right) + q_2^4 \left(2304\pi^2 \bar{e}_{14} F_\pi^2 g_A - 2g_A (5c_2 + 18c_3) \right) \Big] \\ &- \frac{g_A^2}{768\pi^2 F_\pi^6} L(q_2) \left(M_\pi^2 + 2q_2^2 \right) \left(4M_\pi^2 (6c_1 - c_2 - 3c_3) + q_2^2 (-c_2 - 6c_3) \right) , \\ \mathcal{B}^{(5)}(q_2) &= -\frac{g_A}{2304\pi^2 F_\pi^6} \Big[M_\pi^2 \left(F_\pi^2 \left(1152\pi^2 \bar{d}_{18} c_4 - 1152\pi^2 g_A (2\bar{e}_{17} + 2\bar{e}_{21} - \bar{e}_{37}) \right) + 108g_A^3 c_4 + 24g_A c_4 \right) \\ &+ q_2^2 \left(5g_A c_4 - 1152\pi^2 \bar{e}_{17} F_\pi^2 g_A \right) \Big] + \frac{g_A^2 c_4}{384\pi^2 F_\pi^6} \underbrace{L(q_2) \left(4M_\pi^2 + q_2^2 \right)}_{All \, \text{LECs are known from pion-nucleon scattering!} \right) \mathcal{L}_{(q)} = \frac{\sqrt{4M_\pi^2 + q^2}}{q} \ln \frac{\sqrt{4M_\pi^2 + q^2} + q}{2M_\pi^2} \end{aligned}$$

Krebs, Gasparyan, EE '12

Chiral expansion of the structure functions A(q₂), B(q₂)

- good convergence for the longest-range 3NF

- higher-order corrections tend to weaken the long-range 3NF

The chiral expansion starts at N³LO

$$\begin{aligned} V_{2\pi-1\pi} &= \frac{\vec{\sigma}_3 \cdot \vec{q}_3}{q_3^2 + M_\pi^2} \Big[\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \; [\vec{\sigma}_2 \cdot \vec{q}_1 \; \vec{q}_1 \cdot \vec{q}_3 \; F_1(q_1) + \vec{\sigma}_2 \cdot \vec{q}_1 \; F_2(q_1) + \vec{\sigma}_2 \cdot \vec{q}_3 \; F_3(q_1)] \\ &+ \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \; [\vec{\sigma}_1 \cdot \vec{q}_1 \; \vec{q}_1 \cdot \vec{q}_3 \; F_4(q_1) + \vec{\sigma}_1 \cdot \vec{q}_3 \; F_5(q_1) + \vec{\sigma}_2 \cdot \vec{q}_1 \; \vec{q}_1 \cdot \vec{q}_3 \; F_6(q_1) \\ &+ \vec{\sigma}_2 \cdot \vec{q}_1 \; F_7(q_1) + \vec{\sigma}_2 \cdot \vec{q}_3 \; \vec{q}_1 \cdot \vec{q}_3 \; F_8(q_1) + \vec{\sigma}_2 \cdot \vec{q}_3 \; F_9(q_1)] \\ &+ \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \left[\vec{\sigma}_1 \times \vec{\sigma}_2 \cdot \vec{q}_1 \; (\vec{q}_1 \cdot \vec{q}_3 \; F_{10}(q_1) + F_{11}(q_1)) + \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_1 \; \vec{q}_1 \cdot \vec{\sigma}_2 \; F_{12}(q_1) \right] \Big] \end{aligned}$$

