Ширина Гигантского Дипольного Резонанса

Что будет пониматься под шириной Г Гигантского Дипольного Резонанса (ГДР)?

Г3 - ширина основной области фотопоглощения

Что влияет на ширину ГДР?

- Ширина распада Г[↑] входных (1p1h) состояний с вылетом нуклона в непрерывный спектр.
- 2. Ширина разброса входных состояний.
- 3. Ширина распада Г[↓] входных состояний по состояниям более сложной природы (2p2h, 3p3h, ...).

Ширина разброса входных состояний возникает за счёт следующих эффектов:

- 1. Разброс Е1-переходов из одной оболочки.
- 2. Разброс E1-переходов из разных оболочек (конфигурационное расщепление ГДР).
- 3. Расщепление E1-переходов по изоспину (изоспиновое расщепление ГДР).
- 4. Расщепление E1-переходов за счёт несферичности ядра (деформационное расщепление ГДР).

Источники фотоядерной информации

- 1. База фотоядерных данных CDFE (сотни сечений).
- 2. База характеристик атомных ядер CDFE.
- Атлас сечений фотопоглощения ядер с А = 12-65, составленный в 2002 г. Б.С. Ишхановым, И.М. Капитоновым, Е.И. Лилеевой, Е.В. Широковым, В.А. Ероховой, М.А. Ёлкиным, А.В. Изотовой.
- 4. Многочисленные оригинальные экспериментальные и теоретические работы.
- 5. Обзоры. Монографии.

Ширина ГДР меняется в широких пределах: 4 – 30 МэВ

Она максимальна в самых легких ядрах (A ≤ 14), достигая в них величины ≈ 30 МэВ.

- С ростом А имеет место тенденция сжатия области концентрации основных E1-переходов.
- В ядрах 1d2s-оболочки (A = 16 40) она меняется в интервале 5 20 МэВ.
 - В ядрах с A = 50 140 ширина ГДР 4 12 МэВ.

В ядрах с A ≥ 140 ширина ГДР 4 – 8 МэВ.

Ширина ГДР минимальна в сферических ядрах с заполненными оболочками. Для них ГДР представим одиночным резонансом с полушириной 4-5 МэВ

Главным фактором увеличения ширины ГДР в легких ядрах с числом нуклонов до ≈ 50 является конфигурационное расщепление

Ядра 1d2s-оболочки (A = 16 – 44)

Экспериментальные сечения фотопоглощения. Ширина сечений меняется в интервале 5 – 20 МэВ Конфигурационное расщепление является следствием того, что расстояние между внутренними оболочками лёгких ядер существенно больше, чем между внешними

Конфигурационное расщепление ГДР легких ядер установлено в фотонуклонных экспериментах фиксирующих отдельные уровни конечных ядер

фотопротонные сечения Парциальные

Величина конфигурационного расщепления ГДР ядер 1d2s-оболочки ≈ 10 МэВ

Ветвь А испытывает полупрямой распад, ветвь Б – полупрямой и статистический в сравнимых долях.

Вероятность возбуждения ветви А (1d2s→1f2p) гигантского резонанса у ядер с числом нуклонов 16 - 40

Сечение фотопоглощения ядра ²⁴Мg и его полупрямая компонента

Конфигурационное расщепление гигантского резонанса исчезает с ростом А, но прослеживается вплоть до А ≈ 60

Вывод

Ширина ГДР достигает наибольших величин в легких ядрах 1р и 1d2s-оболочки (A < 40 – 50). Основным фактором увеличения ширины ГДР этих ядер по сравнению с магической (4-5 МэВ) является конфигурационное расщепление. Для ядер 1d2s-оболочки ширина ГДР со стороны высокоэнергичного хвоста частично возрастает за счёт разброса Б-ветви входных состояний ГДР по состояниям более сложной природы.

Проанализированы 192 экспериментальных сечения для 121 нуклида

Ширины гигантского резонанса ядер с А > 40

Ширины гигантского резонанса для ядер с А = 40 - 239

Модули параметров деформации ядер с А = 39 - 241

Влияние несферичности на форму гигантского резонанса изотопов неодима

Saclay

Экспериментальные ширины ГДР

Экспериментальные ширины ГДР

Добавляем (чёрные точки) ширины ГДР, рассчитанные по формуле $\Gamma = \Gamma_0 + \Delta \Gamma = (4 + 11 \cdot |\delta|) M_{2}B$

Добавляем (чёрные точки) ширины ГДР, рассчитанные по формуле $\Gamma = \Gamma_0 + \Delta \Gamma = (4 + 11 \cdot |\delta|) M_{\Im}B$