The chiral expansion starts at N³LO

$$V_{2\pi-1\pi} = \frac{\vec{\sigma}_{3} \cdot \vec{q}_{3}}{q_{3}^{2} + M_{\pi}^{2}} \Big[\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \ \left[\vec{\sigma}_{2} \cdot \vec{q}_{1} \ \vec{q}_{1} \cdot \vec{q}_{3} \ F_{1}(q_{1}) + \vec{\sigma}_{2} \cdot \vec{q}_{1} \ F_{2}(q_{1}) + \vec{\sigma}_{2} \cdot \vec{q}_{3} \ F_{3}(q_{1}) \right] \\ + \boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \ \left[\vec{\sigma}_{1} \cdot \vec{q}_{1} \ \vec{q}_{1} \cdot \vec{q}_{3} \ F_{4}(q_{1}) + \vec{\sigma}_{1} \cdot \vec{q}_{3} \ F_{5}(q_{1}) + \vec{\sigma}_{2} \cdot \vec{q}_{1} \ \vec{q}_{1} \cdot \vec{q}_{3} \ F_{6}(q_{1}) \right] \\ + \vec{\sigma}_{2} \cdot \vec{q}_{1} \ F_{7}(q_{1}) + \vec{\sigma}_{2} \cdot \vec{q}_{3} \ \vec{q}_{1} \cdot \vec{q}_{3} \ F_{8}(q_{1}) + \vec{\sigma}_{2} \cdot \vec{q}_{3} \ F_{9}(q_{1}) \Big] \\ + \boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \ \left[\vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot \vec{q}_{1} \ (\vec{q}_{1} \cdot \vec{q}_{3} \ F_{10}(q_{1}) + F_{11}(q_{1})) + \vec{q}_{1} \times \vec{q}_{3} \cdot \vec{\sigma}_{1} \ \vec{q}_{1} \cdot \vec{\sigma}_{2} \ F_{12}(q_{1}) \right] \Big]$$

The chiral expansion starts at N³LO

$$\begin{aligned} V_{2\pi-1\pi} &= \frac{\vec{\sigma}_3 \cdot \vec{q}_3}{q_3^2 + M_\pi^2} \Big[\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \; [\vec{\sigma}_2 \cdot \vec{q}_1 \; \vec{q}_1 \cdot \vec{q}_3 \; F_1(q_1) + \vec{\sigma}_2 \cdot \vec{q}_1 \; F_2(q_1) + \vec{\sigma}_2 \cdot \vec{q}_3 \; F_3(q_1)] \\ &+ \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \; [\vec{\sigma}_1 \cdot \vec{q}_1 \; \vec{q}_1 \cdot \vec{q}_3 \; F_4(q_1) + \vec{\sigma}_1 \cdot \vec{q}_3 \; F_5(q_1) + \vec{\sigma}_2 \cdot \vec{q}_1 \; \vec{q}_1 \cdot \vec{q}_3 \; F_6(q_1) \\ &+ \vec{\sigma}_2 \cdot \vec{q}_1 \; F_7(q_1) + \vec{\sigma}_2 \cdot \vec{q}_3 \; \vec{q}_1 \cdot \vec{q}_3 \; F_8(q_1) + \vec{\sigma}_2 \cdot \vec{q}_3 \; F_9(q_1)] \\ &+ \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \; [\vec{\sigma}_1 \times \vec{\sigma}_2 \cdot \vec{q}_1 \; (\vec{q}_1 \cdot \vec{q}_3 \; F_{10}(q_1) + F_{11}(q_1)) + \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_1 \; \vec{q}_1 \cdot \vec{\sigma}_2 \; F_{12}(q_1)] \Big] \end{aligned}$$

• N³LO [Q⁴], Bernard, EE, Krebs, Meißner '08

$$\begin{split} F_{1}^{(4)}(q_{1}) &= \frac{g_{A}^{4}}{256\pi F_{\pi}^{6}q_{1}^{2}} \Big[A(q_{1}) \left(\left(8g_{A}^{2} - 4 \right) M_{\pi}^{2} + \left(g_{A}^{2} + 1 \right) q_{1}^{2} \right) - \frac{M_{\pi}}{4M_{\pi}^{2} + q_{1}^{2}} \left(\left(8g_{A}^{2} - 4 \right) M_{\pi}^{2} + \left(3g_{A}^{2} - 1 \right) q_{1}^{2} \right) \Big] \\ F_{2}^{(4)}(q_{1}) &= \frac{g_{A}^{4}}{128\pi F_{\pi}^{6}} A(q_{1}) \left(2M_{\pi}^{2} + q_{1}^{2} \right) \\ F_{3}^{(4)}(q_{1}) &= -\frac{g_{A}^{4}}{256\pi F_{\pi}^{6}} A(q_{1}) \left(\left(8g_{A}^{2} - 4 \right) M_{\pi}^{2} + \left(3g_{A}^{2} - 1 \right) q_{1}^{2} \right) \\ F_{4}^{(4)}(q_{1}) &= -\frac{F_{5}^{(4)}(q_{1})}{q_{1}^{2}} = -\frac{g_{A}^{6}}{128\pi F_{\pi}^{6}} A(q_{1}) \\ F_{6}^{(4)}(q_{1}) &= F_{8}^{(4)}(q_{1}) = F_{9}^{(4)}(q_{1}) = F_{10}^{(4)}(q_{1}) = F_{12}^{(4)}(q_{1}) = 0 \\ F_{7}^{(4)}(q_{1}) &= \frac{g_{A}^{4}}{128\pi F_{\pi}^{6}} A(q_{1}) \left(2M_{\pi}^{2} + q_{1}^{2} \right) \\ F_{11}^{(4)}(q_{1}) &= -\frac{g_{A}^{4}}{512\pi F_{\pi}^{6}} A(q_{1}) \left(4M_{\pi}^{2} + q_{1}^{2} \right) \end{split}$$

• N^4LO [Q⁵], Krebs, EE, Gasparyan '13

Expressions in momentum space are complicated (3-point function), e.g. at N³LO:

Expressions in momentum space are complicated (3-point function), e.g. at N³LO:

However, pion exchanges factorize in coordinate space leading to very simple expressions:

$$\begin{split} V_{\rm ring}^{(4)}(\vec{r}_{12}, \vec{r}_{32}) &= -\frac{g_A^6 M_\pi^7}{4096 \, \pi^3 F_\pi^6} \Big[-4 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \, \vec{\nabla}_{23} \times \vec{\nabla}_{12} \cdot \vec{\sigma}_2 \, \vec{\nabla}_{23} \times \vec{\nabla}_{31} \cdot \vec{\sigma}_3 \, \vec{\nabla}_{31} \cdot \vec{\nabla}_{12} \\ &\quad -2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \vec{\nabla}_{23} \cdot \vec{\nabla}_{31} \, \vec{\nabla}_{23} \cdot \vec{\nabla}_{12} \, \vec{\nabla}_{31} \cdot \vec{\nabla}_{12} \\ &\quad + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \vec{\nabla}_{23} \times \vec{\nabla}_{12} \cdot \vec{\sigma}_2 \, \vec{\nabla}_{23} \cdot \vec{\nabla}_{31} \, \vec{\nabla}_{31} \cdot \vec{\nabla}_{12} \\ &\quad + 3 \vec{\nabla}_{31} \times \vec{\nabla}_{12} \cdot \vec{\sigma}_1 \, \vec{\nabla}_{23} \times \vec{\nabla}_{31} \cdot \vec{\sigma}_3 \, \vec{\nabla}_{23} \cdot \vec{\nabla}_{12} \Big] \, U_1(x_{23}) \, U_2(x_{31}) \, U_1(x_{12}) \\ &\quad + \frac{g_A^4 \, M_\pi^7}{2048 \, \pi^3 F_\pi^6} \Big[2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \, (\vec{\nabla}_{23} \cdot \vec{\nabla}_{31} \, \vec{\nabla}_{31} \cdot \vec{\nabla}_{12} - \vec{\nabla}_{31} \times \vec{\nabla}_{12} \cdot \vec{\sigma}_1 \, \vec{\nabla}_{23} \times \vec{\nabla}_{31} \cdot \vec{\sigma}_3) \\ &\quad + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \vec{\nabla}_{31} \times \vec{\nabla}_{12} \cdot \vec{\sigma}_1 \, \vec{\nabla}_{23} \cdot \vec{\nabla}_{31} \Big] U_1(x_{23}) \, U_1(x_{31}) \, U_1(x_{12}) \end{split}$$

Shorter-range contributions

$$V_{1\pi-\text{cont}}^{(3)} = -\frac{g_A D}{8F_\pi^2} \frac{\vec{\sigma}_3 \cdot \vec{q}_3}{q_3^2 + M_\pi^2} \,\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \,\vec{\sigma}_1 \cdot \vec{q}_3 \qquad V_{1\pi-\text{cont}}^{(4)} = 0$$

N⁴LO contribution still to be worked out (several new LEC...)