$\Gamma = \Gamma_0 + \Delta \Gamma = (4 + 11 \cdot |\delta|)$ ΜэΒ

с помощью соотношения

Ширины ГДР рассчитывались из параметров деформации δ

Ширины ГДР ядер с А = 116 -239

Вывод

Основным фактором увеличения ширины ГДР тяжёлых ядер (А > 120) по сравнению с магической (4 - 5 МэВ) является отклонение формы ядра от сферической (эффект Даноса-Окамото) и это увеличение пропорционально модулю параметра деформации

Область массовых чисел 46 - 140

Модули параметров деформации ядер с А = 39 - 241

Параметр деформации стабильных и долгоживущих ядер с А = 39-123

Z, N =20 0,4 Z =28 N =50 0,3 Z =50 0,2 0,1 0 -0,1 30 60 50 80 110 130 70 90 100 120 40 -0,2 N =28 -0,3 Массовое число А

эксперимент

теория

Параметр деформации

Ширина гигантского резонанса ядер с А = 40 - 140

Взаимодействие дипольных и поверхностных квадрупольных колебаний может приводить к возникновению промежуточной структуры ГДР и увеличению его ширины. В сферических ядрах эта связь определяется параметром мягкости:

$$S = \langle \beta \rangle \frac{E(1^-)}{E_1(2^+)}$$
,

где $\langle \beta \rangle$ - среднеквадратичная амплитуда поверхностных колебаний, $E(1^-)$ - энергия ГДР и $E_1(2^+) = \hbar (C/B)^{1/2}$ - энергия поверхностного фонона. Параметры $E_1(2^+)$ и $\langle \beta \rangle$ могут быть найдены с помощью данных о низкоэнергетических уровнях четно-четных ядер: по энергии возбуждения первого уровня 2⁺ и по приведенной вероятности *E*2-перехода с этого уровня на основное состояние

Распределение интенсивности дипольных переходов в сферических ядрах для различных значений параметров *S* по данным M.G. Huber et al, Phys. Rev., 155, 1973, 1967

Влияние мягкости ядра на ширину ГДР экспериментальная ширина Ширина ГДР, МэВ ширина за счёт мягкости 8 7 5 3 90 100 110 120 130 140 150

Массовое число А

Вывод

Основным фактором увеличения ширины ГДР ядер с A = 46 - 115 по сравнению с магической (4-5 МэВ) является диполь-квадрупольное трение распад входных состояний на состояния более сложной природы, возникающие за счёт связи входных дипольных состояний с квадрупольными колебаниями поверхности ядра.

Формирование магической (4 - 5 МэВ) ширины гигантского резонанса

Главным фактором роста Γ^{\downarrow} при переходе от лёгких ядер к тяжелым является рост плотности ρ_{2p2h} состояний 2p2h, на которые могут распадаться входные 1p1h-состояния.

Ядро	²⁸ Si	³² S	⁵⁸ Ni	⁹⁰ Zr	²⁰⁸ Pb	²⁴⁰ U	
$ ho_{2p2h}$ на 1 МэВ	≈ 5	10-15	100	200-300	1500 - - 2000	2500 - - 3000	

$$\Gamma^{\downarrow} = 2\pi \left| \overline{\langle 2p2h | V | 1p1h \rangle} \right|^2
ho_{2p2h}$$

$$\Gamma^{\uparrow} \approx 0,5 \text{ МэВ, } \Gamma^{\downarrow} \approx 3 \text{ МэВ,}$$

 $\Gamma \approx \Gamma^{\uparrow} + \Gamma^{\downarrow} =$
= (0,5 + 3) МэВ = 3,5 МэВ.
 $\Gamma_{_{3KCII}} = 4,2 \text{ МэВ.}$

208 .

С.П. Камерджиев, Г.Я. Тертычный, В.И. Целяев, 1997.

A.M. Davidson, 1972.

Yu.V. Ponomarev et al, 1994

В лёгких ядрах «магическая ширина» (4 - 5 МэВ) формируется главным образом и в сравнимых долях за счёт Г[↑] и разброса входных состояний.

В тяжёлых ядрах эти факторы не являются основными. В них «магическая ширина» примерно на 3/4 формируется за счёт Г[↓]. Оставшуюся часть создают Г[↑]и разброс входных состояний.

Проявление изоспинового расщепления гигантского дипольного резонанса в его ширине

S. Falliers, B. Goulard, R.H. Venter. Phys. Lett. 19, 398 (1965);

R.Ö. Akyüz, S. Falliers. Phys. Rev. Lett. 27, 1016 (1971).

$$T_{gs} = \left| \frac{N - Z}{2} \right|$$

$$\frac{\int \frac{\sigma_{>}(E)}{E} dE}{\int \frac{\sigma_{<}(E)}{E} dE} = \frac{1}{T_{gs}} \cdot \frac{1 - 1.5 \cdot T_{gs} \cdot A^{-2/3}}{1 + 1.5 \cdot A^{-2/3}}$$

$$E_{>}-E_{<}=\frac{60}{A}(T_{gs}+1)\mathrm{MeV}$$

Проявление изоспинового расщепления ГДР в реакциях (γ,n) и (γ,p) массивных ядер

$$\mathbf{T}_{gs} = \left| \frac{Z - N}{2} \right| \qquad \mathbf{T} = \mathbf{T}_{gs} + \mathbf{1}$$

Изотопический эффект в ширине гигантского дипольного резонанса лёгких ядер

Создание на основе наиболее надёжных экспериментальных данных систематики сечений фотопоглощения ядер с А = 12 – 65 (НИИЯФ МГУ, 2002 г.) и анализ изотопических семейств

Z	6	7	8	12	14	16	20	22	28	29
N = Z	¹² C	¹⁴ N	¹⁶ O	²⁴ Mg	²⁸ Si	³² S	⁴⁰ Ca			
N = Z + 1	¹³ C	¹⁵ N	¹⁷ O	²⁵ Mg	²⁹ Si					
N = Z + 2	¹⁴ C		¹⁸ O	²⁶ Mg	³⁰ Si	³⁴ S	⁴² Ca		⁵⁸ Ni	
N = Z + 4							⁴⁴ Ca	⁴⁶ Ti	⁶⁰ Ni	
N = Z + 5										⁶³ Cu
N = Z + 6								⁴⁸ Ti		
N = Z + 7										⁶⁵ Cu
N = Z + 8							⁴⁸ Ca			

Сравнение эксперимента с концепцией изоспинового расщепления для ¹²С и ⁴⁰Са

	Ширина Г _{int}	
Нуклид	Эксперимент	Теори
		Я
¹² C	6,0	6,0
¹³ C	9,7	9,0
¹⁴ C	12,0	12,1
⁴⁰ Ca	6,2	6,0
⁴² Ca	6,9	6,8
⁴⁴ Ca	7,8	7,4
⁴⁸ Ca	6,8	6,5
 I int — минимальный интервал, в котором заключена МэВ 		

V.I. Assafiri, I. Morrison. Nucl. Phys. A427, 460 (1980)

K.G. McNeill, M.N. Thompson, A.D. Bates, J.W. Jury, B.L. Berman. Phys. Rev. C47, 1108 (1993)

Процедура выключения изоспинового расщепления

Процедура выключения изоспинового расщепления

K.G. McNeill, M.N. Thompson, A.D. Bates, J.W. Jury, B.L. Berman. Phys. Rev. C47, 1108 (1993)

Процедура выключения изоспинового расщепления

Сравнение синтезированного (¹⁴С → ¹⁴N) сечения фотопоглощения для ¹⁴N с экспериментальным

Сравнение синтезированного (¹⁴С → ¹⁴N) сечения фотопоглощения для ¹⁴N с экспериментальным

Сравнение синтезированного (¹⁴С → ¹⁴N) сечения фотопоглощения для ¹⁴N с экспериментальным

Сравнение синтезированного (¹⁴С → ¹⁴N) сечения фотопоглощения для ¹⁴N с экспериментальным

Вывод:

Важным фактором увеличения ширины ГДР лёгких ядер (с A до ≈ 50) по сравнению с магической (≈ 5 МэВ) является разброс входных состояний, возникающий за счёт изоспинового расщепления. При этом ветвь Т_< гигантского резонанса формируется из оболочечных переходов группы А. Таким образом, конфигурационное расщепление ГДР в лёгких ядрах поддерживается изоспиновым, имеющим тот же масштаб.

Заключение

- Минимальная (так называемая «магическая») ширина ГДР равна 4 – 5 МэВ и характерна для сферических ядер с заполненными оболочками.
- 2. Главными факторами увеличения ширины ГДР по сравнению с «магической» являются:
 - у лёгких ядер (А < 50) конфигурационное и изоспиновое расщепление ГДР (до 20 - 30 МэВ),
 - у средних ядер (А = 50 115) взаимодействие с поверхностью ядра (диполь-квадрупольное трение) – до 12 МэВ,
 - у тяжёлых ядер (А > 120) несферичность ядра (эффект Даноса-Окамото) – до 8 МэВ.

«Магическая» ширина ГДР (4 – 5 МэВ) у лёгких ядер формируется в сравнимых долях разбросом 1p1h-переходов из одной оболочки и Г[↑], в тяжёлых ядрах – преимущественно за счёт Г[↓].

Благодарю за внимание