$$V_{2\pi-\text{cont}}^{(4)} = \frac{g_A^4 C_T}{48\pi F_\pi^4} \left\{ 2\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \left(\vec{\sigma}_2 \cdot \vec{\sigma}_3\right) \left[3M_\pi - \frac{M_\pi^3}{4M_\pi^2 + q_1^2} + 2(2M_\pi^2 + q_1^2)A(q_1) \right] \right. \\ \left. + 9 \left[(\vec{q}_1 \cdot \vec{\sigma}_1)(\vec{q}_1 \cdot \vec{\sigma}_2) - q_1^2(\vec{\sigma}_1 \cdot \vec{\sigma}_2) \right] A(q_1) \right\} \\ \left. - \frac{g_A^2 C_T}{24\pi F_\pi^4} \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \left(\vec{\sigma}_2 \cdot \vec{\sigma}_3\right) \left[M_\pi + (2M_\pi^2 + q_1^2)A(q_1) \right] \right]$$

...N4LO contribution still to be worked out...

$$V_{\text{cont}}^{(3)} = \frac{1}{2}E \, \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}$$
9 out of 10 LECs at N⁴LO can be determined in Nd scattering
$$V_{\text{cont}}^{(5)} = -E_{1}q_{1}^{2} - E_{2}q_{1}^{2}\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} - E_{3}q_{1}^{2}\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} - E_{4}q_{1}^{2}\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} - E_{5}(3\vec{q}_{1} \cdot \vec{\sigma}_{1}\vec{q}_{1} \cdot \vec{\sigma}_{2} - q_{1}^{2})$$

$$-E_{6}(3\vec{q}_{1} \cdot \vec{\sigma}_{1}\vec{q}_{1} \cdot \vec{\sigma}_{2} - q_{1}^{2})\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} + iE_{7}\vec{q}_{1} \times (\vec{k}_{1} - \vec{k}_{2}) \cdot (\vec{\sigma}_{1} + \vec{\sigma}_{2})$$

$$+ iE_{8}\vec{q}_{1} \times (\vec{k}_{1} - \vec{k}_{2}) \cdot (\vec{\sigma}_{1} + \vec{\sigma}_{2})\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} - E_{9}\vec{q}_{1} \cdot \vec{\sigma}_{1}\vec{q}_{2} \cdot \vec{\sigma}_{2} - E_{10}\vec{q}_{1} \cdot \vec{\sigma}_{1}\vec{q}_{2} \cdot \vec{\sigma}_{2}\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}$$

Girlanda, Kievsky, Viviani, PRC 84 (2011) 014001

Finally, starting from N³LO, one has to account for relativistic corrections (parameter-free).

State of the art

Chiral expansion of the nuclear forces [W-counting]

Chiral expansion of the nuclear forces [W-counting]

How far in the EFT expansion does one need to go to precisely describe low-energy NN data?

How far in the EFT expansion does one need to go to precisely describe low-energy NN data?

	LO (2)	NLO (9)	$ m N^2LO_{(9)}$	N ³ LO ₍₂₂₎	N ⁴ LO ⁺ (27)
$\overline{\chi^2/{ m datum}\left(np,\;0-300\;{ m MeV} ight)}$	75	14	4.1	2.01	1.06
$\chi^2/{ m datum}\left(pp,\;0-300\;{ m MeV} ight)$	1380	91	41	3.43	1.00

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88 [Incomplete treatment of IB effects!]

How far in the EFT expansion does one need to go to precisely describe low-energy NN data?

	LO (2)	NLO (9)	N ² LO ₍₉₎	$ m N^3LO_{(22)}$	N ⁴ LO ⁺ (27)
$\overline{\chi^2/{ m datum}\left(np,\;0-300\;{ m MeV} ight)}$	75	14	4.1	2.01	1.06
$\chi^2/{ m datum}\left(pp,\;0-300\;{ m MeV} ight)$	1380	91	41	3.43	1.00

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88 [Incomplete treatment of IB effects!]

• N⁴LO⁺ including the IB corrections (own data selection) [Reinert, Krebs, EE, 2006.15360] $\chi^2 / N_{dat} = 1.005$ for ~ 5000 data in the range $E_{lab} = 0-280$ MeV

How far in the EFT expansion does one need to go to precisely describe low-energy NN data?

	LO (2)	NLO (9)	N ² LO ₍₉₎	N ³ LO ₍₂₂₎	N ⁴ LO ⁺ (27)
$\overline{\chi^2/{ m datum}\left(np,\;0-300\;{ m MeV} ight)}$	75	14	4.1	2.01	1.06
$\chi^2/{ m datum}\left(pp,\;0-300\;{ m MeV} ight)$	1380	91	41	3.43	1.00

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88 [Incomplete treatment of IB effects!]

- N⁴LO⁺ including the IB corrections (own data selection) [Reinert, Krebs, EE, 2006.15360] $\chi^2 / N_{dat} = 1.005$ for ~ 5000 data in the range $E_{lab} = 0.280$ MeV
- Granada 2017 PWA [Navarro Perez et al., PRC95 (2017)]: $\chi^2 / N_{dat} = 1.017$ for $E_{lab} = 0.350$ MeV

How far in the EFT expansion does one need to go to precisely describe low-energy NN data?

	LO (2)	NLO ₍₉₎	N ² LO ₍₉₎	$ m N^3LO_{(22)}$	$\mathrm{N}^{4}\mathrm{LO}^{+}$ (27)
$\overline{\chi^2/{ m datum}\left(np,\;0-300\;{ m MeV} ight)}$	75	14	4.1	2.01	1.06
$\chi^2/{ m datum}\left(pp,\;0-300\;{ m MeV} ight)$	1380	91	41	3.43	1.00

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88 [Incomplete treatment of IB effects!]

- N⁴LO⁺ including the IB corrections (own data selection) [Reinert, Krebs, EE, 2006.15360] $\chi^2 / N_{dat} = 1.005$ for ~ 5000 data in the range $E_{lab} = 0.280$ MeV
- Granada 2017 PWA [Navarro Perez et al., PRC95 (2017)]: $\chi^2 / N_{dat} = 1.017$ for $E_{lab} = 0.350$ MeV
- Nonlocal N⁴LO⁺ [Entem, Machleidt, Nosyk, PRC96 (2017)]: $\chi^2 / N_{dat} = 1.15$ for $E_{lab} = 0.290$ MeV

Uncertainty quantification

Neutron-proton total cross section at 150 MeV [A = 450 MeV]

 $\sigma_{
m tot} = 51.4_{
m \,LO} - 3.0_{
m \,NLO} + 1.7_{
m \,N^2LO} + 0.5_{
m \,N^3LO} + 0.4_{
m \,N^4LO} + 0.1_{
m \,N^4LO^+}$

Uncertainty quantification

Neutron-proton total cross section at 150 MeV [A = 450 MeV]

 $\sigma_{\text{tot}} = 51.4_{\text{LO}} - 3.0_{\text{NLO}} + 1.7_{\text{N}^{2}\text{LO}} + 0.5_{\text{N}^{3}\text{LO}} + 0.4_{\text{N}^{4}\text{LO}} + 0.1_{\text{N}^{4}\text{LO}^{+}}$ = 51.10(12)(12)(19)(6) mb to be compared with $\sigma_{\text{tot}}^{\text{exp.}} = 51.02 \pm 0.30 \text{ mb}_{\text{Lisowski et al. '82}}$

Uncertainty quantification

Neutron-proton total cross section at 150 MeV [A = 450 MeV]

 $\sigma_{\text{tot}} = 51.4_{\text{LO}} - 3.0_{\text{NLO}} + 1.7_{\text{N}^{2}\text{LO}} + 0.5_{\text{N}^{3}\text{LO}} + 0.4_{\text{N}^{4}\text{LO}} + 0.1_{\text{N}^{4}\text{LO}^{+}}$ = 51.10(12)(12)(12)(19)(6) mb to be compared with $\sigma_{\text{tot}}^{\text{exp.}} = 51.02 \pm 0.30 \text{ mb}_{\text{Lisowski et al. '82}}$

Some recent highlights

Determination of the πN constants

Reinert, Krebs, EE, e-Print: 2006.15360 [nucl-th]

Standard notation:

- $egin{array}{rcl} f_0^2 &=& -f_{\pi^0\mathrm{nn}}\,f_{\pi^0\mathrm{pp}} \ f_\mathrm{p}^2 &=& f_{\pi^0\mathrm{pp}}\,f_{\pi^0\mathrm{pp}} \ 2f_\mathrm{c}^2 &=& f_{\pi^\pm\mathrm{pn}}\,f_{\pi^\pm\mathrm{pn}} \end{array}$
- fixed-t dispersion relations of πN scattering Markopoulou-Kalamara, Bugg '93; Arndt et al. '04
- πN scattering lengths + Goldberger-Miyazawa-Oehme sum rules
 Ericson et al. '02; Baru et al. '11
- ▼ proton-antiproton PWA Timmermans et al. '94
- neutron-proton (+ proton-proton) PWA Klomp et al. '91; Stoks et al. '93; Bugg et al. '95; de Swart et al. '97; Rentmeester et al. '99

Determination of the πN constants

Reinert, Krebs, EE, e-Print: 2006.15360 [nucl-th]

Standard notation:

$$egin{array}{rcl} f_0^2 &=& -f_{\pi^0\mathrm{nn}}\,f_{\pi^0\mathrm{pp}} \ f_\mathrm{p}^2 &=& f_{\pi^0\mathrm{pp}}\,f_{\pi^0\mathrm{pp}} \ 2f_\mathrm{c}^2 &=& f_{\pi^\pm\mathrm{pn}}\,f_{\pi^\pm\mathrm{pn}} \end{array}$$

2017 Granada PWA: evidence for significant charge dependence of the coupling constants:

$$f_0^2 - f_{
m p}^2 = 0.0029(10)$$

Navarro Perez et al., PRC 95 (2017) 6, 064001

Determination of the πN constants

Reinert, Krebs, EE, e-Print: 2006.15360 [nucl-th]

Standard notation:

$$egin{array}{rcl} f_0^2 &=& -f_{\pi^0\mathrm{nn}}\,f_{\pi^0\mathrm{pp}}\ f_\mathrm{p}^2 &=& f_{\pi^0\mathrm{pp}}\,f_{\pi^0\mathrm{pp}}\ 2f_\mathrm{c}^2 &=& f_{\pi\pm\mathrm{pn}}\,f_{\pi\pm\mathrm{pn}} \end{array}$$

2017 Granada PWA: evidence for significant charge dependence of the coupling constants:

$$f_0^2 - f_{
m p}^2 = 0.0029(10)$$

Navarro Perez et al., PRC 95 (2017) 6, 064001

Our result (χEFT at N⁴LO):

Bayesian determination; statistical **and systematic** uncertainties.

No evidence for charge dependence of the πN coupling constants

Reinert, Krebs, EE, e-print: 2006.15360 [nucl-th]

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; e-Print: 2009.08911

While the proton radius puzzle seems settled, what do we know about the neutron radius?

PDG recommended value: $r_n^2 = -0.1161 \pm 0.0022 \text{ fm}^2$

- no neutron targets exist...
- information only from (old) n-scattering experiments on Pb, Bi

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; e-Print: 2009.08911

While the proton radius puzzle seems settled, what do we know about the neutron radius?

PDG recommended value: $r_n^2 = -0.1161 \pm 0.0022 \text{ fm}^2$

- no neutron targets exist...
- information only from (old) n-scattering experiments on Pb, Bi

Idea: an accurate calculation of the ²H structure radius

$$r_{\rm str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{3}{4m_p^2}$$

along with ¹H-²H isotope shifts data $r_d^2 - r_p^2 = 3.82070(31) \text{ fm}^2$ can be used to extract r_n^2 !

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; e-Print: 2009.08911

While the proton radius puzzle seems settled, what do we know about the neutron radius?

PDG recommended value: $r_n^2 = -0.1161 \pm 0.0022 \text{ fm}^2$

- no neutron targets exist...
- information only from (old) n-scattering experiments on Pb, Bi

Idea: an accurate calculation of the ²H structure radius

$$r_{\rm str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{3}{4m_p^2}$$

along with ¹H-²H isotope shifts data $r_d^2 - r_p^2 = 3.82070(31) \text{ fm}^2$ can be used to extract r_n^2 !

The extracted structure radius and quadrupole moment:

```
r_{\rm str} = 1.9729^{+0.0015}_{-0.0012} \ {\rm fm}
```

$$Q_{\rm d} = 0.2854^{+0.0038}_{-0.0017} \,{\rm fm}^2$$

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; e-Print: 2009.08911

While the proton radius puzzle seems settled, what do we know about the neutron radius?

PDG recommended value: $r_n^2 = -0.1161 \pm 0.0022 \text{ fm}^2$

- no neutron targets exist...
- information only from (old) n-scattering experiments on Pb, Bi

Idea: an accurate calculation of the ²H structure radius

$$r_{\rm str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{3}{4m_p^2}$$

along with ¹H-²H isotope shifts data $r_d^2 - r_p^2 = 3.82070(31) \text{ fm}^2$ can be used to extract r_n^2 !

The extracted structure radius and quadrupole moment:

Few-nucleon systems at N²LO

Maris, EE, Furnstahl et al. (LENPIC), e-Print: 2012.12396 [nucl-th]

Nd elastic scattering observables

UNIVERSITAT

DARWSTAEL

RUB

universität bonn

LENPIC

Ground state energies of p-shell nuclei

National Laboratory

Frontiers and challenges

The 3-body force challenge.

- Since ~ 25 years, there exist high-precision NN₀ potering which descripe mutually compatible pp+np data below π-production threshold with χ²/dat ~ 1 (N⁴LO⁺, AV/®, ℃D Bonn, Nifin I,II, ...)
- On the other hand, the 3N continuum is still not understood; no PWA available.

- Since ~ 25 years, there exist high-precision NN₀ potentials which describe mutually compatible pp+np data below π -production threshold with $\chi^2/dat \sim 1$ (N⁴LO⁺, AV/8, CD Bonn, Night I,II, ...)
- On the other hand, the 3N continuum is still not understood; no PWA available.

• Chiral EFT at N⁴LO achieves a precision sufficient to Asolving the 3NF problem [A_{xz} Still, both computational and conceptual challenges need to be addressed.

Conceptual challenge: 3NFs have been worked out using **dimensional regularization**. Is it **consistent** to employ an additional cutoff regulator when solving the Faddeev equation?

Conceptual challenge: 3NFs have been worked out using **dimensional regularization**. Is it **consistent** to employ an additional cutoff regulator when solving the Faddeev equation?

Consistency can be verified explicitly by calculating (perturbatively) the on-shell amplitude.

- Using DR to compute the Feynman diagram, 3NF and the iteration of the Faddeev equation leads to the same results (i.e. consistency)
- Using Cutoff Reg. in the iteration of the Faddeev equation and DR in the 3NF, the r.h.s. requires a chiral-symmetry breaking counter term signaling the inconsistency! [EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98]

Conceptual challenge: 3NFs have been worked out using **dimensional regularization**. Is it **consistent** to employ an additional cutoff regulator when solving the Faddeev equation?

Consistency can be verified explicitly by calculating (perturbatively) the on-shell amplitude.

- Using DR to compute the Feynman diagram, 3NF and the iteration of the Faddeev equation leads to the same results (i.e. consistency)
- Using Cutoff Reg. in the iteration of the Faddeev equation and DR in the 3NF, the r.h.s. requires a chiral-symmetry breaking counter term signaling the inconsistency! [EE, Krebs, Reinert, Front. in Phys. 8 (2020) 98]

All 3NF expressions beyond tree level (i.e. starting from N³LO) as well as exchange currents [Krebs, EPJA 56 (2020) 234] **must be re-derived using cutoff regularization.**

- higher-derivative regularization to maintain the symmetries [Slavnov, NPB 31 (1971) 301]
- a new path-integral approach to derive nuclear forces and currents [Krebs, EE, in preparation]

Summary and outlook

Chiral EFT is becoming a precision tool for nuclear physics!

Some outstanding challenges and unsolved problems:

- consistent regularization of many-body forces and currents (relevant at N³LO and beyond)
- the three-nucleon force problem
- underpredicted radii for medium-mass and heavy nuclei (and the related issue of the symmetric EoS)
- pushing ab initio frontier to reactions and heavier systems
- quark mass dependence of nuclear forces

...stay tuned for new results in the near future...